CS224N/Ling280

Statistical parsing: Search

General Problem

« Someone gives you a PCFG G

« For any given sentence, you might want to:
e Find the best parse according to G
« Find a bunch of reasonably good parses
« Find the total probability of all parses licensed by G
e Techniques:
e CKY (for best; can extend to k-best (at high space and

time cost - k% time cost or all parses - the inside
algorithm)

« Beam search
« Agenda/chart-based search

S,

Z&jﬁ‘&;', Parsing as Search

Grammar symbols: Parse triangle:

Cards in the same
stack represent
different symbols
over the same span.

| CKY Parsing

« In CKY parsing, we visit edges tier by tier:

= Guarantees correctness
by working inside-out.

= Build all small bits before
any larger bits that could
possibly require them.

» Exhaustive: the goal is in
the last tier!

Beam Search

« State space search
o States are partial parses with an associated
probability
« Keep only the top scoring elements at each stage of the
beam search
< Find a way to ensure that all parses of a
sentence have the same number N steps
o Leftmost top-down CFG derivations in true CNF
« Shift-reduce derivations in true CNF

« (Use a binary grammar or binarize what you've got, and
remove unaries.)

i,}i‘*;".l Beam Search

e Time-synchronous beam search

Beam at Successors of Beam at
time i beam elements time i+ 1

Sty 7

AN] [KON
mig O

AN
AN

| Kinds of beam search

« Constant beam size k

« Constant beam width relative to best item
« Defined either additively or multiplicatively

« Sometimes combination of the above two

« Sometimes do fancier stuff like trying to keep
the beam elements diverse

* Beam search can be made very fast
* No measure of how often you find model
optimal answer

« But can track correct answer to see how often/far gold
standard optimal answer remains in the beam

iy Beam search for assignment?

« Would probably want to do bottom up parsing
(shift-reduce parsing or a version of left-corner
parsing)

« For treebank grammars, not much grammar constraint,
so want to use data-driven constraint

< Don't actually want to store states as partial
parses
« Store them as the last rule applied, with backpointers

to the previous states that built those constituents (and
a probability)

| Agenda-Based Parsing

« For general grammars
e Start with a table recording &(X,ij)

« Records the best score of a parse of X over [ij]

« If the scores are negative log probabilities, then entries
start at oo, and small is good

« This can be a sparse or a dense map
« Again, you may want to record backtraces as well like CKY

e Step 1: Initialize with the sentence and lexicon:
e For each word w and each tag t
« Set &(X,ij) = lex.score(w,t)

Agenda based parsing
—

* Keep alist of edges called an agenda
« Edges are triples [X,i,j]
« The agenda is a priority queue

e Every time the score of some &(X,i,j) improves
(i.e. gets lower):
« Stick the edge [X,i,j]-score into the agenda
« (Update the backtrace for &(X,i,j)

Agenda-Based Parsing

« The agenda is a holding zone for edges.

« Visit edges by some ordering policy.
« Combined edge with already-visited edges.
« Resulting new edges go wait in the agenda.

new edges

* A new way to form an edge might be a better way.

\Np[oz]OE VPI2, 3]@ NP:[O,2]0_8 \vp:[z,a]@

Agenda-based parsing

e Step ll: While agenda not empty
« Get the “next” edge [X,i,j] from the agenda
« Fetch all compatible neighbors [Y,j,k] or [Z,k,i]
« Compatible means that there are rules A=XY or B»X Z
« Build all parent edges [A,i,k] or [Bk,j] found
o B(A,i k) < 8(X,i,j) + 8(Y,j,k) + PA-XY)
« If we've improved 8(A,i k), then stick it on the agenda
« Also project unary rules:

« Fetch all unary rules A—X, score [A,ij] built from this rule
on [X,i,jl and put on agenda if you've improved &(A,i k)

¢ When do we know we have a parse for the root?

Ewl Agenda-based parsing

« Open questions:
« Agenda priority: What did “next” mean?
« Efficiency: how do we do as little work as possible?

« Optimality: how do we know when we find the best
parse of a sentence?

e If we use 8(X,i,j) as the priority:
« Each edge goes on the agenda at most once
« When an edge pops off the agenda, its best parse is
known (why?)
e This is basically uniform cost search (i.e., Dijkstra's
algorithm)

What can go wrong?

e We can build too many edges.
* Most edges that can be built, shouldn't.
« CKY builds them all!

Speed: build promising edges first.
e We can build in an bad order.
« Might find bad parses before good parses.
« Will trigger best-first propagation.

Correctness: keep edges on the agenda until
you're sure you've seen their best parse.

! %5' Uniform-Cost Parsing
"é—

« Let 3 be the score of an edge’s Viterbi parse.

B

< “Distance” or “cost” is the negative log probability of
the rules in a tree structure.

« Uniform-cost parsing: visit edges in order of
increasing {3 (rather than increasing span)

(s Uniform-Cost Parsing
« We want to work on good parses inside-out.
« CKY does this synchronously, by tiers.

« Uniform-cost does it asynchronously, ordering edges by their best
known parse score.

'

« Why it's correct:

built before

Adding structure incurs probability cost.

Trees have lower probability than their sub-parts.

The best-scored edge in the agenda cannot be waiting on any of its
sub-edges.

Speeding up agenda-based parsers

« Two options for doing less work

e The optimal way: A* parsing
« Klein and Manning (2003)

e The ugly but practical way: “best-first” parsing
« Caraballo and Charniak (1998)
« Charniak, Johnson, and Goldwater (1998)

o

[s]

E - -3
il ——SX
& - ——SXR
e ——B

o - —TRUE
< .

-40 T T T T T) T
2 4 6 8 10 12 14 16 18

QOutside Span

| Modern statistical parsers
—

¢ Klein and Manning (2003) do optimal A* search
« Done in a restricted space of lexicalized PCFGs that
“factors”, allowing very efficient A* search
e Collins (1999) exploits both the ideas of beams
and agenda based parsing
« He places a separate beam over each span (and then,
roughly, doing uniform cost search
« Charniak (2000) uses inadmissable heuristics to
guide search

« He uses very good (but inadmissable) heuristics - dub
“best first search” to find good parses quickly

e Perhaps unsurprisingly this is the fastest of the 3.

