Constraint Satisfaction Problems (CSPs)

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Elimination Example
- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

— Definition: Factor Graph

Variables:

$$
X=\left(X_{1}, \ldots, X_{n}\right) \text {, where } X_{i} \in \text { Domain }_{i}
$$

Factors:

$$
f_{1}, \ldots, f_{m}, \text { with each } f_{j}(X) \geq 0
$$

— Definition: Constraint Satisfaction Problem (CSP)

A CSP is a factor graph where all factors are constraints:

$$
\text { for all } j=1, \ldots, m
$$

The constraint is satisfied iff $f_{j}(x)=1$.

Definition: Consistent Assignments
An assignment x if $\operatorname{Weight}(x)=1$ (i.e., all constraints are satisfied.)

Event Scheduling

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot e if (e, t) in A

Event Scheduling

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot e if (e, t) in A

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{\prime}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{\prime}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$
- Constraints (only schedule allowed times): for each event e, enforce $\left[\left(e, X_{e}\right) \in A\right]$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{\prime}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$
- Constraints (only schedule allowed times): for each event e, enforce $\left[\left(e, X_{e}\right) \in A\right]$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{\prime}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$
- Constraints (only schedule allowed times): for each event e, enforce $\left[\left(e, X_{e}\right) \in A\right]$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{\prime}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$
- Constraints (only schedule allowed times): for each event e, enforce $\left[\left(e, X_{e}\right) \in A\right]$

$$
\begin{aligned}
& \left\{X_{1}: 1, X_{2}: 1, X_{3}: 3\right\} \\
& \operatorname{Bad}!\left(X_{1}=X_{2}\right) \\
& \left\{X_{1}: 1, X_{2}: 4, X_{3}: 3\right\}
\end{aligned}
$$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{\prime}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$
- Constraints (only schedule allowed times): for each event e, enforce $\left[\left(e, X_{e}\right) \in A\right]$

$$
\begin{aligned}
& \left\{X_{1}: 1, X_{2}: 1, X_{3}: 3\right\} \\
& \text { Bad! }\left(X_{1}=X_{2}\right) \\
& \left\{X_{1}: 1, X_{2}: 4, X_{3}: 3\right\} \\
& \text { Bad! }((2,4) \text { not in } A)
\end{aligned}
$$

Event Scheduling

Formulation 1a:

- Variables for each event $e, X_{e} \in\{1, \ldots, T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e^{i}$, enforce $\left[X \neq X_{e}\right]$
- Constraints (only schedule allowed times): for each event e, enforce $\left[\left(e, X_{e}\right) \in A\right]$

Event Scheduling

Formulation 1b:

- Variables for each event e, X_{1}, \ldots, X_{E}

Event Scheduling

Formulation 1b:

- Variables for each event e, X_{1}, \ldots, X_{E}

$$
\text { Domain }_{i}=\{t:(i, t) \in A\}
$$

Event Scheduling

Formulation 1b:

- Variables for each event e, X_{1}, \ldots, X_{E}

$$
\text { Domain }_{i}=\{t:(i, t) \in A\}
$$

- Constraints (only one event per time slot): for each pair of events $e \neq e^{\text {, }}$, enforce $\left[X_{e} \neq X_{e^{\prime}}\right]$

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{t} \in\{1, \ldots, E\} \cup\{\varnothing\}$

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{t} \in\{1, \ldots, E\} \cup\{\varnothing\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce [$Y_{t}=e$ for exactly one t]

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{t} \in\{1, \ldots, E\} \cup\{\varnothing\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce [$Y_{t}=e$ for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $\quad\left[Y_{t}=\varnothing\right.$ or $\left.\left(Y_{t}, t\right) \in A\right]$

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{t} \in\{1, \ldots, E\} \cup\{\varnothing\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $\left[Y_{t}=e\right.$ for exactly one $\left.t\right]$
- Constraints (only schedule allowed times): for each time slot t, enforce

$$
\left[Y_{t}=\varnothing \text { or }\left(Y_{t}, t\right) \in A\right]
$$

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{1}, \ldots, Y_{T}$

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{1}, \ldots, Y_{T}$

$$
\operatorname{Domain}_{i}=\{e:(e, i) \in A\} \cup\{\varnothing\}
$$

Event Scheduling

Formulation 2a:

- Variables for each time slot $t: Y_{1}, \ldots, Y_{T}$

$$
\operatorname{Domain}_{i}=\{e:(e, i) \in A\} \cup\{\varnothing\}
$$

- Constraints (each event is scheduled exactly once): for each event e, enforce $\left[Y_{t}=e\right.$ for exactly one $\left.t\right]$

- Problem Modeling
- N-ary Constraints
- Elimination Example

N-ary Constraints

- From event scheduling:
- Constraints (each event is scheduled exactly once): for each event e, enforce
[$Y_{t}=e$ for exactly one t]

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

N -ary Constraints

- Key Idea: Auxiliary Variables
 Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

N -ary Constraints

- Key Idea: Auxiliary Variables
 Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0				

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=A_{i-1}+1\left[Y_{i}=e\right]\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0				

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0				

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0	0			

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0	0	1		

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

N -ary Constraints

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Final Output: $1\left[A_{T}=1\right]$

N -ary Constraints

- Key Idea: Auxiliary Variables
 Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:
Initialization: $\left[A_{0}=0\right]$
Processing: $\left[A_{i}=\min \left(A_{i-1}+1\left[Y_{i}=e\right], 2\right)\right]$

\boldsymbol{i}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Final Output: $1\left[A_{T}=1\right]$
Still have factors with three variables...

N -ary Constraints

Key idea: Combine A_{i-1} and A_{i} into one variable B_{i}

N-ary Constraints

Key idea: Combine A_{i-1} and A_{i} into one variable B_{i}

N-ary Constraints

Key idea: Combine A_{i-1} and A_{i} into one variable B_{i}

Factors:
Initialization: $\left[B_{1}[0]=0\right]$

N-ary Constraints

Key idea: Combine A_{i-1} and A_{i} into one variable B_{i}

Factors:
Initialization: $\left[B_{1}[0]=0\right]$
Processing: $\left[B_{i}[1]=\min \left(B_{i}[0]+1\left[Y_{i}=e\right], 2\right)\right]$

N-ary Constraints

Key idea: Combine A_{i-1} and A_{i} into one variable B_{i}

Factors:
Initialization: $\left[B_{l}[0]=0\right]$
Processing: $\left[B_{i}[1]=\min \left(B_{i}[0]+1\left[Y_{i}=e\right], 2\right)\right]$
Final Output: $1\left[B_{T}[1]=1\right]$

N-ary Constraints

Key idea: Combine A_{i-1} and A_{i} into one variable B_{i}

Factors:
Initialization: $\left[B_{l}[0]=0\right]$
Processing: $\left[B_{i}[1]=\min \left(B_{i}[0]+1\left[Y_{i}=e\right], 2\right)\right]$
Final Output: $1\left[B_{T}[1]=1\right]$
Consistency: $\left[B_{i-1}[1]=B_{i}[0]\right]$

- Problem Modeling
- N-ary Constraints
- Elimination Example

Person Tracking Example

- Variables X_{i} : Location of object at position i

Person Tracking Example

- Variables X_{i} : Location of object at position i
- Transition Factors $t_{i}\left(x_{i}, x_{i+1}\right)$: object positions can't change too much

Person Tracking Example

- Variables X_{i} : Location of object at position i
- Transition Factors $t_{i}\left(x_{i}, x_{i+1}\right)$: object positions can't change too much
- Observation Factors $o_{i}\left(x_{i}\right)$: noisy information compatible with position

Person Tracking Example

- Variables X_{i} : Location of object at position i
- Transition Factors $t_{i}\left(x_{i}, x_{i+1}\right)$: object positions can't change too much
- Observation Factors $o_{i}\left(x_{i}\right)$: noisy information compatible with position
def $t(x, y)$:
if $x==y$: return 2
if $\operatorname{abs}(x-y)==1$: return 1
return 0

Person Tracking Example

- Variables X_{i} : Location of object at position i
- Transition Factors $t_{i}\left(x_{i}, x_{i+1}\right)$: object positions can't change too much
- Observation Factors $o_{i}\left(x_{i}\right)$: noisy information compatible with position
if $x==y$: return 2 def $02(x)$: return $t(x, 2)$
if $\operatorname{abs}(x-y)==1$: return 1 def $03(x)$: return $t(x, 2)$
return 0

Variable Elimination

- Definition: Elimination

- To eliminate a variable X_{i}, consider all factors $f_{l}, \ldots, f_{k^{\prime}}$, that depend on X_{i}
- Remove X_{i} and f_{1}, \ldots, f_{k}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- Eliminate X_{1}

- Eliminate X_{1}
- Factors that depend on X_{I} :
- $o_{1} t_{l}$

- Eliminate X_{1}
- Factors that depend on X_{1} :
- o_{1}, t_{l}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$

- Eliminate X_{1}
- Factors that depend on X_{1} :
- $o_{1} t_{l}$
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{1}\left(x_{2}\right)=\max _{x_{1} \in\{0,1,2\}} o_{1}\left(x_{1}\right) \cdot t_{1}\left(x_{1}, x_{2}\right)$

- Eliminate X_{1}
- Factors that depend on X_{1} :
- o_{1}, t_{1}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{1}\left(x_{2}\right)=\max _{x_{1} \in\{0,1,2\}} o_{1}\left(x_{1}\right) \cdot t_{1}\left(x_{1}, x_{2}\right)$

x_{2}	x_{1}	$o_{1}\left(x_{1}\right)$	$t_{1}\left(x_{1}, x_{2}\right)$	$o_{1}\left(x_{1}\right) t_{1}\left(x_{1}, x_{2}\right)$	$g_{1}\left(x_{2}\right)$
0	0				
0	1				
0	2				
1	0				
1	1				
1	2				
2	0				
2	1				
2	2				

- Eliminate X_{1}
- Factors that depend on X_{1} :
- o_{1}, t_{1}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{1}\left(x_{2}\right)=\max _{x_{1} \in\{0,1,2\}} o_{1}\left(x_{1}\right) \cdot t_{1}\left(x_{1}, x_{2}\right)$

x_{2}	x_{1}	$o_{1}\left(x_{1}\right)$	$t_{1}\left(x_{1}, x_{2}\right)$	$\boldsymbol{o}_{1}\left(x_{1}\right) t_{1}\left(x_{1}, x_{2}\right)$	$\boldsymbol{g}_{1}\left(x_{2}\right)$
0	0	2			
0	1	1			
0	2	0			
1	0	2			
1	1	1			
1	2	0			
2	0	2			
2	1	1			
2	2	0			

- Eliminate X_{1}
- Factors that depend on X_{1} :
- o_{1}, t_{1}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{1}\left(x_{2}\right)=\max _{x_{1} \in\{0,1,2\}} o_{1}\left(x_{1}\right) \cdot t_{1}\left(x_{1}, x_{2}\right)$

x_{2}	x_{1}	$o_{1}\left(x_{1}\right)$	$t_{1}\left(x_{1}, x_{2}\right)$	$o_{1}\left(x_{1}\right) t_{1}\left(x_{l}, x_{2}\right)$	$g_{1}\left(x_{2}\right)$
0	0	2	2		
0	1	1	1		
0	2	0	0		
1	0	2	1		
1	1	1	2		
1	2	0	1		
2	0	2	0		
2	1	1	1		
2	2	0	2		

- Eliminate X_{l}
- Factors that depend on X_{1} :
- o_{1}, t_{1}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{1}\left(x_{2}\right)=\max _{x_{1} \in\{0,1,2\}} o_{1}\left(x_{1}\right) \cdot t_{1}\left(x_{1}, x_{2}\right)$

x_{2}	x_{1}	$o_{1}\left(x_{1}\right)$	$t_{1}\left(x_{1}, x_{2}\right)$	$o_{1}\left(x_{1}\right) t_{1}\left(x_{l}, x_{2}\right)$	$g_{1}\left(x_{2}\right)$
0	0	2	2	4	
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	
2	2	0	2	0	

- Eliminate X_{1}
- Factors that depend on X_{1} :
- o_{1}, t_{1}
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$

- $g_{1}\left(x_{2}\right)=\max _{x_{1} \in\{0,1,2\}} o_{1}\left(x_{1}\right) \cdot t_{1}\left(x_{1}, x_{2}\right)$

x_{2}	x_{1}	$o_{1}\left(x_{1}\right)$	$t_{1}\left(x_{1}, x_{2}\right)$	$o_{1}\left(x_{1}\right) t_{1}\left(x_{1}, x_{2}\right)$	$g_{1}\left(x_{2}\right)$
0	0	2	2	4	4: $\left\{x_{1}: 0\right\}$
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	2: $\left\{x_{1}: 1\right\}$
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	1: $\left\{x_{1}: 1\right\}$
2	1	1	1	1	
2	2	0	2	0	

- Eliminate X_{2}

- Eliminate X_{2}

- Eliminate X_{2}
- Factors that depend on X_{2} :
- $o_{2^{\prime}} t_{2^{\prime}} g_{1}$
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$

- Eliminate X_{2}
- Factors that depend on X_{2} :
- $o_{2^{\prime}} t_{2^{\prime}} g_{1}$
- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$

- Eliminate X_{2}

- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$

x_{3}	x_{2}	$g_{1}\left(x_{2}\right)$	$o_{2}\left(x_{2}\right)$	$t_{2}\left(x_{2}, x_{3}\right)$	$g_{1}\left(x_{2}\right) o_{2}\left(x_{2}\right) t_{2}\left(x_{2}, x_{3}\right)$	$g_{2}\left(x_{3}\right)$
0	0					
0	1					
0	2					
1	0					
1	1					
1	2					
2	0					
2	1					
2	2					

- Eliminate X_{2}

- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$

\boldsymbol{x}_{3}	\boldsymbol{x}_{2}	$\boldsymbol{g}_{1}\left(x_{2}\right)$	$\boldsymbol{o}_{2}\left(x_{2}\right)$	$\boldsymbol{t}_{2}\left(x_{2}, \boldsymbol{x}_{3}\right)$	$g_{1}\left(x_{2}\right) \boldsymbol{o}_{2}\left(x_{2}\right) \boldsymbol{t}_{2}\left(x_{2}, x_{3}\right)$	$\boldsymbol{g}_{2}\left(x_{3}\right)$
0	0	$4:\left\{x_{1}: 0\right\}$				
0	1	$2:\left\{x_{1}: l\right\}$				
0	2	$1:\left\{x_{1}: l\right\}$				
1	0	$4:\left\{x_{1}: 0\right\}$				
1	1	$2:\left\{x_{1}: l\right\}$				
1	2	$1:\left\{x_{1}: l\right\}$				
2	0	$4:\left\{x_{1}: 0\right\}$				
2	1	$2:\left\{x_{1}: l\right\}$				
2	2	$1:\left\{x_{1}: l\right\}$				

- Eliminate X_{2}

- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$

x_{3}	x_{2}	$g_{1}\left(x_{2}\right)$	$o_{2}\left(x_{2}\right)$	$t_{2}\left(x_{2}, x_{3}\right)$	$g_{1}\left(x_{2}\right) o_{2}\left(x_{2}\right) t_{2}\left(x_{2}, x_{3}\right)$	$g_{2}\left(x_{3}\right)$
0	0	4: $\left\{x_{1}: 0\right\}$	0			
0	1	2: $\left\{x_{1}: 1\right\}$	1			
0	2	1: $\left\{x_{1}: 1\right\}$	2			
1	0	4: $\left\{x_{1}: 0\right\}$	0			
1	1	2: $\left\{x_{1}: 1\right\}$	1			
1	2	1: $\left\{x_{1}: 1\right\}$	2			
2	0	4: $\left\{x_{1}: 0\right\}$	0			
2	1	2: $\left\{x_{1}: 1\right\}$	1			
2	2	$1:\left\{x_{1}: 1\right\}$	2			

- Eliminate X_{2}

- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$

x_{3}	x_{2}	$g_{1}\left(x_{2}\right)$	$o_{2}\left(x_{2}\right)$	$t_{2}\left(x_{2}, x_{3}\right)$	$g_{1}\left(x_{2}\right) o_{2}\left(x_{2}\right) t_{2}\left(x_{2}, x_{3}\right)$	$g_{2}\left(x_{3}\right)$
0	0	4: $\left\{x_{1}: 0\right\}$	0	2		
0	1	2: $\left\{x_{1}: 1\right\}$	1	1		
0	2	1: $\left\{x_{1}: 1\right\}$	2	0		
1	0	4: $\left\{x_{1}: 0\right\}$	0	1		
1	1	2: $\left\{x_{1}: 1\right\}$	1	2		
1	2	1: $\left\{x_{1}: 1\right\}$	2	1		
2	0	4: $\left\{x_{1}: 0\right\}$	0	0		
2	1	2: $\left\{x_{1}: 1\right\}$	1	1		
2	2	$1:\left\{x_{1}: 1\right\}$	2	2		

- Eliminate X_{2}

- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$
$g_{2}\left(x_{3}\right)$

x_{3}	x_{2}	$g_{1}\left(x_{2}\right)$	$\mathrm{o}_{2}\left(x_{2}\right)$	$t_{2}\left(x_{2}, x_{3}\right)$	$g_{1}\left(x_{2}\right) o_{2}\left(x_{2}\right) t_{2}\left(x_{2}, x_{3}\right)$	$g_{2}\left(x_{3}\right)$
0	0	4: $\left\{x_{1}: 0\right\}$	0	2	0	
0	1	2: $\left\{x_{1}: 1\right\}$	1	1	2	
0	2	1: $\left\{x_{r}: 1\right\}$	2	0	2	
1	0	4: $\left\{x_{i}: 0\right\}$	0	1	4	
1	1	2: $\left\{x_{1}: 1\right\}$	1	2	4	
1	2	1: $\left\{x_{1}: 1\right\}$	2	1	2	
2	0	4: $\left\{x_{1}: 0\right\}$	0	0	0	
2	1	2: $\left\{x_{1}: 1\right\}$	1	1	2	
2	2	$1:\left\{x_{1}: 1\right\}$	2	2	4	

- Eliminate X_{2}

- Add $f_{\text {new }}(x)=\max _{x_{i}} \prod_{j=1}^{k} f_{j}(x)$
- $g_{2}\left(x_{3}\right)=\max _{x_{2} \in\{0,1,2\}} g_{1}\left(x_{2}\right) \cdot o_{2}\left(x_{2}\right) \cdot t_{2}\left(x_{2}, x_{3}\right)$

x_{3}	x_{2}	$g_{1}\left(x_{2}\right)$	$o_{2}\left(x_{2}\right)$	$t_{2}\left(x_{2}, x_{3}\right)$	$g_{1}\left(x_{2}\right) o_{2}\left(x_{2}\right) t_{2}\left(x_{2}, x_{3}\right)$	$g_{2}\left(x_{3}\right)$
0	0	4: $\left\{x_{1}: 0\right\}$	0	2	0	2: $\left\{x_{1}: 1, x_{2}: 2\right\}$
0	1	2: $\left\{x_{1}: 1\right\}$	1	1	2	
0	2	1: $\left\{x_{i}: 1\right\}$	2	0	2	
1	0	4: $\left\{x_{1}: 0\right\}$	0	1	4	4: $\left\{x_{1}: 1, x_{2}: 1\right\}$
1	1	2: $\left\{x_{1}: 1\right\}$	1	2	4	
1	2	1: $\left\{x_{1}: 1\right\}$	2	1	2	
2	0	4: $\left\{x_{1}: 0\right\}$	0	0	0	4: $\left\{x_{1}: 1, x_{2}: 2\right\}$
2	1	2: $\left\{x_{1}: 1\right\}$	1	1	2	
2	2	1: $\left\{x_{1}: 1\right\}$	2	2	4	

- We are left with:

- We are left with:

x_{3}	$g_{2}\left(x_{3}\right)$	$o_{3}\left(x_{3}\right)$	$g_{2}\left(x_{3}\right) o_{3}\left(x_{3}\right)$	Optimal Weight
0				
1				
2				

- We are left with:

\boldsymbol{x}_{3}	$\boldsymbol{g}_{2}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{o}_{3}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{g}_{2}\left(\boldsymbol{x}_{3}\right) \boldsymbol{o}_{3}\left(\boldsymbol{x}_{3}\right)$	Optimal Weight
0	$2:\left\{x_{1}: 1, x_{2}: 2\right\}$	0		
1	$4:\left\{x_{1}: 1, x_{2}: 1\right\}$	1		
2	$4:\left\{x_{1}: 1, x_{2}: 2\right\}$	2		

- We are left with:

\boldsymbol{x}_{3}	$\boldsymbol{g}_{2}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{o}_{3}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{g}_{2}\left(\boldsymbol{x}_{3}\right) \boldsymbol{o}_{\mathbf{3}}\left(\boldsymbol{x}_{3}\right)$	Optimal Weight
0	$2:\left\{x_{1}: 1, x_{2}: 2\right\}$	0	2	
1	$4:\left\{x_{1}: 1, x_{2}: 1\right\}$	1	4	
2	$4:\left\{x_{1}: 1, x_{2}: 2\right\}$	2	8	

- We are left with:

$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{g}_{\mathbf{2}}\left(\boldsymbol{x}_{\mathbf{3}}\right)$	$\boldsymbol{o}_{\mathbf{3}}\left(\boldsymbol{x}_{\mathbf{3}}\right)$	$\boldsymbol{g}_{\mathbf{2}}\left(\boldsymbol{x}_{\mathbf{3}}\right) \boldsymbol{o}_{\mathbf{3}}\left(\boldsymbol{x}_{\mathbf{3}}\right)$	Optimal Weight
0	$2:\left\{x_{1}: 1, x_{2}: 2\right\}$	0	2	$8:\left\{x_{1}: 1, x_{2}: 2, x_{3}: 2\right\}$
1	$4:\left\{x_{1}: 1, x_{2}: 1\right\}$	1	4	
2	$4:\left\{x_{1}: 1, x_{2}: 2\right\}$	2	8	

