AlphaZero

William Bakst and Pranav Sriram
Background

Paper: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Published in: Nature, October 18 2017

Authors list: David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis
Long-standing History of AI Agents in Board Games

IBM’s DeepBlue vs. Kasparov, 1997
Go vs. Chess

Natural question: why did it take so long to get to superhuman in Go?

IBM’s Deep Blue: superhuman chess player in 1997
 why doesn’t same approach work for go?

Deep Blue
 brute-force minimax search
 could look ahead between 12 and 40 plys (half-moves)
 parameterized value function for the leaves
 estimate: every additional ply yields 50-70 ELO points
Why did it take so long to get to superhuman for Go?
Why did it take so long to get to superhuman for Go?

State space is significantly larger
Why did it take so long to get to superhuman for Go?

State space is significantly larger

Significantly better machine learning models (Neural Networks)
Why did it take so long to get to superhuman for Go?

State space is significantly larger

Significantly better machine learning models (Neural Networks)

Significantly better hardware/compute
Why did it take so long to get to superhuman for Go?

State space is significantly larger

Significantly better machine learning models (Neural Networks)

Significantly better hardware/compute

Algorithmic improvements over brute force search
defeated AlphaGo Lee by 100 games to 0
AlphaZero defeated AlphaGo Zero (version with 20 blocks trained for 3 days) by 60 games to 40.
AI system that mastered chess, Shogi and Go to “superhuman levels” within less than a day

AlphaZero defeated AlphaGo Zero (version with 20 blocks trained for 3 days) by 60 games to 40
Monte-Carlo Tree Search

\[U_i = \frac{W_i}{N_i} + cP_i \sqrt{\frac{\ln N_p}{1 + N_i}} \]

https://web.stanford.edu/~surag/posts/alphazero.html
AlphaZero

Single Neural Network f_θ that takes in current state s, with two outputs:

$v_\theta(s) \in [-1, 1]$: expected outcome of game (win, lose draw)

$\overrightarrow{p}_\theta(s)$ Policy: probability distribution over actions from state s.

No need for RL! Directly do search to find a better action.
Training the Neural Network

Rollout policy SL policy network

P_π P_σ

Human expert positions
Training the Neural Network

Rollout policy p_π SL policy network p_σ RL policy network p_ρ Value network v_θ

Policy gradient

Neural network

Data

Human expert positions

Self-play positions

Classification

Self-Play

Regression
Training the Neural Network

- Rollout policy: p_π
- SL policy network: p_σ
- RL policy network: p_ρ
- Value network: v_θ

Training methods:
- Policy gradient
- Classification
- Self-play
- Regression

Input:
- Human expert positions
- Self-play positions

Neural network:
- Input: Data
- Output: v_θ
Training the Neural Network

(a) Self-play

(b) Neural network training
Training Algorithm

High level idea: get training examples in the form \((s_t, \bar{\pi}_t, z_t)\) through self play.

- \(s_t\) is the state,
- \(\bar{\pi}_t\) is a probability distribution over actions,
- \(z_t\) is the outcome of the game (win/lose).

Optimize:

\[
l = \sum_t (v_\theta(s_t) - z_t)^2 - \bar{\pi}_t \cdot \log(\hat{p}_\theta(s_t))\]
def policyIterSP(game):
 nnet = initNNet()
 examples = []
 for i in range(numIters):
 for e in range(numEps):
 examples += executeEpisode(game, nnet) # collect examples from this game
 new_nnet = trainNNet(examples)
 frac_win = pit(new_nnet, nnet) # compare new net with previous net
 if frac_win > threshold:
 nnet = new_nnet # replace with new net
 return nnet
Training Implementation

- Sensitive to hyperparameters and initial exploration probability: See https://dselsam.github.io/issues-with-alpha-zero/ for more info
- Synchronous stochastic gradient descent with mini-batches of size 4096 for stability

Parameter-server model:

- Server nodes and worker nodes
- 5,000 first-generation TPUs to generate self-play games
- 64 first-generation TPUs for parameter updates
Other Implementation Details

- State history: board state alone is insufficient
- Temperature: Anneals the degree of MCTS exploration
- Symmetry: Rotational and reflective invariance
- Asynchronous MCTS: parallel simulations with batched querying and locking
- Architecture: Residual networks and shared parameters
- Compute: 64 GPUs + 19 CPUs for training
- See https://web.stanford.edu/~surag/posts/alphazero.html for more!
AlphaZero: Elo Rating Over Training Time

Chess

AlphaZero

Stockfish

Thousands of Steps
AlphaZero: Elo Rating over Training Time

![Chess Graph](image)

![Shogi Graph](image)

- **Chess**
 - AlphaZero
 - Stockfish

- **Shogi**
 - AlphaZero
 - Elmo
AlphaZero: Elo Rating Over Training Time

- Chess
- Shogi
- Go

Graphs showing the improvement of AlphaZero and other programs over time in terms of Elo rating.
AlphaZero: Tournament between AI Programs

<table>
<thead>
<tr>
<th>Game</th>
<th>White</th>
<th>Black</th>
<th>Win</th>
<th>Draw</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chess</td>
<td>AlphaZero</td>
<td>Stockfish</td>
<td>25</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Stockfish</td>
<td>AlphaZero</td>
<td>3</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>Shogi</td>
<td>AlphaZero</td>
<td>Elmo</td>
<td>43</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Elmo</td>
<td>AlphaZero</td>
<td>47</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Go</td>
<td>AlphaZero</td>
<td>AG0 3-day</td>
<td>31</td>
<td>–</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>AG0 3-day</td>
<td>AlphaZero</td>
<td>29</td>
<td>–</td>
<td>21</td>
</tr>
</tbody>
</table>
AlphaZero: Openings Discovered by Self-Play (½)

A10: English Opening
w 20/30/0, b 8/40/2
1...e5 g3 d5 cxd5 ♘xf6 ♘g2 ♘xd5 ♘f3

D06: Queens Gambit
w 16/34/0, b 1/47/2
2...c6 ♙c3 ♙f6 ♙f3 ♙f3 a6 g3 c4 a4

A46: Queens Pawn Game
w 24/26/0, b 3/47/0
2...d5 c4 e6 ♙c3 ♙e7 ♙f4 O-O e3

E00: Queens Pawn Game
w 17/33/0, b 5/44/1
3...f3 d5 ♙c3 ♙b4 ♙g5 h6 ♙a4 ♙c6
AlphaZero: Openings Discovered by Self-Play

B40: Sicilian Defence

3.d4 cxd4 ²xd4 ²c6 ²c3 ²c7 ²e3 a6

C60: Ruy Lopez (Spanish Opening)

4.²a4 ²e7 O-O ²f6 ²e1 b5 ²b3 O-O

B10: Caro-Kann Defence

2.d4 d5 e5 ²f5 ²f3 e6 ²e2 a6

A05: Reti Opening

2.c4 e6 d4 ²c3 ²e7 ²f4 O-O

w 17/31/2, b 3/40/7

w 27/22/1, b 6/44/0

w 25/25/0, b 4/45/1

w 13/36/1, b 7/43/0
Conclusion

AlphaZero: new SOTA algorithm for Go, Shogi Chess

Trained solely through self-play + Monte-Carlo Tree Search

Trained using maximum likelihood estimation (MLE) to predict policy and reward, without using reinforcement learning for updates!