
The EM algorithm based on a presentation by Dan Klein

� A very general and well-studied algorithm

� I cover only the specific case we use in this course: maximum-

likelihood estimation for models with discrete hidden

variables

� (For continuous case, sums go to integrals; for MAP

estimation, changes to accommodate prior)

� As an easy example we estimate parameters of an n-

gram mixture model

� For all details of EM, try McLachlan and Krishnan (1996)

474

Maximum-Likelihood Estimation

� We have some data X and a probabilistic model P(X|Θ)

for that data

� X is a collection of individual data items x

� Θ is a collection of individual parameters θ.

� The maximum-likelihood estimation problem is, given a

model P(X|Θ) and some actual data X, find the Θ which

makes the data most likely:

Θ
′ = arg max

Θ

P(X|Θ)

� This problem is just an optimization problem, which we

could use any imaginable tool to solve

475

Maximum-Likelihood Estimation

� In practice, it’s often hard to get expressions for the

derivatives needed by gradient methods

� EM is one popular and powerful way of proceeding, but

not the only way.

� Remember, EM is doing MLE

476

Finding parameters of a n-gram mixture model

� P may be a mixture of k pre-existing multinomials:

P(xi|Θ) =

k
∑

j=1

θjPj(xi)

P̂(w3|w1, w2) = θ3P3(w3|w1, w2)+θ2P2(w3|w2)+θ1P1(w3)

� We treat the Pj as fixed. We learn by EM only the θj.

P(X|Θ) =

n
∏

i=1

P(xi|Θ)

=

n
∏

i=1

k
∑

j=1

Pj(xi|Θj)

� X = [x1 . . . xn] is a sequence of n words drawn from a

vocabulary V , and Θ = [θ1 . . . θk] are the mixing weights

477

EM

� EM applies when your data is incomplete in some way

� For each data item x there is some extra information y

(which we don’t know)

� The vector X is referred to as the the observed data or

incomplete data

� X along with the completions Y is referred to as the

complete data.

� There are two reasons why observed data might be in-

complete:

� It’s really incomplete: Some or all of the instances

really have missing values.

� It’s artificially incomplete: It simplifies the math to

pretend there’s extra data.

478

EM and Hidden Structure

� In the first case you might be using EM to “fill in the

blanks” where you have missing measurements.

� The second case is strange but standard. In our mix-

ture model, viewed generatively, if each data point x

is assigned to a single mixture component y, then the

probability expression becomes:

P(X,Y |Θ) =

n
∏

i=1

P(xi, yi|Θ)

=

n
∏

i=1

Pyi(xi|Θ)

Where yi ∈ {1, ..., k}. P(X,Y |Θ) is called the complete-

data likelihood.

479

EM and Hidden Structure

� Note:

� the sum over components is gone, since yi tells us

which single component xi came from. We just don’t

know what the yi are.

� our model for the observed data X involved the “un-

observed” structures – the component indexes – all

along. When we wanted the observed-data likelihood

we summed out over indexes.

� there are two likelihoods floating around: the observed-

data likelihood P(X|Θ) and the complete-data like-

lihood P(X,Y |Θ). EM is a method for maximizing

P(X|Θ).

480

EM and Hidden Structure

� Looking at completions is useful because finding

Θ = arg max
Θ

P(X|Θ)

is hard (it’s our original problem – maximizing products

of sums is hard)

� On the other hand, finding

Θ = arg max
Θ

P(X,Y |Θ)

would be easy – if we knew Y .

� The general idea behind EM is to alternate between max-

imizing Θ with Y fixed and “filling in” the completions Y

based on our best guesses given Θ.

481

The EM algorithm

� The actual algorithm is as follows:

Initialize Start with a guess at Θ – it may be a very bad

guess

Until tired

E-Step Given a current, fixed Θ′, calculate comple-

tions: P(Y |X,Θ′)

M-Step Given fixed completions P(Y |X,Θ′), maximize
∑

Y P(Y |X,Θ
′) logP(X,Y |Θ) with respect to Θ.

482

The EM algorithm

� In the E-step we calculate the likelihood of the various

completions with our fixed Θ′.

� In the M-stem we maximize the expected log-likelihood

of the complete data. That’s not the same thing as the

likelihood of the observed data, but it’s close

� The hope is that even relatively poor guesses at Θ, when

constrained by the actual data X, will still produce de-

cent completions

� Note that “the complete data” changes with each itera-

tion

483

EM made easy

� Want: Θ which maximizes the data likelihood

L(Θ) = P(X|Θ)

=
∑

Y
P(X,Y |Θ)

� The Y ranges over all possible completions of X. Since

X and Y are vectors of independent data items,

L(Θ) =
∏

x

∑

y

P(x, y|Θ)

� We don’t want a product of sums. It’d be easy to maxi-

mize if we had a product of products.

� Each x is a data item, which is broken into a sum of

sub-possibilties, one for each completion y. We want

to make each completion be like a mini data item, all

multiplied together with other data items.

484

EM made easy

� Want: a product of products

� Arithmetic-mean-geometric-mean (AMGM) inequality says

that, if
∑

iwi = 1,
∏

i

z
wi
i ≤

∑

wizi

� In other words, arithmetic means are larger than geo-

metric means (for 1 and 9, arithmetic mean is 5, geo-

metric mean is 3)

� This equality is promising, since we have a sum and

want a product

� We can use P(x, y|Θ) as the zi, but where do the wi

come from?

485

EM made easy

� The answer is to bring our previous guess at Θ into the

picture.

� Let’s assume our old guess was Θ′. Then the old likeli-

hood was

L(Θ′) =
∏

x

P(x|Θ′)

� This is just a constant. So rather than trying to make

L(Θ) large, we could try to make the relative change in

likelihood

R(Θ|Θ′) =
L(Θ)

L(Θ′)

large.

486

EM made easy

� Then, we would have

R(Θ|Θ′) =

∏

x
∑

y P(x, y|Θ)
∏

x P(x|Θ
′)

=
∏

x

∑

y P(x, y|Θ)

P(x|Θ′)

=
∏

x

∑

y

P(x, y|Θ)

P(x|Θ′)

=
∏

x

∑

y

P(x, y|Θ)

P(x|Θ′)

P(y|x,Θ′)

P(y|x,Θ′)

=
∏

x

∑

y

P(y|x,Θ′)
P(x, y|Θ)

P(x, y|Θ′)

� Now that’s promising: we’ve got a sum of relative likeli-

hoods P(x, y|Θ)/P(x, y|Θ′) weighted by P(y|x,Θ′).

487

EM made easy

� We can use our identity to turn the sum into a product:

R(Θ|Θ′) =
∏

x

∑

y

P(y|x,Θ′)
P(x, y|Θ)

P(x, y|Θ′)

≥
∏

x

∏

y

[

P(x, y|Θ)

P(x, y|Θ′)

]P(y|x,Θ′)

� Θ, which we’re maximizing, is a variable, but Θ′ is just

a constant. So we can just maximize

Q(Θ|Θ′) =
∏

x

∏

y

P(x, y|Θ)P(y|x,Θ
′)

488

EM made easy

� We started trying to maximize the likelihood L(Θ) and

saw that we could just as well maximize the relative

likelihood R(Θ|Θ′) = L(Θ)/L(Θ′). But R(Θ|Θ′) was still

a product of sums, so we used the AMGM inequality and

found a quantity Q(Θ|Θ′) which was (proportional to) a

lower bound on R. That’s useful becauseQ is something

that is easy to maximize, if we know P(y|x,Θ′).

489

The EM Algorithm

� So here’s EM, again:

� Start with an initial guess Θ′.

� Iteratively do

E-Step Calculate P(y|x,Θ′)

M-Step Maximize Q(Θ|Θ′) to find a new Θ′

� In practice, maximizing Q is just setting parameters as

relative frequencies in the complete data – these are the

maximum likelihood estimates of Θ

490

The EM Algorithm

� The first step is called the E-Step because we calculate

the expected likelihoods of the completions.

� The second step is called the M-Step because, using

those completion likelihoods, we maximize Q, which

hopefully increases R and hence our original goal L

� The expectations give the shape of a simple Q function

for that iteration, which is a lower bound on L (because

of AMGM). At each M-Step, we maximize that lower bound

� This procedure increases L at every iteration until Θ′

reaches a local extreme of L.

� This is because successive Q functions are better ap-

proximations, until you get to a (local) maxima

491

