Compositional Semantics

- Syntax-driven approach to semantic interpretation.
- Assumes a close link between syntax and semantics.
- Instead of $S \rightarrow \text{NP } \text{loves} \text{NP}$,
 $\text{loves} (x, y) \rightarrow \text{NP}(x) \text{NP}(y)$.
- Can annotate general rules like $S \rightarrow \text{NP } \text{VP}$.
 $\text{NP}(x) \rightarrow \text{loves}$.
 $\text{VP}(x, y) \rightarrow \text{NP}(x) \text{NP}(y)$.
- Now remove loves and use $\text{subj} \rightarrow \text{NP}$.
- Logical form of sentences can then be derived bottom-up while parsing, using lambda calculus.

Nouns and Their Modifiers

- **Expert**
 - $\text{kg } \text{expert}(e)$
 - $\text{big } \text{fat } \text{expert}(e)$
 - $\text{big } \text{fat } \text{expert}(e)$
 - $\text{bogus } \text{expert}(e)$
 - Right: $\text{kg } \text{bogus } \text{expert}(e)$
 - Bogus maps to new concept
 - (every/three) goldfish that Gilly swallowed

 - $\text{kg } \text{goldfish}(e)$, swallowed($\text{Gilly}, g)$
 - Or for real: $\text{kg } \text{goldfish}(e)$, $\exists [\text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{swallowe}(e, \text{act } g, g)]$
 - Like three swallowed-by-_Gilly_ goldfish

Quantifier Order

- Gilly swallowed a goldfish in a booth
 - $\exists \text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{exists}(\text{goldfish}, \text{swallowe}(e), \text{exists}(\text{booth, location}(e)), ...$
 - Gilly swallowed a goldfish in every booth
 - $\exists \text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{exists}(\text{goldfish}, \text{swallowe}(e), \text{all}(\text{booth, location}(e)), ...$

 - $\exists \text{goldfish}(e)$, swallowe($e, g$) $\forall \text{booth}(b) \rightarrow \text{location}(e, b)$

 - Does this mean what we'd expect?
 - says that there's only one event
 - with a single goldfish getting swallowed
 - that took place in a lot of booths ...

Quantifier Order

- Groucho Marx celebrates quantifier order ambiguity:
 - In this country a woman gives birth every 15 min.
 - Our job is to find that woman and stop her.

 - $\exists \text{woman } (\forall 15 \text{min} \text{ giving birth during woman, } 15 \text{min})$
 - $\forall 15 \text{min} \exists \text{woman giving birth during } 15 \text{min}$

 - Surprisingly, both are possible in natural language!

 - Which is the joke meaning? (where it's always the same woman)

Quantifier Order

- Gilly swallowed a goldfish in a booth
 - $\exists \text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{exists}(\text{goldfish}, \text{swallowe}(e), \text{exists}(\text{booth, location}(e)), ...$
 - Gilly swallowed a goldfish in every booth
 - $\exists \text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{exists}(\text{goldfish}, \text{swallowe}(e), \text{all}(\text{booth, location}(e)), ...$

 - $\exists \text{goldfish}(e)$, swallowe($e, g$) $\forall \text{booth}(b) \rightarrow \text{location}(e, b)$

 - Does this mean what we'd expect?
 - It's $\exists \forall$ which means same event for every booth

 - Probably false unless Gilly can be in every booth during her swallowing of a single goldfish

Quantifier Order

- Other reading $(\forall \exists)$ involves quantifier raising:
 - $\forall \text{booth } (\exists \text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{exists}(\text{goldfish}, \text{swallowe}(e), \text{location}(e, b))$
 - $\forall \text{all } (\forall \exists [\text{past}(e), \text{act}(e, \text{swallowing}), \text{swallowe}(e, \text{Gilly}), \text{exists}(\text{goldfish}, \text{swallowe}(e), \text{location}(e, b))])$
 - "For all booths b, there was such an event in b"