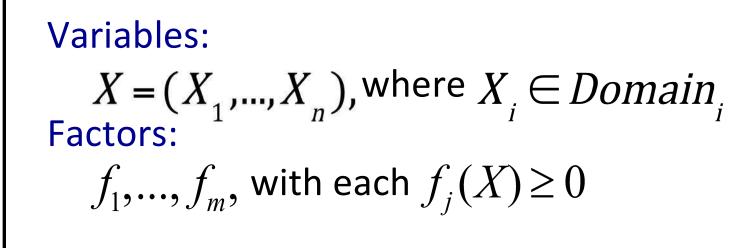
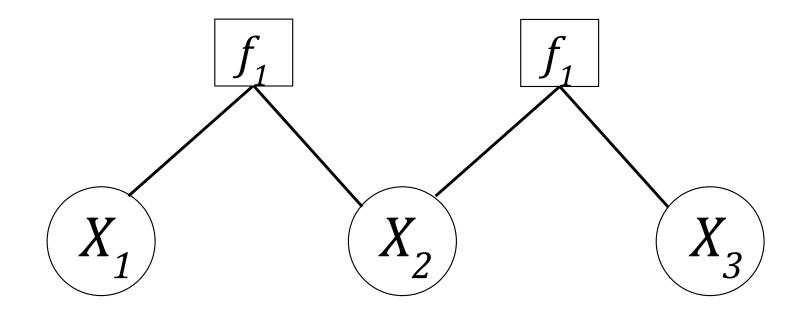
Constraint Satisfaction Problems (CSPs)


Agenda


- CSP Problem Modeling
- N-ary Constraints
- Elimination Example

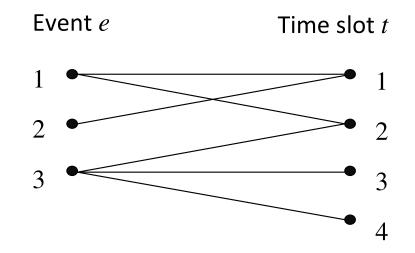
CSP Problem Modeling

- N-ary Constraints
- Elimination Example

Definition: Factor Graph

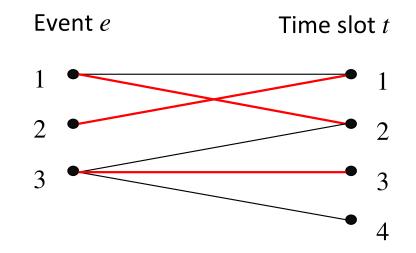
— Definition: Constraint Satisfaction Problem (CSP) — A CSP is a factor graph where all factors are constraints:

for all
$$j = 1, ..., m$$
.

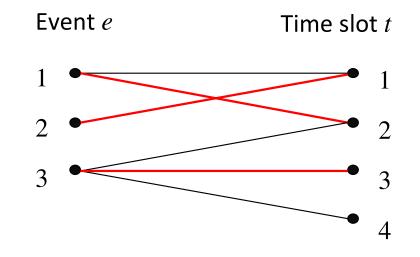

The constraint is satisfied iff $f_i(x) = 1$.

Definition: Consistent Assignments

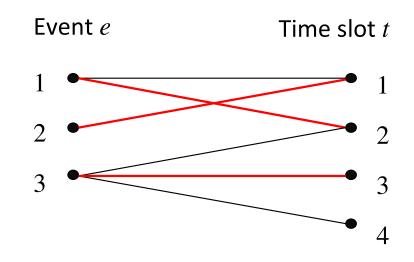
An assignment x if Weight(x) = 1 (i.e., all constraints are satisfied.)


Setup:

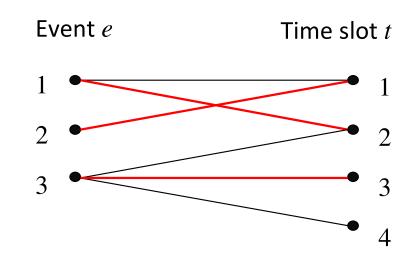
- Have *E* events and *T* time slots
- Each event *e* must be put in **exactly one** time slot
- Each time slot t can have at most one event
- Event *e* only allowed at time slot *e* if (*e*, *t*) in *A*

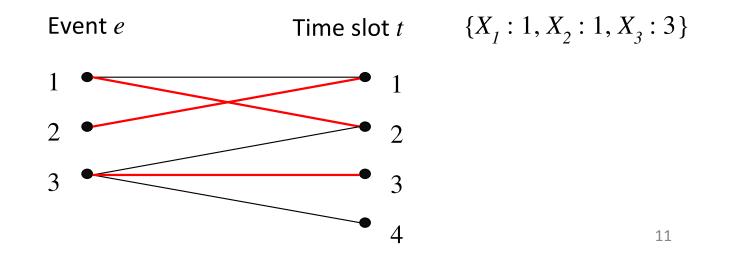

Setup:

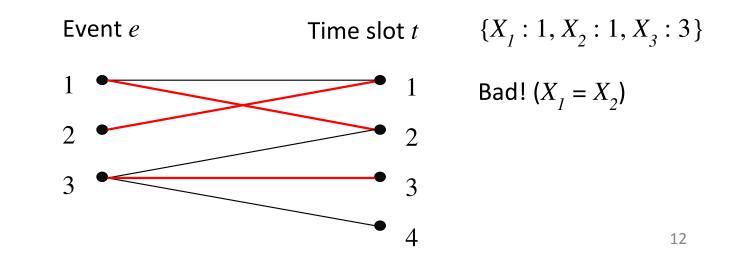
- Have *E* events and *T* time slots
- Each event *e* must be put in **exactly one** time slot
- Each time slot t can have at most one event
- Event *e* only allowed at time slot *e* if (*e*, *t*) in *A*

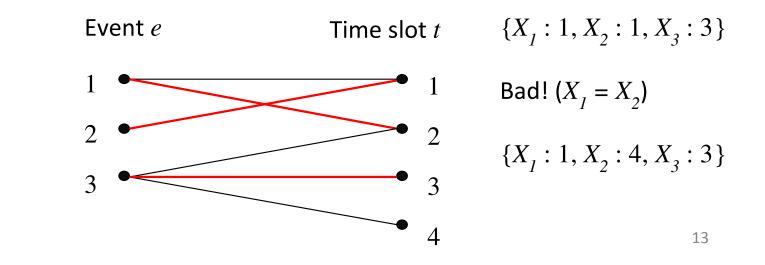


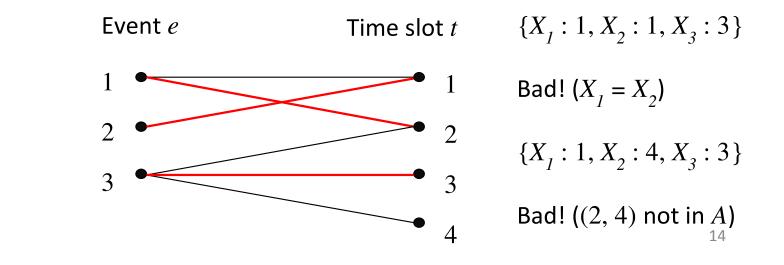
Formulation 1a:


• Variables for each event $e, X_e \in \{1, ..., T\}$


- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]

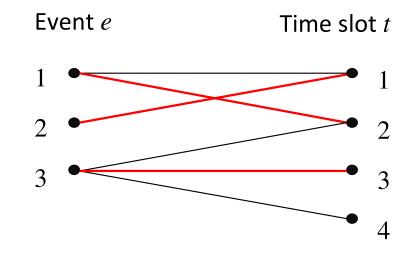

- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event *e*, enforce [(*e*, X_e) ∈ A]


- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event *e*, enforce [(*e*, X_e) ∈ A]


- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event *e*, enforce [(*e*, X_e) ∈ A]

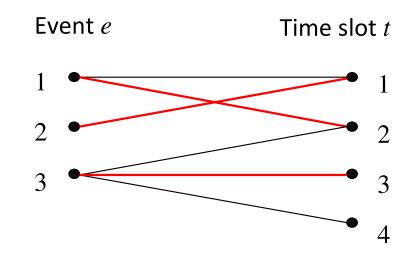
- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event *e*, enforce [(*e*, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]
- Constraints (only schedule allowed times): for each event *e*, enforce [(*e*, X_e) ∈ A]



- Variables for each event $e, X_e \in \{1, ..., T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_{e'} \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event *e*, enforce [(*e*, X_e) ∈ A]

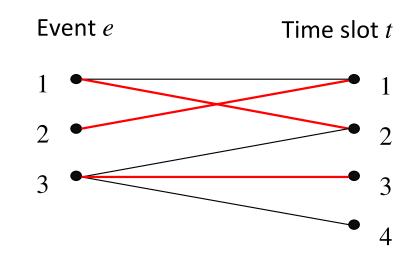
Formulation 1b:


• Variables for each event e, $X_1, ..., X_E$

Formulation 1b:

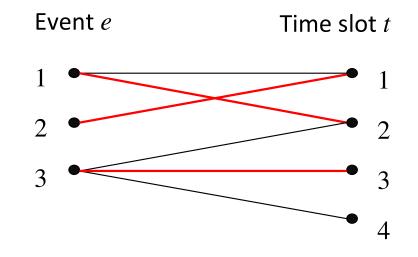
• Variables for each event e, $X_1, ..., X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

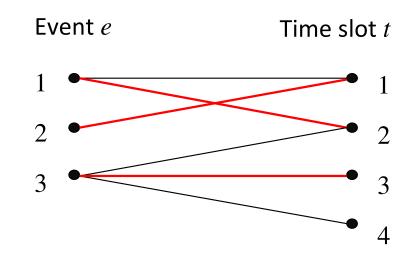


Formulation 1b:

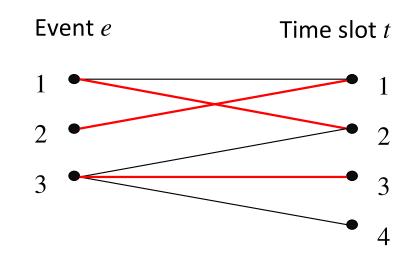
• Variables for each event e, $X_1, ..., X_E$

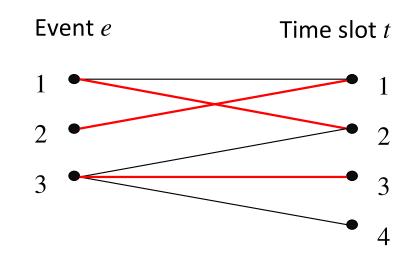

$$Domain_i = \{t : (i, t) \in A\}$$

 Constraints (only one event per time slot): for each pair of events e ≠ e', enforce [X_e ≠ X_{e'}]

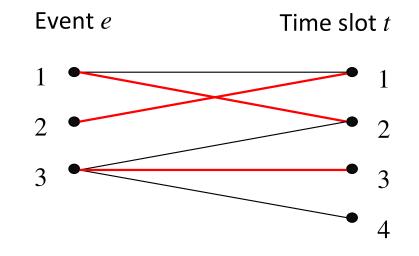


Formulation 2a:


• Variables for each time slot *t*: $Y_t \in \{1, ..., E\} \cup \{\emptyset\}$

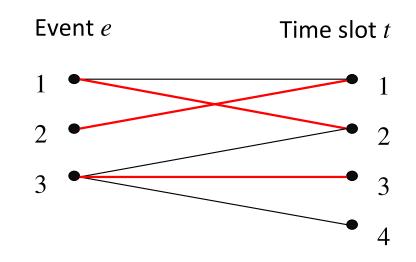

- Variables for each time slot *t*: $Y_t \in \{1, ..., E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event *e*, enforce [Y_t = *e* for exactly one *t*]

- Variables for each time slot *t*: $Y_t \in \{1, ..., E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event *e*, enforce [Y_t = *e* for exactly one *t*]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$



- Variables for each time slot *t*: $Y_t \in \{1, ..., E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event *e*, enforce [Y_t = e for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

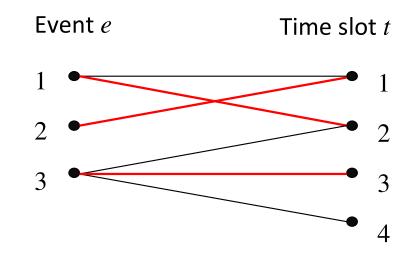
Formulation 2a:


• Variables for each time slot *t*: $Y_1, ..., Y_T$

Formulation 2a:

• Variables for each time slot *t*: $Y_1, ..., Y_T$

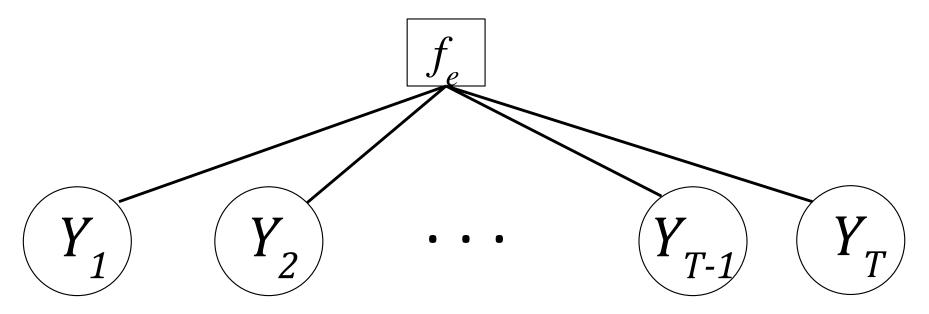
$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$



Formulation 2a:

• Variables for each time slot *t*: $Y_1, ..., Y_T$

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$


Constraints (each event is scheduled exactly once): for each event *e*, enforce [Y_t = e for exactly one t]

- Problem Modeling
- N-ary Constraints
- Elimination Example

- From event scheduling:
 - Constraints (each event is scheduled exactly once): for each event *e*, enforce

 $[Y_t = e \text{ for exactly one } t]$

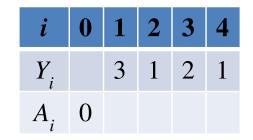
Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.


Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

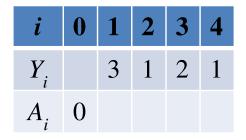
Initialization: $[A_0 = 0]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

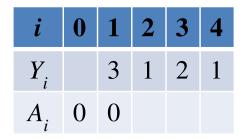

i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

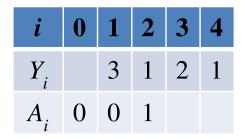


Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

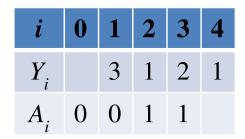


Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

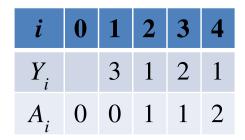


Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

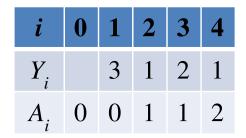


Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

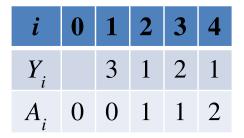

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

Factors:

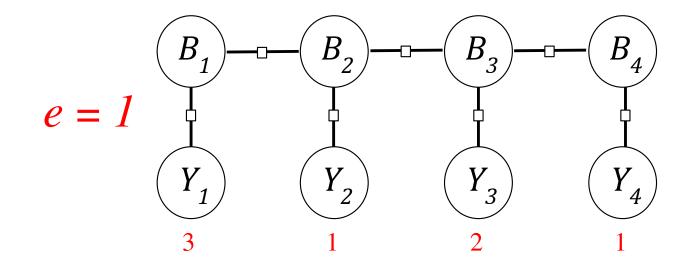
Initialization: $[A_0 = 0]$ Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ Final Output: $1[A_T = 1]$

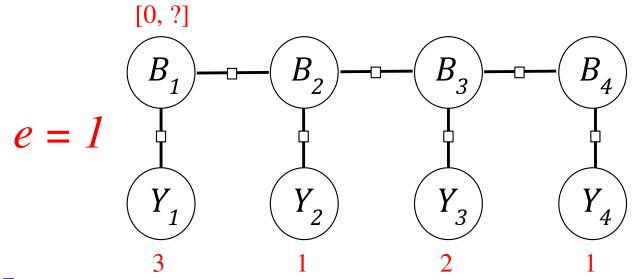

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to *e* and constraining that count to be equal to one.

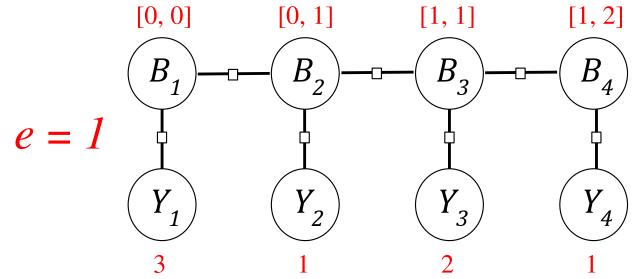
Factors:


Initialization: $[A_0 = 0]$ Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ Final Output: $1[A_T = 1]$


Still have factors with three variables...

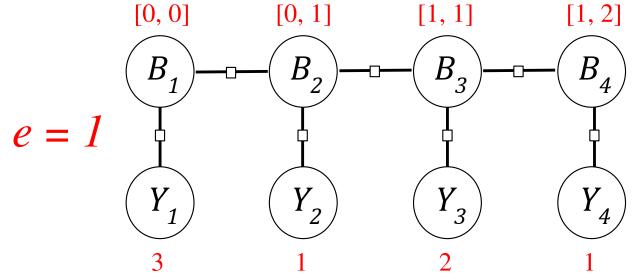
Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i


Key idea: Combine A_{i-1} and A_i into one variable B_i

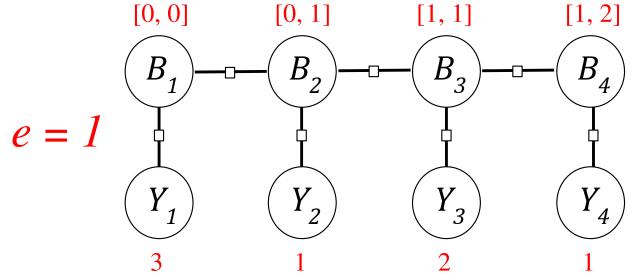
Factors:

Initialization: $[B_1[0] = 0]$


Key idea: Combine A_{i-1} and A_i into one variable B_i

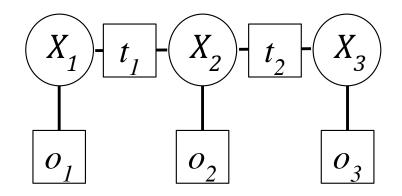
Factors:

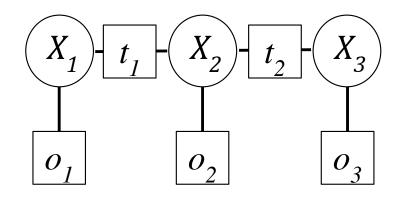
Initialization: $[B_{i}[0] = 0]$ Processing: $[B_{i}[1] = \min(B_{i}[0] + 1[Y_{i} = e], 2)]$


Key idea: Combine A_{i-1} and A_i into one variable B_i

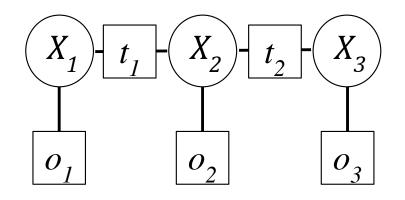
Factors:

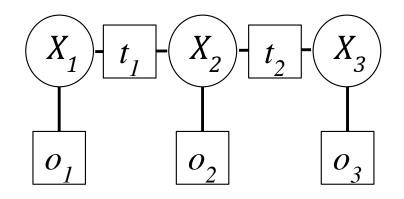
Initialization: $[B_1[0] = 0]$ Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$ Final Output: $1[B_T[1] = 1]$


Key idea: Combine A_{i-1} and A_i into one variable B_i

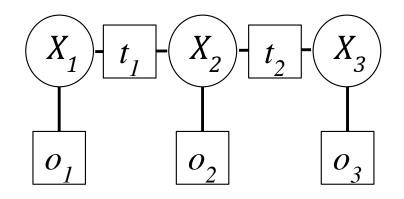

Factors:

Initialization: $[B_{I}[0] = 0]$ Processing: $[B_{i}[1] = \min(B_{i}[0] + 1[Y_{i} = e], 2)]$ Final Output: $1[B_{T}[1] = 1]$ Consistency: $[B_{i-I}[1] = B_{i}[0]]$


- Problem Modeling
- N-ary Constraints
- Elimination Example


• Variables X_i: Location of object at position *i*

- Variables X_i: Location of object at position *i*
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much



- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

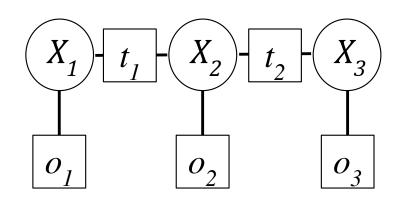
- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

```
def t(x, y):
if x == y: return 2
if abs(x — y) == 1: return 1
return 0
```

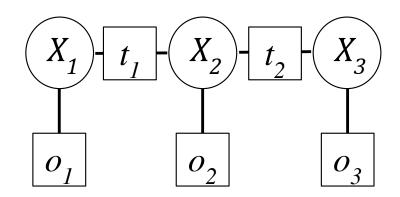

- Variables X_i: Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

```
def t(x, y):
if x == y: return 2
if abs(x — y) == 1: return 1
return 0
```

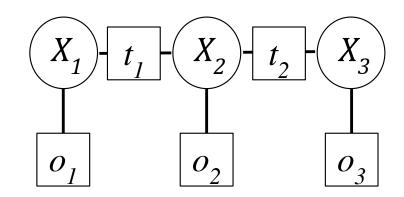
def 01(x): return t(x, 0) def 02(x): return t(x, 2) def 03(x): return t(x, 2)


Variable Elimination

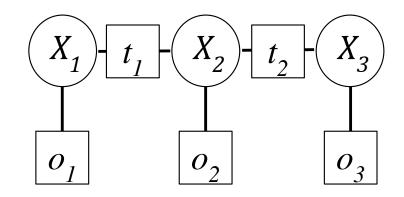
Definition: Elimination

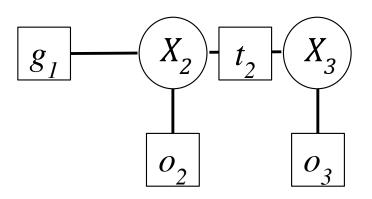

- To eliminate a variable X_i, consider all factors f₁, ..., f_k, that depend on X_i
- Remove X_i and f_1, \ldots, f_k

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$


• Eliminate X_{I}

- Eliminate X₁
 Factors that depend on X₁:
 - o_{1}, t_{1}




- Eliminate X_1
- Factors that depend on X_1 :
 - o_{1}, t_{1}
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_1
- Factors that depend on X_1 :
 - *o*₁, *t*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

- Eliminate X_1
- Factors that depend on X_{i} :
 - o_{1}, t_{1}
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

 X_2)-I

 g_1

 $t_{\underline{2}}$,

 X_3

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

						T	
<i>x</i> ₂	x ₁	$o_{I}(x_{I})$	$t_{1}(x_{1}, x_{2})$	$o_{1}(x_{1}) t_{1}(x_{1}, x_{2})$	$g_{I}(x_{2})$		
0	0					02	03
0	1						
0	2						
1	0						
1	1						
1	2						
2	0						
2	1						
2	2						

- Eliminate X_1
- Factors that depend on X_{i} :
 - o_{1}, t_{1}
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

$$\begin{array}{c} \begin{pmatrix} X_1 \\ - t_1 \\ - \end{pmatrix} - \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_1 \\ - \end{pmatrix} - \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix} X_2 \\ - \end{pmatrix} - \begin{pmatrix} X_3 \\ - \end{pmatrix} \\ \begin{pmatrix}$$

 X_2)-

 g_1

 t_2 ,

*X*₃

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

<i>x</i> ₂	x ₁	$o_{I}(x_{I})$	$t_{I}(x_{I}, x_{2})$	$o_{I}(x_{1}) t_{I}(x_{1}, x_{2})$	$g_{I}(x_{2})$		
0	0	2				02	03
0	1	1					
0	2	0					
1	0	2					
1	1	1					
1	2	0					
2	0	2					
2	1	1					
2	2	0					

- Eliminate X_1
- Factors that depend on X_{I} :
 - o_{1}, t_{1}
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

 X_2).

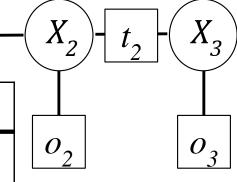
 g_1

t____

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

<i>x</i> ₂	x ₁	$o_{I}(x_{I})$	$t_{1}(x_{1}, x_{2})$	$o_{I}(x_{I}) t_{I}(x_{I}, x_{2})$	$g_{I}(x_{2})$	
0	0	2	2			02
0	1	1	1			
0	2	0	0			
1	0	2	1			
1	1	1	2			
1	2	0	1			
2	0	2	0			
2	1	1	1			
2	2	0	2			

*X*₃

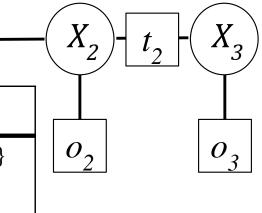

- Eliminate X_1
- Factors that depend on X_{I} :
 - o_{1}, t_{1}
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

$$\begin{array}{c} X_1 \\ \hline \\ I \\ \hline \\ o_1 \\ \hline \\ o_2 \\ \hline \\ o_3 \\ \hline \\ o_3 \\ \hline \end{array}$$

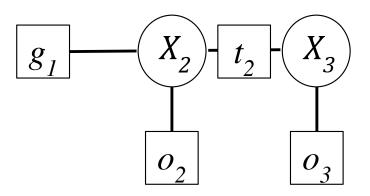
 g_1

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

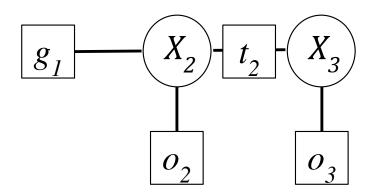
<i>x</i> ₂	<i>x</i> ₁	$o_I(x_I)$	$t_{I}(x_{I}, x_{2})$	$o_{I}(x_{I}) t_{I}(x_{I}, x_{2})$	$g_1(x_2)$
0	0	2	2	4	
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	
2	2	0	2	0	

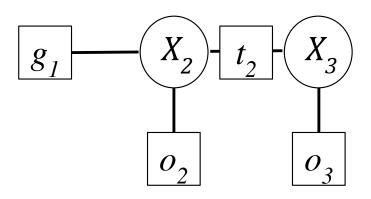


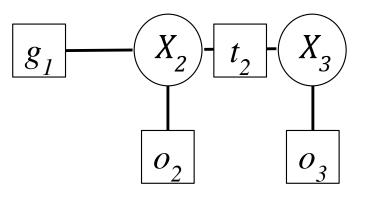
- Eliminate X_1
- Factors that depend on X_{i} :
 - o_{1}, t_{1}
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

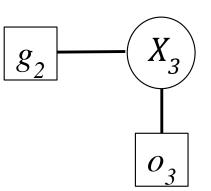

 g_1

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$


<i>x</i> ₂	x ₁	$o_{l}(x_{l})$	$t_{1}(x_{1}, x_{2})$	$o_{1}(x_{1}) t_{1}(x_{1}, x_{2})$	$g_{I}(x_{2})$	
0	0	2	2	4	4: { x_1 :0}	6
0	1	1	1	1		
0	2	0	0	0		
1	0	2	1	2	2: $\{x_{l}: l\}$	
1	1	1	2	2		
1	2	0	1	0		
2	0	2	0	0	1: $\{x_{l}: l\}$	
2	1	1	1	1		
2	2	0	2	0		

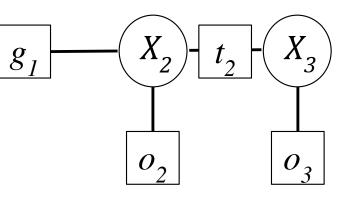

• Eliminate X_2

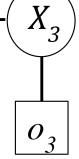

- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁



- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

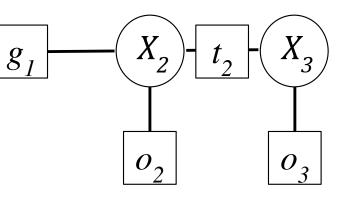


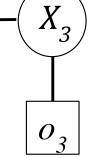


- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline x_3 & x_2 & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_2(x_3) \\ \hline 0 & 0 & & & & & & \\ \hline 0 & 1 & & & & & & \\ \hline 0 & 2 & & & & & & & \\ \hline 1 & 0 & & & & & & & \\ \hline 1 & 0 & & & & & & & \\ \hline 1 & 1 & & & & & & & \\ \hline 1 & 2 & & & & & & & & \\ \hline 2 & 0 & & & & & & & & \\ \hline 2 & 1 & & & & & & & & \\ \hline 2 & 2 & & & & & & & & & \\ \hline \end{array}$$

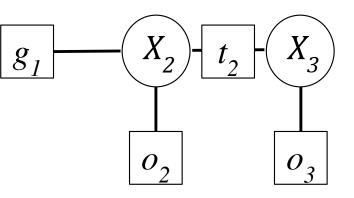


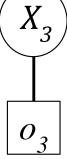


- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline x_3 & x_2 & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_2(x_3) \\ \hline 0 & 0 & 4: \{x_1; 0\} & & & & & \\ \hline 0 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline 0 & 2 & 1: \{x_1; 1\} & & & & & \\ \hline 1 & 0 & 4: \{x_1; 0\} & & & & & \\ \hline 1 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline 1 & 2 & 1: \{x_1; 1\} & & & & & \\ \hline 2 & 0 & 4: \{x_1; 0\} & & & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & & & & & \\ \hline \end{array}$$

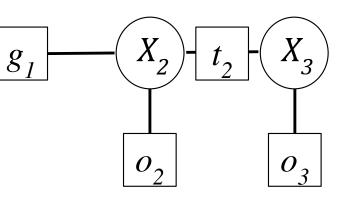


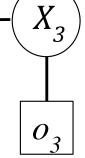


- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

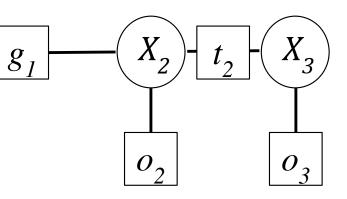
$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline x_3 & x_2 & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_2(x_3) \\ \hline 0 & 0 & 4: \{x_1; 0\} & 0 & & & & \\ \hline 0 & 1 & 2: \{x_1; 1\} & 1 & & & & \\ \hline 0 & 2 & 1: \{x_1; 1\} & 2 & & & & \\ \hline 1 & 0 & 4: \{x_1; 0\} & 0 & & & & \\ \hline 1 & 1 & 2: \{x_1; 1\} & 1 & & & & \\ \hline 1 & 2 & 1: \{x_1; 1\} & 2 & & & & \\ \hline 2 & 0 & 4: \{x_1; 0\} & 0 & & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & 1 & & & \\ \hline 2 & 2 & 1: \{x_1; 1\} & 1 & & & \\ \hline 2 & 2 & 1: \{x_1; 1\} & 1 & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & 1 & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & 1 & & & \\ \hline 2 & 2 & 1: \{x_1; 1\} & 2 & & & \\ \hline \end{array}$$

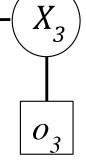




- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

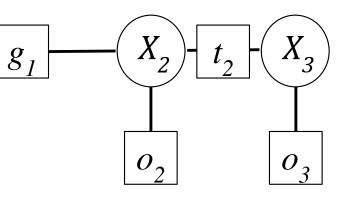
•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

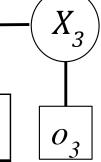

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline x_3 & x_2 & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_1(x_2) & o_2(x_2) & t_2(x_2, x_3) & g_2(x_3) \\ \hline 0 & 0 & 4: \{x_1; 0\} & 0 & 2 & & & \\ \hline 0 & 1 & 2: \{x_1; 1\} & 1 & 1 & & & \\ \hline 0 & 2 & 1: \{x_1; 1\} & 2 & 0 & & & \\ \hline 1 & 0 & 4: \{x_1; 0\} & 0 & 1 & & & \\ \hline 1 & 1 & 2: \{x_1; 1\} & 1 & 2 & & & \\ \hline 1 & 2 & 1: \{x_1; 1\} & 1 & 2 & & & \\ \hline 1 & 2 & 1: \{x_1; 1\} & 1 & 2 & & & \\ \hline 2 & 0 & 4: \{x_1; 0\} & 0 & 0 & & & \\ \hline 2 & 1 & 2: \{x_1; 1\} & 1 & 1 & & \\ \hline 2 & 2 & 1: \{x_1; 1\} & 1 & 1 & & \\ \hline 2 & 2 & 1: \{x_1; 1\} & 1 & 1 & & \\ \hline 2 & 2 & 1: \{x_1; 1\} & 1 & 1 & & \\ \hline \end{array}$$

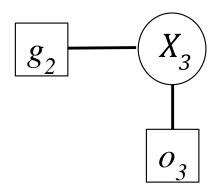


- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

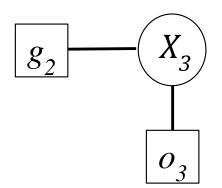
•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

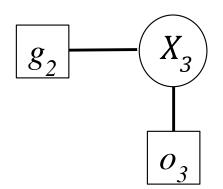




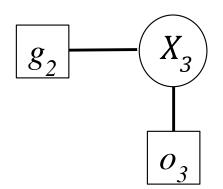

- Eliminate X_2
- Factors that depend on X_2 :
 - *o*₂, *t*₂, *g*₁
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

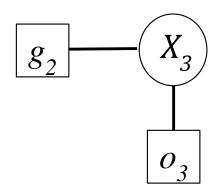

<i>x</i> ₃	<i>x</i> ₂	$g_{I}(x_{2})$	$o_2(x_2)$	$t_2(x_2, x_3)$	$g_1(x_2) o_2(x_2) t_2(x_2, x_3)$	$g_{2}(x_{3})$
0	0	4: { x_1 :0}	0	2	0	2: { x_1 : 1, x_2 : 2}
0	1	2: $\{x_{I}: I\}$	1	1	2	
0	2	1: $\{x_{l}: l\}$	2	0	2	
1	0	4: { x_1 :0}	0	1	4	4: { x_1 : 1, x_2 : 1}
1	1	2: $\{x_{I}: I\}$	1	2	4	
1	2	1: $\{x_{l}: l\}$	2	1	2	
2	0	4: { $x_1:0$ }	0	0	0	4: { x_1 : 1, x_2 : 2}
2	1	2: $\{x_{l}: 1\}$	1	1	2	
2	2	1: $\{x_{l}: l\}$	2	2	4	



$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$


 $\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$

<i>x</i> ₃	$g_{2}(x_{3})$	$o_3(x_3)$	$g_{2}(x_{3}) o_{3}(x_{3})$	Optimal Weight
0				
1				
2				


 $\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$

<i>x</i> ₃	$g_{2}(x_{3})$	<i>o</i> ₃ (<i>x</i> ₃)	$g_{2}(x_{3}) o_{3}(x_{3})$	Optimal Weight
0	2: { $x_1 : 1, x_2 : 2$ }	0		
1	4: { $x_1 : 1, x_2 : 1$ }	1		
2	4: { $x_1 : 1, x_2 : 2$ }	2		

 $\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$

<i>x</i> ₃	$g_2(x_3)$	<i>o</i> ₃ (<i>x</i> ₃)	$g_{2}(x_{3}) o_{3}(x_{3})$	Optimal Weight
0	2: { x_1 : 1, x_2 : 2}	0	2	
1	4: { x_1 : 1, x_2 : 1}	1	4	
2	4: { x_1 : 1, x_2 : 2}	2	8	

 $\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$

<i>x</i> ₃	$g_2(x_3)$	<i>o</i> ₃ (<i>x</i> ₃)	$g_{2}(x_{3}) o_{3}(x_{3})$	Optimal Weight
0	2: { $x_1 : 1, x_2 : 2$ }	0	2	8: { x_1 : 1, x_2 : 2, x_3 : 2}
1	4: { $x_1 : 1, x_2 : 1$ }	1	4	
2	4: { $x_1 : 1, x_2 : 2$ }	2	8	