
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

CS193X schedule

We've made it to Week 8! I updated the Course Syllabus.

Here's our new tentative schedule:

This week:

- Saving data; MongoDB

- Authentication

- Final project assigned Friday

Next week:

- NO CLASS MONDAY

- HW5 due Tuesday at 11:59pm

- Server-side polish

- Possibly a topic voted upon by the class

http://web.stanford.edu/class/cs193x/syllabus/

CS193X schedule

Next next week: Week 10

- Mon June 5: Last lecture!

- A look back on all that we've learned in CS193x

- An opinionated tour of frameworks, libraries, etc

- Wed June 7: No lecture

Finals week:

- June 12: Final project due @ 11:59pm

Today's schedule

Today:

- Saving data

- POST body

- body-parser

- Databases

- MongoDB

- System overview

- mongo

- mongod

- mongodb

Last time: async / await

What if we could get:

- Synchronous-looking code

- That actually ran asynchronously?

// THIS CODE DOESN'T WORK

const response = fetch('albums.json');

const json = response.json();

console.log(json);

// But this code does work:

async function loadJson() {

 const response = await fetch('albums.json');

 const json = await response.json();

 console.log(json);

}

loadJson();

async / await

What if we could get the best of both worlds?

- Synchronous-looking code

- That actually ran asynchronously

Example: Dictionary

Given a dictionary.json file of word/value pairs, a

dictionary app that lets you look up the definition of the word:

Dictionary lookup

Dictionary fetch

Example: Dictionary

It'd be nice to have some flexibility on the display of the

definition:

JSON response

If we want to return a JSON response, we should use

res.json(object) instead:

The parameter we pass to res.json() should be a

JavaScript object.

https://expressjs.com/en/api.html#res.json

Example: Dictionary lookup

Example: Dictionary fetch

Result

Saving data

Example: Dictionary

What if we want to

modify the definitions

of words as well?

Posting data

POST message body: fetch()

Client-side:

You should specify a message body in your fetch() call:

Server-side

Server-side: Handling the message body in NodeJS/Express

is a little messy (GitHub):

https://github.com/yayinternet/lecture20/tree/master/post-body-no-parser

body-parser

We can use the body-parser library to help:

This is not a NodeJS API library, so we need to install it:

$ npm install body-parser

https://github.com/expressjs/body-parser

body-parser

We can use the body-parser library to help:

This creates a JSON parser stored in jsonParser, which

we can then pass to routes whose message bodies we want

parsed as JSON.

https://github.com/expressjs/body-parser

POST message body

Now instead of this code:

POST message body

We can write this code:

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

We can access the message body through req.body:

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

We can access the message body through req.body:

Note that we also had to add the jsonParser as a

parameter when defining this route.

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

Finally, we need to add JSON content-type headers on the

fetch()-side (GitHub):

https://github.com/yayinternet/lecture20/blob/master/post-body-with-parser/public/fetch.js

Example: Dictionary

We will modify the

dictionary example to

POST the contents of

the form.

fs-extra

We'll use the fs-extra library to write our change back to

the dictionary.json file.

● fs: NodeJS API library

○ Uses callbacks

● fs-extra: npm library

○ Uses callbacks OR promises

○ fs.writeJson(fileName, object)

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://github.com/jprichardson/node-fs-extra
https://github.com/jprichardson/node-fs-extra

Example: server-side

Example: fetch()

Query parameters

Query parameters

The Spotify Search API was formed using query parameters:

Example: Spotify Search API

https://api.spotify.com/v1/search?type=album

&q=beyonce

- There were two query parameters sent to the Spotify

search endpoint:

- type, whose value is album

- q, whose value is beyonce

Query parameters

Q: How do we read query parameters in our server?

A: We can access query parameters via req.query:

GitHub

https://github.com/yayinternet/lecture20/tree/master/query-params
https://github.com/yayinternet/lecture20/tree/master/query-params

Recap

You can deliver parameterized information to the server in

the following ways:

1. Route parameters

2. GET request with query parameters

(DISCOURAGED: POST with query parameters)

3. POST request with message body

Q: When do you use route parameters vs query

parameters vs message body?

GET vs POST

● Use GET requests for retrieving data, not writing data

● Use POST requests for writing data, not retrieving data

You can also use more specific HTTP methods:

○ PATCH: Updates the specified resource

○ DELETE: Deletes the specified resource

There's nothing technically preventing you from breaking

these rules, but you should use the HTTP methods for their

intended purpose.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/POST_(HTTP)

Route params vs Query params

Generally follow these rules:

● Use route parameters for required parameters for the

request

● Use query parameters for:

○ Optional parameters

○ Parameters whose values can have spaces

These are conventions and are not technically enforced,

nor are they followed by every REST API.

Example: Spotify API

The Spotify API mostly followed these conventions:

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9

- The Album ID is required and it is a route parameter.

https://api.spotify.com/v1/search?type=album&q=the%20wee

knd&limit=10

- q is required but might have spaces, so it is a query

parameter

- limit is optional and is a query parameter

- type is required but is a query parameter (breaks

convention)

Notice both searches are GET requests, too

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10

package.json

Installing dependencies

In our examples, we had to install the express and

body-parser npm packages.

$ npm install express

$ npm install body-parser

These get written to the node_modules directory.

Uploading server code

When you upload NodeJS code to a GitHub repository (or

any code repository), you should not upload the

node_modules directory:

- You shouldn't be modifying code in the node_modules

directory, so there's no reason to have it under version

control

- This will also increase your repo size significantly

Q: But if you don't upload the node_modules directory to

your code repository, how will anyone know what

libraries they need to install?

Managing dependencies

If we don't include the node_modules directory in our

repository, we need to somehow tell other people what

npm modules they need to install.

npm provides a mechanism for this: package.json

https://docs.npmjs.com/getting-started/using-a-package.json

package.json

You can put a file named package.json in the root

directory of your NodeJS project to specify metadata about

your project.

Create a package.json file using the following command:

$ npm init

This will ask you a series of questions then generate a

package.json file based on your answers.

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

Auto-generated package.json

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser-package-json
https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser-package-json

Saving deps to package.json

Now when you install packages, you should pass in the

--save parameter:

$ npm install --save express

$ npm install --save body-parser

This will also add an entry for this library in package.json.

Saving deps to package.json

If you remove the node_modules directory:

$ rm -rf node_modules

You can install your project dependencies again via:

$ npm install

- This also allows people who have downloaded your code from

GitHub to install all your dependencies with one command instead

of having to install all dependencies individually.

npm scripts

Your package.json file also defines scripts:

You can run these scripts using $ npm scriptName

E.g. the following command runs "node server.js"

$ npm start

Databases and DBMS

Database definitions

A database (DB) is an organized collection of data.

- In our dictionary example, we used a JSON file to store

the dictionary information.

- By this definition, the JSON file can be considered a

database.

A database management system (DBMS) is software that

handles the storage, retrieval, and updating of data.

- Examples: MongoDB, MySQL, PostgreSQL, etc.

- Usually when people say "database", they mean data

that is managed through a DBMS.

Why use a database/DBMS

Why use a DBMS instead of saving to a JSON file?

- fast: can search/filter a database quickly compared to a file

- scalable: can handle very large data sizes

- reliable: mechanisms in place for secure transactions, backups,

etc.

- built-in features: can search, filter data, combine data from

multiple sources

- abstract: provides layer of abstraction between stored data and

app(s)

- Can change where and how data is stored without needing

to change the code that connects to the database.

Why use a database/DBMS

Why use a DBMS instead of saving to a JSON file?

- Also: Some services like Heroku will not permanently save

files, so using fs or fs-extra will not work

Disclaimer

Databases and DBMS is a huge topic in CS with multiple

courses dedicated to it:

- CS145: Introduction to Databases

- CS245: Database System Principles

- CS346: Database System Implementation

In CS193X, we will cover only the very basics:

- How one particular DBMS works (MongoDB)

- How to use MongoDB with NodeJS

- (later) Basic DB design

MongoDB

MongoDB

MongoDB: A popular open-source DBMS

- A document-oriented database as opposed to a

relational database

Relational database:

Name School Employer Occupation

Lori null Self Entrepreneur

Malia Harvard null null

{
 name: "Lori",
 employer: "Self",
 occupation: "Entrepreneur"
}
{
 name: "Malia",
 school: "Harvard"
}

Document-oriented DB:

Relational databases have fixed schemas;

document-oriented databases have

flexible schemas

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Document-oriented_database

MongoDB is another software program running on the
computer, alongside our NodeJS server program.

It is also known as the MongoDB server.

There are MongoDB libraries we can use in NodeJS to
communicate with the MongoDB Server, which reads and

writes data in the database it manages.

The database the MongoDB Server manages might be
local to the server computer...

Data

Or it could be stored on other server computer(s)
("cloud storage").

(Routing,
etc…)

System overview

Data

$ nod
e ser

ver.j
s

$ mongod

For development, we will have 2 processes running:

- node will run the main server program on port 3000

- mongod will run the database server on a port 27017

System overview

Data

$ mongod

The mongod server will be bound to port 27017 by default

- The mongod process will be listening for messages to

manipulate the database: insert, find, delete, etc.

System overview

$ nod
e ser

ver.j
s

$ mongod

We will be using two ways of communicating to the

MongoDB server:

- NodeJS libraries

- mongo command-line tool

$ m
ong

o

MongoDB concepts

Database:

- A container of MongoDB collections

Collection:

- A group of MongoDB documents.

- (Table in a relational database)

Document:

- A JSON-like object that represents one instance of a

collection (Row in a relational database)

- Also used more generally to refer to any set of

key-value pairs.

MongoDB example

{ "_id" :
ObjectId("5922acf09e7640
3b3a7549ec"), "style" :
"graduation", "message"
: "Hi Pooh,\n\nĸ
Congrats!!! ĸ\n\n<3
Piglet" }

{ "_id" :
ObjectId("5922b8a186ebd7
3e42b1b53c"), "style" :
"july4", "message" :
"Dear Chip,\n\nHappy 4th
of July!\n\n❤�Dale" }

{ "_id" :
ObjectId("5922b90d86ebd7
3e42b1b53d"), "style" :
"fathersday", "message"
: "HFD" }

Collection:
card

Database:
ecards-db

Documents:

The document keys are

called fields

mongod: Database process

When you install MongoDB, it will come with the mongod

command-line program. This launches the MongoDB

database management process and binds it to port 27017:

$ mongod

$ mongod

https://www.mongodb.com/download-center#community

mongo: Command-line interface

You can connect to the MongoDB server through the

mongo shell:

$ mongo

$ mongod

More next time!

