
Game-playing:
DeepBlue and AlphaGo

Brief history of gameplaying frontiers

● 1990s: Othello world champions refuse to play computers
● 1994: Chinook defeats Checkers world champion
● 1997: DeepBlue defeats world champion Gary Kasparov
● 2016: AlphaGo defeats world champion Lee Sedol

Today, we’re going to talk about DeepBlue and AlphaGo.

DeepBlue

● In 1997, DeepBlue beat world champion Gary Kasparov at chess.

DeepBlue

● In 1997, DeepBlue beat world champion Gary Kasparov at chess.

● How?
○ Minimax
○ Alpha-beta pruning
○ Evaluation function
○ Sound familiar?

First, some review

Let’s play a two-player game.

Start with n=5, and alternate turns.

● On every turn, player can either set n = n - 1 or n = floor(n/2)
● The first player to set n = 0 wins!

How can we model this?

Game trees
5

Game trees
5

subtract divide

Game trees
5

4 2

Game trees
5

4 2

subtract subtractdivide divide

Game trees
5

4 2

23 1 1

Game trees
5

4 2

23

2 1 1 1

1 1

0 00 0

0 00 00 01 1

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

Game trees
5

4 2

23

2 1 1 1

1 1

0 00 0

0 00 00 01 1

0 00 0

?So what are the best moves I can
play?

+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

Game trees
5

4 2

23

2 1 1 1

1 1

0 00 0

0 00 00 01 1

0 00 0

?So what are the best moves I can
play?

Problem:
We also don’t know what
the opponent will play.

? ?

+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

Expectimax
● We want to maximize our own utility.

Expectimax
● We want to maximize our own utility. If it’s my turn, then:

Expectimax
● We want to maximize our own utility. If it’s my turn, then:

= Take the action a that maximizes the utility
of the resulting state.

Expectimax
● We want to maximize our own utility. If it’s my turn, then:

= Take the action a that maximizes the utility
of the resulting state.

● We don’t know what the enemy will do.

Expectimax
● We want to maximize our own utility. If it’s my turn, then:

= Take the action a that maximizes the utility
of the resulting state.

● We don’t know what the enemy will do. So let’s guess!

Expectimax
● We want to maximize our own utility. If it’s my turn, then:

= Take the action a that maximizes the utility
of the resulting state.

● We don’t know what the enemy will do. So let’s guess!

Probability that our opponent
will take action a from state s

Expectimax
● We want to maximize our own utility. If it’s my turn, then:

= Take the action a that maximizes the utility
of the resulting state.

● We don’t know what the enemy will do. So let’s guess!

Probability that our opponent
will take action a from state s

Utility of the next state.

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

5

3 2 1 1

1 1
-100 -100 -100 -100-100 -100

Let’s say we don’t know our enemy’s
policy at all.

Maybe it’s random!

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100
+100

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100-100

+100

+100

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100

+100

-100

+100

+100

+0

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100

+100

-100

+100

+100

+0

+100

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100

+100

-100

+100

+100

+0

+100

Expectimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100

+100

-100

+100

+100

+0

+100

What if our enemy isn’t random?

Minimax
● We know we want to maximize our utility.

= Take the action a that maximizes the utility
of the resulting state.

Minimax
● We know we want to maximize our utility.

= Take the action a that maximizes the utility
of the resulting state.

● Let’s assume the enemy is adversarial, i.e. wants to minimize our utility.

= Take the action a that minimizes the utility
of the resulting state.

Minimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

Minimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100
+100

Minimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100-100

+100

+100

Minimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100

+100

-100

+100

+100

-100

Minimax

4 2

2 1 1 1 0 00 0

0 00 00 0

0 00 0
+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100

5

3 2 1 1

1 1
+100 +100

-100 -100 -100

+100 +100

+100

-100

+100

+100

-100

+100

Minimax
● DeepBlue did not use vanilla MiniMax.

○ What’s wrong?

Minimax
● DeepBlue did not use vanilla MiniMax.

○ What’s wrong?

● Game trees are huge!!!

● Can we do better?

Minimax
● DeepBlue did not use vanilla MiniMax.

○ What’s wrong?

● Game trees are huge!!!

● Can we do better?
○ Idea: Prune the search space!

Alpha-Beta pruning
● From a max-node (our perspective):

○ If we know utility of action a is really high, we shouldn’t have to evaluate other actions that we
know will not be as good

● Inverse is true from a min-node (adversary’s perspective)

Alpha-Beta pruning
● From a max-node (our perspective):

○ If we know utility of action a is really high, we shouldn’t have to evaluate other actions that we
know will not be as good

● Inverse is true from a min-node (adversary’s perspective)

● Alpha: lower bound on the value that a max-node may ultimately be assigned
○ v >= α

● Beta: upper bound on the value that a min-node may ultimately be assigned
○ v <= β

Alpha-Beta pruning

6 9 8

V = 6

Alpha-Beta pruning

6 9 8

α = 6
V ≥ 6

Since this is a max-node, the root node will
always end up with a value of at least 6, no
matter what values the children have

V = 6

Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

V = 6

Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

This is a min-node, so its value will be at most
4, no matter what values the children have.

V = 6

Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

This is a min-node, so its value will be at most
4, no matter what values the children have.

4 < 6, so the value of this node is guaranteed
to have no affect on the value of root node.

V = 6

Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

9

β = 9
V ≤ 9

V = 6

Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

9 7

β = 7
V ≤ 7

V = 6

Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

9 7 2

β = 2
V ≤ 2

Search order matters!

We could have pruned this branch sooner
if we had seen the node with value 2 first.

V = 6

Alpha-Beta pruning
● DeepBlue did not just use MiniMax + Alpha-Beta pruning.

○ What’s wrong?

Alpha-Beta pruning
● Pretty cool, but DeepBlue did not just use MiniMax + Alpha-Beta pruning.

○ What’s wrong?

● Game trees are too deep!!!

● Can we do better?
○ Idea: Instead of playing the entire game, let’s guess how we’ll we’re doing after d moves.

Evaluation functions

Suppose we have finite computing
resources and can’t afford to
compute this entire tree.

Evaluation functions

Suppose we have finite computing
resources and can’t afford to
compute this entire tree.

Let’s stop our search at some fixed depth d.

Evaluation functions

Suppose we have finite computing
resources and can’t afford to
compute this entire tree.

Let’s stop our search at some fixed depth d.

Evaluation functions

Suppose we have finite computing
resources and can’t afford to
compute this entire tree.

Let’s stop our search at some fixed depth d.

How do we know the utility of these
new leaf nodes (to propagate up
the game tree)?

 ? ? ? ?

Evaluation functions

Suppose we have finite computing
resources and can’t afford to
compute this entire tree.

Let’s stop our search at some fixed depth d.

How do we know the utility of these
new leaf nodes (to propagate up
the game tree)?

Guess! (use an heuristic)

From current game state, how likely am I to win?

~70 ~30 ~10 ~20

Evaluation functions
● Connect-4:

○ How many “open” connect-3’s do I have?
○ How many “open” connect-2’s do I have?

● Chess (DeepBlue): “material, position, King safety and tempo”
○ Material: How many pieces do I have left? And what are they worth?
○ Position: How many empty/safe squares can I attack?
○ King safety: How in-danger of attack is my King?
○ Tempo: Have I been making progress recently?

● DeepBlue: MiniMax tree + Alpha-Beta pruning to a depth of ~13.
○ After that depth, used evaluation function to estimate utility.

Go

● Why wasn’t DeepBlue’s algorithm good for Go?

Go

● Why wasn’t DeepBlue’s algorithm good for Go?

● Go is way harder than chess.
○ ~300 possible actions for every game board (vs ~30 in chess)
○ ~150 moves per game (vs ~70 in chess)
○ Total number of possible games

■ ~10^761 (vs ~10^120) for chess
■ There’s only 10^80 atoms in the universe?

Alpha Go’s Approach

● Monte Carlo Tree Search
● “Value network” as evaluation function

○ What’s the expected utility of this board state?

● “Policy network” as selection function
○ What moves are more likely to happen from this state?

● Fed data from seeing many expert games

Monte Carlo Tree Search

● I have limited resources to find the optimal policy for every game state.

Monte Carlo Tree Search

● I have limited resources to find the optimal policy for every game state.
approximate

Monte Carlo Tree Search

● I have limited resources to find the optimal policy for every game state.
approximate the most common

game states

Monte Carlo Tree Search: the core loop

Choose a game path to
learn more about

Monte Carlo Tree Search: the core loop

Choose a game path to
learn more about

Add a MCTS node to our
search tree

Monte Carlo Tree Search: the core loop

Choose a game path to
learn more about

Add a MCTS node to our
search tree

Play a game randomly:
Did we win?

Monte Carlo Tree Search: the core loop

Choose a game path to
learn more about

Add a MCTS node to our
search tree

Play a game randomly:
Did we win?

Propagate result up
through path

Monte Carlo Tree Search: the core loop

Choose a game path to
learn more about

Add a MCTS node to our
search tree

Play a game randomly:
Did we win?

Propagate result up
through path

a good selection policy
explores “common” game
paths more often, while also
exploring unknown states

Monte Carlo Tree Search: the core loop

Choose a game path to
learn more about

Add a MCTS node to our
search tree

Play a game randomly:
Did we win?

Propagate result up
through path

a good selection policy
explores “common” game
paths more often, while also
exploring unknown states

Instead of doing a full playout,
some MCTS use an evaluation
function.

AlphaGo’s Monte Carlo Tree Search

Uses “policy prediction” to
guess which actions are
more likely to be taken.

Uses “value prediction” as
an evaluation function
instead of performing full
playout.

AlphaGo’s Monte Carlo Tree Search

Uses “policy prediction” to
guess which actions are
more likely to be taken.

Uses “value prediction” as
an evaluation function
instead of performing full
playout.

These predictions are trained using a
convolutional neural network.

Convolutional Neural Networks
How does training work?

● Take an affine function of input
(with weights)

● Pass this output through a
nonlinear function -- activation
function.

Convolutional Neural Networks
How do you train a classifier
from these features

Convolutional Neural Networks

What are they doing mechanically?

● Finding local features in a picture
● Prioritizing features that help

predict outcome of interest
● Value Network -> Predict Rewards
● Policy Network -> Predict Next

Moves

Policy Network

● Given a 19x19 Go board, output
probability distribution over all legal
moves

● Data from 30 million positions, and
data from “self-plays”

● 13 layers!

Value Network

● Given a 19x19 Go board, output a
value.

○ How likely am I to win?

● Learned on same games as policy
network

MCTS in Alpha Go

Selection

We choose which path to “learn more” about by

selecting paths with max “Q + u(P)”

● Q trained by value network, u(P) samples

probability of this action from policy network

MCTS in Alpha Go

Expansion 

To choose a node to expand, randomly

sample probability distribution from policy

network.

MCTS in Alpha Go

Evaluation

Heuristic is either: 

● Q from value network

● r from “fast rollout”

○ i.e. simulated game

MCTS in Alpha Go
Backpropagation

Q values in the entire path are

backpropagated based on the evaluation

result.

It’s not perfect
● Alpha Go’s only loss against Lee:
● White 78, Lee played an unexpected move
● AlphaGo failed to explore this in MCTS

Two possible reasons:

● Policy network hadn’t been trained for long enough
● Selection too aggressively chooses “common” game paths, not enough

exploration

AlphaGo

● We just designed AlphaGo!
● … Almost

Computational Power

● 1202 CPUs!
● 176 GPUs!
● Specialized hardware against

Lee Sedol

Summary

AlphaGo applied advanced versions of
techniques in this class!

Name ELO

Lee Sedol 3517

AlphaGo (2016) ~3594

Ke Jie (world champion) 3616

