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Goal of the section today (4/28/2006) 

Run through a concrete example of mmaaxxiimmuumm  eennttrrooppyy  ((mmaaxxeenntt))  mmooddeellss. 
You should be able to understand these things at the end of the section: 

− What are “features” 
− What is being adjusted in the training process 
− How to compute the objective function that’s being optimized 
− How to compute the derivative (used in optimization process) 

 
This mini task is to classify animals to the category of cats, or bears. 

c ∈  C = {cat, bear} 
 

We have seen 3 animals. The first animal (d1) is fuzzy. It has claws and it’s 
small. 

d1 = [fuzzy, claws, small] 
We know it’s a cat. 

c1 = cat 
 

The second animal (d2) is fuzzy. It also has claws, but it’s big. 
d2 = [fuzzy, claws, big] 

We know it’s a bear. 
c2 = bear 

 

The third animal (d3) we’ve seen has claws, and its size is medium. 
d3 = [claws, medium] 

We know it’s a cat. 
c3 = cat 

 
Question: 
 Here we have 5 characteristics that can be used to describe our data: 
being fuzzy, have claws, small size, big size, or medium size. And we have 2 
classes: cat or bear. 
 How many (basic) feature functions do we have, and what are they?  
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Feature Sets: 

In this example, we have 10 features: 
f1(c, d) = 1 if c is cat  and d is fuzzy 
f2(c, d) = 1 if c is bear and d is fuzzy 
f3(c, d) = 1  if c is cat  and d has claws 
f4(c, d) = 1  if c is bear and d has claws 
f5(c, d) = 1  if c is cat  and d is small 
f6(c, d) = 1  if c is bear and d is small 
f7(c, d) = 1  if c is cat  and d is big 
f8(c, d) = 1  if c is bear and d is big 
f9(c, d) = 1  if c is cat  and d is medium 
f10(c, d) = 1  if c is bear and d is medium 

Parameters: 

We have 10 λi’s, each of them indicates how important each feature is. 
Definition 1: vote(c) = ∑i λi fi(c,d) 
In our example… 
Suppose we already have a set of λi’s. (see the tables below) 
For the first animal d1 = [fuzzy, claws, small] 

vote(cat) = ∑i=1to10 λi fi(cat,d1) = -0.2 
λ1=  -1 f1(cat,d1) = 1 λ1 f1(cat,d1) = -1 
λ2= 1 f2(cat,d1) = 0 λ2 f2(cat,d1) = 0 
λ3= 0.5 f3(cat,d1) = 1 λ3 f3(cat,d1) = 0.5 
λ4= -0.5 f4(cat,d1) = 0 λ4 f4(cat,d1) = 0 
λ5= 0.3 f5(cat,d1) = 1 λ5 f5(cat,d1) = 0.3 
λ6= -0.3 f6(cat,d1) = 0 λ6 f6(cat,d1) = 0 
λ7= -0.6 f7(cat,d1) = 0 λ7 f7(cat,d1) = 0 
λ8= 0.6 f8(cat,d1) = 0 λ8 f8(cat,d1) = 0 
λ9= 0.8 f9(cat,d1) = 0 λ9 f9(cat,d1) = 0 

λ10= -0.8 f10(cat,d1) = 0 λ10 f10(cat,d1) = 0 
   vote(cat)= -0.2 
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The vote for the other class, bear, is: 
vote(bear) = ∑i=1to10 λi fi(bear,d1) = 0.2 
 

λ1=  -1 f1(bear,d1) = 0 λ1 f1(bear,d1) = 0 

λ2= 1 f2(bear,d1) = 1 λ2 f2(bear,d1) = 1 

λ3= 0.5 f3(bear,d1) = 0 λ3 f3(bear,d1) = 0 

λ4= -0.5 f4(bear,d1) = 1 λ4 f4(bear,d1) = -0.5 

λ5= 0.3 f5(bear,d1) = 0 λ5 f5(bear,d1) = 0 

λ6= -0.3 f6(bear,d1) = 1 λ6 f6(bear,d1) = -0.3 

λ7= -0.6 f7(bear,d1) = 0 λ7 f7(bear,d1) = 0 

λ8= 0.6 f8(bear,d1) = 0 λ8 f8(bear,d1) = 0 

λ9= 0.8 f9(bear,d1) = 0 λ9 f9(bear,d1) = 0 

λ10= -0.8 f10(bear,d1) = 0 λ10 f10(bear,d1) = 0 

   vote(bear)= 0.2 
 

Definition 2: probabilistic model 
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In our example… 
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Interpretation from this example: 
Given the set of λ i’s in the table, and given that we see an animal with the 
features [fuzzy, claws, small], we’ll conclude the probability of it being a 
cat is 0.4013, being a bear is 0.5987. So we’ll say it’s a bear. 
If we go back to our first page, we’ll see that this animal is in our training 
data, and it’s actually a cat, not a bear! 
Question: Intuitively, how do we adjust the λi’s so that we can correctly 
predict this example? 
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What are we optimizing? 

When we’re adjusting the λi’s, we’re aiming at maximizing the (conditional) 
likelihood of our training data. 
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It’s equivalent to maximizing the log conditional likelihood. 
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What’s necessary for doing the optimization? 

Give a set of λi’s, calculate 

1. Objective : the conditional likelihood of the data  ),|(log λDCP  

2. Derivatives : 
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A simple intuition here: (in one-dimensional space): 
 
 
 
 
 
 
 
See the excel file for a detailed example of how to compute the value of the 
objective function and derivatives, and how to adjust λi’s. 

In Definition 2Sum over all training examples
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