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= So far we’ve looked at “generative models”
» Language models, Naive Bayes, IBM MT
» In recent years there has been extensive use
of conditional or discriminative probabilistic
models in NLP, IR, and Speech
» Because:
» They give high accuracy performance
» They make it easy to incorporate lots of
linguistically important features
» They allow automatic building of language
independent, retargetable NLP modules
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» Joint (generative) models place probabilities over
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff):
» All the best known StatNLP models: P(c,d)
= n-gram models, Naive Bayes classifiers, hidden
Markov models, probabilistic context-free grammars
» Discriminative (conditional) models take the data
as given, and put a probability over hidden Picld
structure given the data: (cld)

» Logistic regression, conditional loglinear models,
maximum entropy markov models, (SVMs,

/ Joint vs. Conditional Models

f{\; Bayes Net/Graphical Models
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» Bayes net diagrams draw circles for random
variables, and lines for direct dependencies

» Some variables are observed; some are hidden

» Each node is a little classifier (conditional
probability table) based on incoming arcs
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perceptrons) Naive Bayes Logistic Regression
Generative Discriminative

o Conditional models work well:
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Training Set « Even with exactly the = In these slides and most maxent work:
Objective | Accuracy same features, changing f.eatures are elementary pieces of ev.idence that
from joint to conditional link aspects of what we observe d with a category
Joint Like. 86.8 estimation increases ¢ that we want to predict.

Cond. Like. | 985 performance

» That is, we use the same

Test Set smoothing, and the same
Objective | Accuracy word-class features, we
just change the numbers
Joint Like. 73.6 (parameters)

Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)

» A feature has a (bounded) real value: £: CxD — R

» Usually features specify an indicator function of
properties of the input and a particular class
(every one we present is). They pick out a subset.
n filc, dy=[D(d) Ac=c)] [Value is 0 or 1]

= We will freely say that @(d) is a feature of the data
d, when, for each ¢, the conjunction ®(d Anc=c, is
a feature of the data-class pair (c, d).
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» For example:
s fi(c, d)=[c™ “NN” A islower(w,) A ends(w,, “d”)]
w foe, d)=[c = “NN" Aw,;~ “to” nt,~ “TO"]
n fi(c, d) = [c — “VB” A islower(w,)]

IN NN TON TO VB IN U
in bed to aid, to aid in blue

» Models will assign each feature a weight
» Empirical count (expectation) of a feature:

emplrlcal E(f )= Z(c,d)fobserved(C.D) f(c, d)
» Model expectation of a feature:

E(f)=Y 0 nPed)f(cd)

Feature-Based Models
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» The decision about a data point is based
only on the features active at that point.

Data Data Data
BUSINESS: Stocks ... to restructure DT ) NN ...
hit a yearly low ... bank:MONEY debt. [The previous fall ...

Label Label Label

BUSINESS MONEY NN
Features Features Features
{..., stocks, hit, a, {..., P=restructure, {W=fall, PT=))
yearly, low, ...} N=debt, L=12, ...} PW=previous}
Text Word-Sense POS Tagging

Categorization Disambiguation

Ny

(Zhang and Oles 2001)
» Features are a word in document and class (they
do feature selection to use reliable indicators)

» Tests on classic Reuters data set (and others)
« Naive Bayes: 77.0% F,
» Linear regression: 86.0%
= Logistic regression: 86.4%
» Support vector machine: 86.5%

= Emphasizes the importance of regularization
(smoothing) for successful use of discriminative
methods (not used in most early NLP/IR work)
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<., Example: Text Categorization
S —

A, . i
ii») Example: POS Tagging
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» Features can include:
= Current, previous, next words in isolation or together.
» Previous (or next) one, two, three tags.
= Word-internal features: word types, suffixes, dashes, etc.

Decision Point Features

Local Context / Wo 226

W,, %

3 [2 [1 [o fn W, Tell
DT |NNP |VBD |77 |? T, VED
The |Dow |fell 226 |% T, T, NNPVRD
hasDigit? true

(Ratnaparkhi 1996; Toutanova et al. 2003, etc.)

g
ii»y Other Maxent Examples
= Sentence boundary detection (Mikheev 2000)
» Is period end of sentence or abbreviation?
» PP attachment (Ratnaparkhi 1998)
» Features of head noun, preposition, etc.
» Language models (Rosenfeld 1996)
= P(wglw,,...,w ). Features are word n-gram
features, and trigger features which model
repetitions of the same word.
[] Parsing (Ratnaparkhi 1997, Johnson et al. 1999, etc.)

» Either: Local classifications decide parser
actions or feature counts choose a parse.

g

sizy Conditional vs. Joint Likelihood

= We have some data {(d, ¢)} and we want to place
probability distributions over it.

» A joint model gives probabilities P(d,c) and tries
to maximize this likelihood.

» It turns out to be trivial to choose weights:
just relative frequencies.

» A conditional model gives probabilities P(dd). It
takes the data as given and models only the
conditional probability of the class.

» We seek to maximize conditional likelihood.
=« Harder to do (as we’ll see...)
» More closely related to classification error.
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= “Linear” classifiers:
» Classify from features sets {f;} to classes {c}.
» Assign a weight 4, to each feature 7.
» For a pair (¢,d), features vote with their weights:

= vote(c) = ZAf(cd)
TO VB
03

» Choose the class ¢ which maximizes Af(c,d) — VB
» There are many ways to chose weights

= Perceptron: find a currently misclassified example, and
nudge weights in the direction of a correct classification

-I"FE ¥ . -
{si») Feature-Based Classifiers

= Exponential (log-linear, maxent, logistic, Gibbs) models:

» Use the linear combination £if(c.d) to produce a
probabilistic model:

exp Y Af (e, d)
exp ) Af(e',d) | Normalizes vores. |

» P(NNlto, aid, TO) = e'2e"' 8/(e' 2718 + €93) = 0.29
= P(VBlto, aid, TO) = e%3 f(e'-2e1 8 + e0.3) = 0.71
» The weights are the parameters of the probability
model, combined via a “soft max” function
= Given this model form, we will choose parameters
{4} that maximize the conditional likelihood of the
data according to this model.

P(c|d,A)~

g

isipy Other Feature-Based Classifiers
- A

» The exponential model approach is one way of
deciding how to weight features, given data.

» It constructs not only classifications, but
probability distributions over classifications.

» There are other (good!) ways of discriminating
classes: SVMs, boosting, even perceptrons -
though these methods are not as trivial to

g

iz Comparison to Naive-Bayes
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s Naive-Bayes is another tool for classification:

= We have a bunch of random variables °
(data features) which we would like to use

to predict another variable (the class): @ @ @

= The Naive-Bayes likelihood over classes is:

P(C)HPW, 1) exp{logP(c)-# Zlog P(g, |c)}

h S Pleld, A)=
interpret as distributions over classes. SPE[ P ) Vex[{logP(c')+vlogP(¢ ‘C,)}
EXP{Z%JZ(’/{:C)}
Naive-Bayes is just an - _—
exponential model. Zexl{z%‘f:ﬂ(‘iﬁ')}

g

iz Comparison to Naive-Bayes
e

= The primary differences between Naive-
Bayes and maxent models are:

Naive-Bayes

Trained to maximize joint
likelihood of data and classes.

Features assumed to supply
independent evidence.

Feature weights can be set
independently.

Features must be of the
conjunctive ®(d) nc=¢;
form.

Maxent

Trained to maximize the
conditional likelihood of classes.

Features weights take feature
dependence into account.

Feature weights must be
mutually estimated.

Features need not be of the
conjunctive form (but
usually are).

Example: Sensors
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Reality

R g Sunny
Y] Y]
85 &6

P(+,+,r) = 3/8 P(--r)=1/8

ainin

P(+,+,s)=1/8 P(-,-,s) = 3/8

NB Model | NB FACTORS: PREDICTIONS:
@ = P(s)=1/2 n P(r+,+) = (4)(34)(34)
u P(+[s)=1/4 u P(s,+,+) = (%)(%)(%4)
@ @ n P(+Ir)=3/4 wu P(rl+,4+)=9/10
n P(s|+,+)=1/10




"y Example: Sensors
» Problem: NB multi-counts the evidence.
P(r|+.+) P(@r)P(+|r) P(+|r)
P(s|+.4) P(s) P(+|s)  P(+|s)
= Maxent behavior:
= Take a model over (M,,...M,,R) with features:
» [t M=+, R=r weight: A
s [t M=+, R=s weight: Ag;
» exp(riAg) is the factor analogous to P(+r)/P(+[s)
» ... butinstead of being 3, it will be 3/7

= ... because if it were 3, E[f;] would be far higher
than the target of 3/8!

Example: Stoplights

fi )
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Reality
Lights Working Lights Broken

oifel obfe.  eplel

P(g,rw) = 3/7  P(r,g,w) = 3/7 P(ryr,b) = 1/7

NB Model NB FACTORS:
@ x P(W)=6/7 n Pb)=1/7
n Priw)=1/2 w P(rlb)=1
@ @ n Pgw)=1/2 u P(glb)=0

"y Example: Stoplights

» What does the model say when both lights are red?
w P(b,r,r)=(Q/7)(1)(1) =1/7 =4/28
» Pw,r,r)=(6/7)(1/2)(1/2) =6/28 =6/28
= P(w|r,r)=6/10!

» We'll guess that (r,r) indicates lights are working!

= Imagine if P(b) were boosted higher, to 1/2:
= P(b,r,r)=(1/2)(1)(1) =1/2 =4/8
w Pw,r,r)=(1/2)(1/2)(1/2) =1/8 =1/8
=« P(w|r,r)=1/5!
» Changing the parameters, bought conditional
accuracy at the expense of data likelihood!
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5y Exponential Model Likelihood
» Maximum Likelihood (Conditional) Models :

= Given a model form, choose values of
parameters to maximize the (conditional)
likelihood of the data.

» Exponential model form, for a data set (C,D):

exp A fi(e,d)
log P(C|D,A)= Y logP(c|d,A)= 3 log !

(e.d)e(C.D) (e.d)e(C.D) Z CXPZ Af(.d)

Building a Maxent Model

fi )
JH L
L I_c)'

Define features (indicator functions) over data
points.

= Features represent sets of data points which are
distinctive enough to deserve model parameters.

» Usually features are added incrementally to “target”
errors.

» For any given feature weights, we want to be able to
calculate:

» Data (conditional) likelihood
= Derivative of the likelihood wrt each feature weight
« Use expectations of each feature according to the model

» Find the optimum feature weights (next part).

::i\,,; The Likelihood Value

s The (log) conditional likelihood is a function of the iid data
(C,D) and the parameters A:

log P(C | D, )~ log HP(C\ d,A)— ZlogP(c\ d,A)

(¢,d)e(C,D) (¢,d)e(C,D)
= [f there aren’t many values of ¢, it's easy to calculate:
expy A fi(c.d)
logP(C|D, A)=

og——

(c.d)ete.D) Zexpz Af(c,d)
e i

= We can separate this into two components:

logP(C|D,2)= Y, logexpXAfled) — 3 logYyexpd Afi(c.d)
(e.d. D) i (c.d)e(C.D) ' i

e(C,
log P(C | D, A)=N(A) — M(2)

= The derivative is the difference between the derivatives of each component
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\mj The Derivative |: Numerator

15} logexp Y A.f.(c,d) 8 f.(c,d
N i B 0T, T
a4, a4, a5,
3 Afi(e.d)
(c,d)e(C, D) 6;"1
- X filed)

(c,d)e(C,D)

Derivative of the numerator is: the empirical count(f;, ¢)

e
\mj The Derivative |I: Denominator

z logZexpz&f,(c',d)

a
M) eaeen C

a4 o
s . oY exp Y AL(Cd)
ot LPTALCED 04
B T AS(d) 8T Af(#.d)
:v,d)ezw.mgexpz AEHE %

exp> Af(c,d) 8y Af(c.d)
<E@an>?Tepr4f(c" d) 24,

= Z ZP(C |d,A)f,(c",d) = predicted count(f, 4)

(c,d)e(C,D) ¢

i) The Derivative |l

]
SlogP(C | D, A)
o,

» The optimum parameters are the ones for which
each feature’s predicted expectation equals its

empirical expectation. The optimum distribution is:
= Always unique (but parameters may not be unique)
= Always exists (if feature counts are from actual data).
= These models are also called maximum entropy

models because we find the model having maximum
entropy and satisfying the constraints:

E, () =E,().Y]

= actual count( f;,C)—predicted count( f;, 1)

F g e
Ty Fitting the Model
» To find the parameters /1',22,/13

write out the conditional log-likelihood of the
training data and maximize it

CLogLik(D)= Y logP(c, |d,)
i=1
» The log-likelihood is concave and has a
single maximum; use your favorite
numerical optimization package
» Good large scale techniques: conjugate
gradient or limited memory quasi-Newton

R Fitting the Model
"y Generalized Iterative Scaling
]

= A simple optimization algorithm which
works when the features are non-negative

= We need to define a slack feature to make
the features sum to a constant over all
considered pairs from DxC
Define il
- M =max " f,(d,.c)
e

= Add new feature

frald. ) =M =3 1, (d.c)

7
"y Generalized lterative Scaling
]

" Compute empirical expectation for all features
E(f)—— Zf(d )
N Initiallze 1} =0,j=1.m+1

s Repeat
= Compute feature expectations according to current
model N K

E,(f)- %z;m d)f(dnc,)

J J

= Update parameters}l.(m) 1 1o M
M

a (t)
E (f,
= Until converged » ()
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= An equivalent approach:
» Lots of distributions out there, most of them
very spiked, specific, overfit.
» We want a distribution which is uniform
except in specific ways we require.
» Uniformity means high entropy - we can
search for distributions which have properties
we desire, but also have high entropy.

Faa )
Lty (Maximum) Entropy

» Entropy: the uncertainty of a distribution.
= Quantifying uncertainty (‘surprise”): |

= Event X

« Probability p,

= “Surprise”

H o /‘\
log(1/p,) !

0 05
Pruraps
A coin-flip is
most uncertain
for a fair coin.

» Entropy: expected surprise (over p):

x

1
H(p)=EP|:10g—
p

H(p)=-) p,logp,

1

o
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~; Maxent Examples |

LB

s What do we want from a distribution?
= Minimize commitment = maximize entropy.
= Resemble some reference distribution (data).

05/\
» Solution: maximize entropy H, subject to

feature-based constraints: 05

Unconstrained,
Ep[f;]: Eﬁ[f;] <& );f‘px =C;

max at 0.5

VI

05
Constraint that
Prpaps ~ 03

» Adding constraints (features):
» Lowers maximum entropy
= Raises maximum likelihood of data
= Brings the distribution further from uniform
= Brings the distribution closer to data

7y , ﬂ\g
\ .

pgtpr— 1 py— 03

AN =

02 04 06 08

#Fay
Lty Maxent Examples Il

» Lets say we have the following event space:

[NN [NNS [NNP [NNPS[VvBZ [vBD |

= ... and the following empirical data:
(3 [5 [11 [13 [3 |1 |
» Maximize H:
|1/e \1/3 \1/3 \1/2 \1/2 \1/2 |
» ... want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

[1/6 [1/6 [1/6 [1/6 [1/6 [1/6 |

Faw
L Maxent Examples IV
LHLPY
e
= Too uniform!
= N*are more common than V*, so we add the feature f; = {NN,
NNS, NNP, NNPS}, with E[f,] =32/36
NN NNS NNP | NNPS | VBZ VBD

8/36 |8/36 |8/36 |8/36|2/36|2/36

= ... and proper nouns are more frequent than common nouns,
so we add f; = {NNP, NNPS}, with E[f;] =24/36

[4/36 [4/36 [12/36]12/36]2/36 [2/36 |

= ... we could keep refining the models, e.g. by adding a feature
to distinguish singular vs. plural nouns, or verb types.
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Convexity
f(zwfxi) 2 Z_wif(xi) Zwi =1

S wx)

[ Zwf(x)

Convex Non-Convex

Convexity guarantees a single, global maximum
because any higher points are greedily reachable.

g

Convexity Il
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» Constrained H(p) — - X xlog x is o
convex: q
» —xlog x is convex -05)

» — ¥ xlogx is convex (sum of - 7
convex functions is convex).
» The feasible region of
constrained H is a linear
subspace (which is convex)
» The constrained entropy
surface is therefore convex.
= The maximum likelihood
exponential model (dual)
formulation is also convex.

'\_._ﬁ'l.
=
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., Feature Overlap

» Maxent models handle overlapping features well.

Example: NER Overlap

Iy
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Feature Weights

Grace is correlated

= Unlike a NB model, there is no double counting! with PERSON, but ———[Eeature Type Feature | PERS| LOC
A la does not add much Previous WO at -0.73| 0.94
. E evidence on t_OP of Current word Crace | *0.03| 0.00
Empirical b | already knowing Beginning bigram <G 0.45] -0.04
A |a A1 prefix features. Current POS tag NNP | 0.47| 045
B 2 1 Prev and cur tags INNNP | -0.10| 0.14
A a

b 2 1 B 17a1/4 Local Context Previous state Other -0.70 | -0.92
/ / Current signature Xx 0.80 0.46

b 174 1/4 Prev | Cur Next
State | Other | 727 m Prev state, cur sig O-Xx 0.68 0.37
A N A N A N Word | at Grace | Road Prev-cur-next sig x-Xx-Xx | -0.69| 0.37
2 2 ™ 2 Py Tag IN NNP_ | NNP P. state - p-cur sig O-x-Xx | -0.20| 0.82

Y Si X Xx Xx
b b |2 b N 9 Total: -0.58] 2.68
Li») Feature Interaction Li») Feature Interaction
o o

= Maxent models handle overlapping features well, but
do not automatically model feature interactions.

Empirical

A a

B 1 1

b 1 0
B 1/4|1/4| |B 1/3(1/6| |B 4/9 | 2/9

b 1/4|1/4| |b 1/3(1/6| | b 2/9|1/9

B [0 |o B |2 B | 2t | Ag

= If you want interaction terms, you have to add them:

Empirical

A |a A=2/3 B=2/3 AB=1/3
B 1 1 A a A a A a
b |1 |o B [1/3]1/6] |B |4/9]2/9 B [1/3]1/3

b 1/3(1/6| |b 2/9(1/9 b 1/3

0

= A disjunctive feature would also have done it (alone):

A a A a
B B 1/311/3
b b 1/3|0
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= For loglinear/logistic regression models in
statistics, it is standard to do a greedy
stepwise search over the space of all
possible interaction terms.

= This combinatorial space is exponential in
size, but that’s okay as most statistics
models only have 4-8 features.

8
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Example: NER Interaction

Previous-state and current- Feature Weights

signature have interactions,

e.g. P=PERS-C=Xx indicates Feature Type Feature | PERS LoC
C=PERS much more strongly \ Previous word at -0.73| 0.94
than C=Xx and P=PERS Current word Grace 0.03| 0.00
independently. BRdWning bigram | <G| 0.45| -0.04
This feature type allows the CurremNeOS tag NNP | 0.47| 0.45

mode| to capture this ~Jprevand c™ags | INNNP | -0.10| 0.14

interaction.

Local Context Pre\nwtate\ Other -0.70 | -0.92

Current signasye Xx 0.80 0.46
» In NLP, our models commonly use hundreds Prev |Cur | Next Prev state Cu:; N o | 068 037
of thousands of features, so that’s not okay. State | Other |72 |2 Prev-curmextsig | xXxx | -0.69] 0.37
= Commonly, interaction terms are added by Word |at  |Grace |Road | [P state - p-cursig | Ox-Xx | -020| 0.82
hand based on linguistic intuitions. Tag |IN__|NNP | NNP
Sig |x Xx_ | Xx Total: -0.58 | 2.68
.-"' .-"'
oy Classification i) Classification Il
]

= What do these joint models of P(X) have to do
with conditional models P(C|D)?
» Think of the space CxD as a complex X.
» Cis generally small (e.g., 2-100 topic classes)
» D is generally huge (e.g., number of documents)
» We can, in principle, build models over P(C,D).
= This will involve calculating expectations of C
features (over CxD):

E()= Yo Pl f(e.d) D

» Generally impractical: can’t enumerate d
efficiently.

» D may be huge or infinite, but only a few d
occur in our data.

» What if we add one feature for each d and c
constrain its expectation to match our
empirical data? ) o
Y(d)e D P(d)=P(d) N V7

» Now, most entries of P(c,d) will be zero.

= We can therefore use the much easier sum:
E(f)= Z(:‘dE(C‘D)P(c, d) fi(c.d)
= Z(c,d)z(@,D)/\f’(d))OP(c’ d)fl(c, d)

7
"y Classification Ill

= But if we've constrained the D marginals
V(dye D P(d)=P(d)
then the only thing that can vary is the conditional

distributions:
P(e,d)=P(c|d)P(d)

=P(c|d)P(d)

» This is the connection between joint and conditional
maxent / exponential models:
» Conditional models can be thought of as joint models
with marginal constraints.
= Maximizing joint likelihood and conditional
likelihood of the data in this model are equivalent!

Smoothlng Issues of Scale

\_HLP‘_.'

= Lots of features:
» NLP maxent models can have over 1M features.

= Even storing a single array of parameter values can
have a substantial memory cost.

» Lots of sparsity:
= Overfitting very easy - need smoothing!

= Many features seen in training will never occur again at
test time.

= Optimization problems:

» Feature weights can be infinite, and iterative solvers
can take a long time to get to those infinities.
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"y Smoothlng Issues

= Assume the following empirical distribution:

Heads Tails
h t

» Features: {Heads}, {Tails}

» We'll have the following model distribution:
Eﬂﬂ eﬂ"

Prrans — Prans =

e’ et e’ et

= Really, only one degree of freedom (. = A,- AT)

elig et &°
Prravs = 3o o oa - i, o Prans T i o os
e e +e'e e +e e +e

>0

o\
"y Smoothlng Issues

» The data likelihood in this model is:
log P(h,t| A) = h10g Py ps +1108 Props
log P(h,t| A)=hA—(t+h)log(1+e*)

L~ - T g
-2 / -2) rd -2 ]
log P 4| log P -4 log P -4
g -6| -6}
=2 0 2 =2 0 2 4 2 0 2
A A A
Heads | Tails Heads | Tails Heads | Tails
2 2 3 1 4 0

oy ) Smoothing: Early Stopping

= In the 4/0 case, there were two problems:

= The optimal value of 4 was «, which is a

i Smoothmg Priors (MAP)

= What if we had a prior expectation that parameter values
wouldn't be very large?

long trip for an optimization procedure. ': = We could then balance evidence suggesting large
= The learned distribution is just as spiked - parameters (or infinite) against our prior.
as the empirical one - no smoothing. o0 s The evidence would never totally defeat the prior, and
o lve both i . . A parameters would be smoothed (and kept finitel).
ne way to solve both issues is to just : L . P .
- stop thg optimization early, after anew Heads | Tails = We can do this explicitly by changing the optimization
iterations ’ 1 0 objective to maximum posterior likelihood:
= The value of A4 will be finite (but Input
presumably big). log P(C, 2| D) = log P(4) +log P(C | D, %)
= The optimization won't take forever Heads | Tails ’ ’
(clearly). 1 0 Posterior Prior Evidence
= Commonly used in early maxent work.
Output
..-"" _,r"'
"y Smoothmg Priors "y Smoothlng Priors
2a?
= Gaussian, or quadratic, priors: 9 = If we use gaussian priors:
» Intuition: parameters shouldn’t be large. -2 26° » Trade off some expectation-matching for smaller parameters.
L] Formalizatioh: prior expectation that. each 4 ) =10 » When multiple features can be recruited to explain a data
parameFer W'_” be distributed ac.cordlng to it; point, the more common ones generally receive more weight.
a gaussian with mean p and variance ¢2. « Accuracy generally goes up! .
=% 2 0 2 = Change the objective:
1 4 7”:)2 They don't even - 2
P = e - A il logP(C,4| D)=log P(C| D, A)~logP(D) |
i ’ name anymore! Z ) 262
log P(C,A| D)~ Y P(c|d,A)— Z( — A - B
= Penalizes parameters for drifting to far

from their mean prior value (usually p=0).
= 202=1 works surprisingly well.

(c.d)e(C,D) O, -

» Change the derivative:

0log P(C, A| D)/ 8/, = actual f;,C)—predicted f;, A)— (J, — 14)/ &°
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Because of smoothing,
the more common prefi
and single-tag features
have larger weights even

Example: NER Smoothing

Feature Weights

though entire-word and ~— Beginniw

tag-pair features are
more specific.

Local Context

Prev | Cur Next

State | Other | 77?7 m

Word | at Grace | Road

Tag IN NNP | NNP

Sig X Xx Xx

Feature Type Feature | PERS LoC
Previous word at -0.73| 0.94
t word Grace 0.03 | 0.00

<G 0.45| -0.04

Curremr+Qs tag ™ NNP 0.47 0.45
Prev and cur tags T™INNNP | -0.10| 0.14
Previous state Other -0.70 | -0.92
Current signature Xx 0.80 0.46
Prev state, cur sig O-Xx 0.68 0.37
Prev-cur-next sig X-Xx-Xx | -0.69| 0.37
P. state - p-cur sig O-x-Xx | -0.20 | 0.82
Total: -0.58 | 2.68
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= From (Toutanova et al., 2003):

Overall Unknown
Accuracy | Word Acc
Without 96.54 | 85.20
Smoothing
With 97.10 | 88.20
Smoothing

= Smoothing helps:
» Softens distributions.

Accuracy

972
07,1

o7
9.9
%8
9.7
%66
9.5
96,4

963 +

Example: POS Tagging

~No Smoothing
——Smoothing

100 200 300
Training iterations

» Pushes weight onto more explanatory features.
» Allows many features to be dumped safely into the mix.
= Speeds up convergence (if both are allowed to converge)!

400
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e

) Smoothing: Virtual Data

» Another option: smooth the data, not the parameters.

» Example: 0o
-2
-4
-]

4 2

Ta;ls -

Heads

Tails

5

1

» Equivalent to adding two extra data points.

» Similar to add-one smoothing for generative models.

» Hard to know what artificial data to create!
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5 Smoothing: Count Cutoffs

= In NLP, features with low empirical counts were
usually dropped.
= Very weak and indirect smoothing method.
= Equivalent to locking their weight to be zero.

mean zero and variance zero.

Equivalent to assigning them gaussian priors with

Dropping low counts does remove the features

which were most in need of smoothing...

size ...

presence of proper smoothing.
» We recommend: don’t use count cutoffs unless
absolutely necessary.

... and speeds up the estimation by reducing model

... but count cutoffs generally hurt accuracy in the
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