
Game-playing: 
DeepBlue and AlphaGo



Brief history of gameplaying frontiers

● 1990s: Othello world champions refuse to play computers
● 1994: Chinook defeats Checkers world champion
● 1997: DeepBlue defeats world champion Gary Kasparov
● 2016: AlphaGo defeats world champion Lee Sedol

Today, we’re going to talk about DeepBlue and AlphaGo.



DeepBlue

● In 1997, DeepBlue beat world champion Gary Kasparov at chess.



DeepBlue

● In 1997, DeepBlue beat world champion Gary Kasparov at chess.

● How? 
○ Minimax
○ Alpha-beta pruning
○ Evaluation function
○ Sound familiar?



First, some review

Let’s play a two-player game.

Start with n=5, and alternate turns.

● On every turn, player can either set n = n - 1 or n = floor(n/2)
● The first player to set n = 0 wins!

How can we model this?
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0 00 0

0 00 00 01 1

0 00 0

?So what are the best moves I can 
play?

Problem:
We also don’t know what
the opponent will play.

? ?

+100 +100 +100 +100

+100 +100 +100 +100

-100 -100 -100 -100-100 -100



Expectimax
● We want to maximize our own utility.



Expectimax
● We want to maximize our own utility. If it’s my turn, then: 



Expectimax
● We want to maximize our own utility. If it’s my turn, then: 

= Take the action a that maximizes the utility 
of the resulting state.



Expectimax
● We want to maximize our own utility. If it’s my turn, then: 

= Take the action a that maximizes the utility 
of the resulting state.

● We don’t know what the enemy will do.



Expectimax
● We want to maximize our own utility. If it’s my turn, then: 

= Take the action a that maximizes the utility 
of the resulting state.

● We don’t know what the enemy will do. So let’s guess!



Expectimax
● We want to maximize our own utility. If it’s my turn, then: 

= Take the action a that maximizes the utility 
of the resulting state.

● We don’t know what the enemy will do. So let’s guess!

Probability that our opponent
will take action a from state s



Expectimax
● We want to maximize our own utility. If it’s my turn, then: 

= Take the action a that maximizes the utility 
of the resulting state.

● We don’t know what the enemy will do. So let’s guess!

Probability that our opponent
will take action a from state s

Utility of the next state.
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Let’s say we don’t know our enemy’s
policy at all.

Maybe it’s random!
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What if our enemy isn’t random?
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Minimax
● We know we want to maximize our utility.

= Take the action a that maximizes the utility 
of the resulting state.

● Let’s assume the enemy is adversarial, i.e. wants to minimize our utility.

= Take the action a that minimizes the utility 
of the resulting state.
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Minimax
● DeepBlue did not use vanilla MiniMax.

○ What’s wrong?

● Game trees are huge!!!

● Can we do better?
○ Idea: Prune the search space!



Alpha-Beta pruning
● From a max-node (our perspective):

○ If we know utility of action a is really high, we shouldn’t have to evaluate other actions that we 
know will not be as good
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Alpha-Beta pruning
● From a max-node (our perspective):

○ If we know utility of action a is really high, we shouldn’t have to evaluate other actions that we 
know will not be as good

● Inverse is true from a min-node (adversary’s perspective)

● Alpha: lower bound on the value that a max-node may ultimately be assigned
○ v >= α

● Beta: upper bound on the value that a min-node may ultimately be assigned
○ v <= β
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Alpha-Beta pruning

6 9 8

α = 6
V ≥ 6

Since this is a max-node, the root node will 
always end up with a value of at least 6, no 
matter what values the children have

V = 6
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Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

This is a min-node, so its value will be at most 
4, no matter what values the children have.

4 < 6, so the value of this node is guaranteed 
to have no affect on the value of root node.

V = 6
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Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

9 7

β = 7
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Alpha-Beta pruning

46 9 8

β = 4
V ≤ 4

α = 6
V ≥ 6

9 7 2

β = 2
V ≤ 2

Search order matters!

We could have pruned this branch sooner 
if we had seen the node with value 2 first.

V = 6
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Alpha-Beta pruning
● Pretty cool, but DeepBlue did not just use MiniMax + Alpha-Beta pruning.

○ What’s wrong?

● Game trees are too deep!!!

● Can we do better?
○ Idea: Instead of playing the entire game, let’s guess how we’ll we’re doing after d moves.
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Evaluation functions

Suppose we have finite computing 
resources and can’t afford to 
compute this entire tree.

Let’s stop our search at some fixed depth d. 

How do we know the utility of these 
new leaf nodes (to propagate up 
the game tree)?

Guess! (use an heuristic)

From current game state, how likely am I to win?

~70 ~30 ~10 ~20



Evaluation functions
● Connect-4:

○ How many “open” connect-3’s do I have?
○ How many “open” connect-2’s do I have?

● Chess (DeepBlue): “material, position, King safety and tempo”
○ Material: How many pieces do I have left? And what are they worth?
○ Position: How many empty/safe squares can I attack?
○ King safety: How in-danger of attack is my King?
○ Tempo: Have I been making progress recently?

● DeepBlue: MiniMax tree + Alpha-Beta pruning to a depth of ~13.
○ After that depth, used evaluation function to estimate utility.
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Go

● Why wasn’t DeepBlue’s algorithm good for Go?

● Go is way harder than chess.
○ ~300 possible actions for every game board (vs ~30 in chess)
○ ~150 moves per game (vs ~70 in chess)
○ Total number of possible games

■ ~10^761 (vs ~10^120) for chess
■ There’s only 10^80 atoms in the universe?



Alpha Go’s Approach

● Monte Carlo Tree Search
● “Value network” as evaluation function

○ What’s the expected utility of this board state?

● “Policy network” as selection function
○ What moves are more likely to happen from this state?

● Fed data from seeing many expert games



Monte Carlo Tree Search

● I have limited resources to find the optimal policy for every game state.
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Monte Carlo Tree Search

● I have limited resources to find the optimal policy for every game state.
approximate the most common 

game states
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Monte Carlo Tree Search: the core loop

Choose a game path to 
learn more about

Add a MCTS node to our 
search tree

Play a game randomly:
Did we win?

Propagate result up 
through path

a good selection policy 
explores “common” game 
paths more often, while also 
exploring unknown states

Instead of doing a full playout,
some MCTS use an evaluation 
function.
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Uses “policy prediction” to 
guess which actions are 
more likely to be taken.

Uses “value prediction” as 
an evaluation function 
instead of performing full
playout.



AlphaGo’s Monte Carlo Tree Search

Uses “policy prediction” to 
guess which actions are 
more likely to be taken.

Uses “value prediction” as 
an evaluation function 
instead of performing full
playout.

These predictions are trained using a 
convolutional neural network.



Convolutional Neural Networks
How does training work?

● Take an affine function of input 
(with weights)

● Pass this output through a 
nonlinear function -- activation 
function.



Convolutional Neural Networks
How do you train a classifier 
from these features



Convolutional Neural Networks

What are they doing mechanically?

● Finding local features in a picture
● Prioritizing features that help 

predict outcome of interest
● Value Network -> Predict Rewards
● Policy Network -> Predict Next 

Moves 



Policy Network

● Given a 19x19 Go board, output 
probability distribution over all legal 
moves

● Data from 30 million positions, and 
data from “self-plays”

● 13 layers!



Value Network

● Given a 19x19 Go board, output a 
value.

○ How likely am I to win?

● Learned on same games as policy 
network



MCTS in Alpha Go

Selection

We choose which path to “learn more” about by 

selecting paths with max “Q + u(P)”

● Q trained by value network, u(P) samples  

probability of this action from policy network



MCTS in Alpha Go

Expansion 

To choose a node to expand, randomly 

sample probability distribution from policy 

network. 



MCTS in Alpha Go

Evaluation

Heuristic is either: 

● Q from value network

● r from “fast rollout”

○ i.e. simulated game



MCTS in Alpha Go
Backpropagation

Q values in the entire path are 

backpropagated based on the evaluation 

result.



It’s not perfect
● Alpha Go’s only loss against Lee:
● White 78, Lee played an unexpected move
● AlphaGo failed to explore this in MCTS

Two possible reasons:

● Policy network hadn’t been trained for long enough
● Selection too aggressively chooses “common” game paths, not enough 

exploration



AlphaGo

● We just designed AlphaGo!
● … Almost



Computational Power

● 1202 CPUs!
● 176 GPUs!
● Specialized hardware against 

Lee Sedol



Summary

AlphaGo applied advanced versions of 
techniques in this class!

Name ELO

Lee Sedol 3517

AlphaGo (2016) ~3594

Ke Jie (world champion) 3616


