Information Extraction

Christopher Manning
CS224N – 2003
http://nlp.stanford.edu/~manning/

NLP for IR/web search?

- It’s a no-brainer that NLP should be useful and used for web search (and IR in general):
 - Search for ‘jaguar’
 - the computer should know or ask whether you’re interested in big cats [search on the web], cars, or, perhaps a molecule geometry and solvation energy package, or a package for fast network I/O in Java
 - Search for ‘Michael Jordan’
 - The basketball or the machine learning guy?
 - Search for laptop, don’t find notebook
 - Google doesn’t even seem:
 - Search for probabilistic models, and you don’t even match pages with probabilistic models

NLP for IR/web search?

- Word sense disambiguation technology generally works well (like text categorization)
- Synonyms can be found or listed
- Lots of people have been into fixing this
 - e-Cyc had a beta version with HooBot that disambiguated senses, and was going to go live in 2 months ... 26 months ago
 - Lots of (ex) startups:
 - LingMovers
 - IFPhrase: “Traditional keyword search technology is hopelessly outdated”

NLP for IR/web search?

- But in practice it’s an idea that hasn’t gotten much traction
 - Correctly finding linguistic base forms is straightforward, but produces little advantage over crude stemming which just slightly over equivalence classes words
 - Word sense disambiguation only helps on average in IR if over 90% accurate (Sanderson 1994), and that’s about where we are
 - Syntactic phrases should help, but people have been able to get most of the mileage with “statistical phrases” – which have been aggressively integrated into systems recently

NLP for IR/web search?

- People can easily scan among results (on their 21” monitor) ... if you’re above the fold
- Much more progress has been made in link analysis, and use of anchor text, etc.
- Anchor text gives human-provided synonyms
- Link or click stream analysis gives a form of pragmatics: what do people find correct or important (in a default context)
- Focus on short, popular queries, news, etc.
- Using human intelligence always beats artificial intelligence

NLP for IR/web search?

- Methods which use of rich ontologies, etc., can work very well for intranet search within a customer’s site (where anchor-text, link, and click patterns are much less relevant)
- But don’t really scale to the whole web

- Moral: it’s hard to beat keyword search for the task of general ad hoc document retrieval
- Conclusion: one should move up the food chain to tasks where finer grained understanding of meaning is needed
Inconsistency: digital cameras

- Image Capture Device: 1.68 million pixel 1/2-inch CCD sensor
- Image Capture Device: Total Pixels Approx. 3.34 million Effective Pixels Approx. 3.24 million
- Image sensor Total Pixels: Approx. 2.11 million-pixel
- Imaging sensor Total Pixels: Approx. 2.11 million, 1,888 (H) x 1,280 (V)
- CCD Total Pixels: Approx. 3,340,000 (2,140[H] x 1,568 [V])
- Effective Pixels Approx. 3,240,000 (2,088[H] x 1,550 [V])
- Recording Pixels: Approx. 3,145,000 (2,048[H] x 1,536 [V])
- These all came off the same manufacturer’s website!!
- And this is a very technical domain. Try sofa beds.

Product information/Comparison shopping, etc.

- Need to learn to extract info from online vendors
- Can exploit uniformity of layout, and (partial) knowledge of domain by querying with known products
- E.g., Jango Shopbot (Etzioni and Weld)
- Gives convenient aggregation of online content
- Bug: not popular with vendors
- A partial solution is for these tools to be personal agents rather than web services

Product info

- Cnet markets this information
- How do they get most of it?
 - Phone calls
 - Typing.

Classified Advertisements (Real Estate)

Background:

- Advertisements are plain text
- Lowest common denominator: only thing that 70+ newspapers with 20+ publishing systems can all handle

<ADTEXT>
OPEN 1.00 - 1.45 SR
u 11 / 10 WESTHAM ST SE
NEW TO MARKET Beautiful 3 br freestanding b/t villa, close to shops & bus

Offer made to Help Chủ đề: I'd ideally suit 1st home buyer. $250,000
Inquire @ 11 and over. $250,000
A family living in the Crk Santee 9332 3347
</ADTEXT>
Why doesn’t text search (IR) work?

What you search for in real estate advertisements:
- Suburbs. You might think easy, but:
 - Real estate agents: Coldwell Banker, Mosman
 - Phrases: Only 45 minutes from Parrama
 - Multiple property ads have different suburbs
- Money: want a range not a textual match
 - Multiple amounts: was $155K, now $145K
- Variations: offers in the high 700s [but not rems for $270]
- Bedrooms: similar issues (br, bdr, beds, B/R)

Task: Information Extraction

Suppositions:
- A lot of information that could be represented in a structured semantically clear format isn’t
- It may be costly, not desired, or not in one’s control (screen scraping) to change this.
- Goal: being able to answer semantic queries (a.k.a. “database queries”) using “unstructured” natural language sources
- Caveats: need clear, factual information; answers in small text snippets, some errors can be tolerated

HMMs for IE

- There are other techniques for information extraction (we’ll discuss them more next time)
- But Hidden Markov Models are a powerful method for sequence-based information extraction
- Pros:
 - Well-understood underlying statistical model makes it easy to use wide range of tools from statistical decision theory
 - Portable, broad coverage, robust, good recall
- Cons:
 - Range of features and patterns usable may be limited
 - Not necessarily as good for complex multidot patterns

Name Extraction via HMMs

The delegation, which included the commander of the UN forces in Bosnia, LT. Gen. Sir Michael Rose, sent an Inter
test to the UN to ask for talks with Bosnian Serb leaders. \cite{ref1}

An easy but successful application:
- Prior to 1997 - no learning approach competitive with hand-tuned NER systems
- Since 1997 - Realistic approaches (EBN, NBU, MITE, CMI/judged) achieve state of the art performance

Applying HMMs to IE

- Document \(\Rightarrow \) generated by a stochastic process
- Observation \(\Rightarrow \) word
- State \(\Rightarrow \) “reason/explanation” for a given token
- Background state emits tokens like “the,” “and,” …
- Money state emits tokens like “million,” “euro,” …
- Organization state emits tokens like “university,” “company,” …
- Extraction: via the Viterbi algorithm
HMM for research papers: transitions [Seymore et al., 99]

Trained on 2 million words of BibTeX data from the Web

HMM for research papers: emissions [Seymore et al., 99]