
General Context-Free Grammar Parsing

A phrase structure grammar

� Also known as a context-free grammar (CFG)

� S → NP VP DT → the

NP →











DT NNS

DT NN

NP PP











NNS →











children

students

mountains











VP →











VP PP

VBD

VBD NP











VBD →











slept

ate

saw











PP → IN NP IN →

{

in

of

}

NN → cake

68

Application of grammar rewrite rules

� S

→ NP VP

→ DT NNS VBD

→ The children slept

� S

→ NP VP

→ DT NNS VBD NP

→ DT NNS VBD DT NN

→ The children ate the cake

69

Phrase structure is recursive

So we use at least context-free grammars, in general
S

NP

DT

the

NNS

students

VP

VBD

ate

NP

NP

DT

the

NN

cake

PP

IN

of

NP

NP

DT

the

NN

children

PP

IN

in

NP

DT

the

NN

mountains

71

Why we need recursive phrase structure

� Kupiec (1992): Sometimes HMM tagger goes awry:

waves → verb

� The velocity of the seismic waves rises to . . .

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .

� Language model: There are similar problems.

The captain of the ship yelled out.

72

Natural language grammars are ambiguous:

Prepositional phrase verb attachment

S

NP

DT

The

NNS

children

VP

VP

VBD

ate

NP

DT

the

NN

cake

PP

IN

with

NP

DT

a

NN

spoon

73

PP Ambiguity: NP attachment

S

NP

DT

The

NNS

children

VP

VBD

ate

NP

NP

DT

the

NN

cake

PP

IN

with

NP

DT

a

NN

spoon

74

Attachment ambiguities in a real sentence

The board approved [its acquisition] [by Royal Trustco Ltd.]

[of Toronto]

[for $27 a share]

[at its monthly meeting].

75

Ambiguity

� Programming language parsers resolve local ambigui-

ties with lookahead

� Natural languages have global ambiguities:

� I saw that gasoline can explode

� Size of embedded NP?

76

What is parsing?

� We want to run the grammar backwards to find the struc-

tures

� Parsing can be viewed as a search problem

� Parsing is a hidden data problem

� We search through the legal rewritings of the grammar

� We want to find all structures for a string of words (for

the moment)

� We can do this bottom-up or top-down

� This distinction is independent of depth-first/bread-

first etc. – we can do either both ways

� Doing this we build a search tree which is different

from the parse tree

77

State space search

� States:

� Operators:

� Start state:

� Goal test:

� Algorithm

Put start state on stack

solutions = {}

loop

if stack is empty, return solutions

state = remove-front(stack)

if goal(state) push(state, solutions)

stack = push(expand(state, operators), nodes)

end

78

Another phrase structure grammar

S → NP VP N → cats

VP → V NP N → claws

VP → V NP PP N → people

NP → NP PP N → scratch

NP → N V → scratch

NP → e P → with

NP → N N PP → P NP

79

cats scratch people with claws

S

NP VP

NP PP VP 3 choices

NP PP PP VP

oops!

N VP

cats VP

cats V NP 2 choices

cats scratch NP

cats scratch N 3 choices – showing 2nd

cats scratch people oops!

cats scratch NP PP

cats scratch N PP 3 choices – showing 2nd . . .

cats scratch people with claws

80

Phrase Structure (CF) Grammars

G = 〈T ,N, S,R〉

� T is set of terminals

� N is set of nonterminals

� For NLP, we usually distinguish out a set P ⊂ N of

preterminals which always rewrite as terminals

� S is start symbol (one of the nonterminals)

� R is rules/productions of the form X → γ, where X

is a nonterminal and γ is a sequence of terminals and

nonterminals (may be empty)

� A grammar G generates a language L

81

Recognizers and parsers

� A recognizer is a program for which a given grammar

and a given sentence returns yes if the sentence is ac-

cepted by the grammar (i.e., the sentence is in the lan-

guage) and no otherwise

� A parser in addition to doing the work of a recognizer

also returns the set of parse trees for the string

82

Soundness and completeness

� A parser is sound if every parse it returns is valid/correct

� A parser terminates if it is guaranteed to not go off into

an infinite loop

� A parser is complete if for any given grammar and sen-

tence it is sound, produces every valid parse for that

sentence, and terminates

� (For many purposes, we settle for sound but incomplete

parsers: e.g., probabilistic parsers that return a k-best

list)

83

Top-down parsing

� Top-down parsing is goal directed

� A top-down parser starts with a list of constituents to

be built. The top-down parser rewrites the goals in the

goal list by matching one against the LHS of the gram-

mar rules, and expanding it with the RHS, attempting to

match the sentence to be derived.

� If a goal can be rewritten in several ways, then there is a

choice of which rule to apply (search problem)

� Can use depth-first or breadth-first search, and goal or-

dering.

84

Bottom-up parsing

� Bottom-up parsing is data directed

� The initial goal list of a bottom-up parser is the string

to be parsed. If a sequence in the goal list matches the

RHS of a rule, then this sequence may be replaced by

the LHS of the rule.

� Parsing is finished when the goal list contains just the

start category.

� If the RHS of several rules match the goal list, then there

is a choice of which rule to apply (search problem)

� Can use depth-first or breadth-first search, and goal or-

dering.

� The standard presentation is as shift-reduce parsing.

85

Problems with top-down parsing

� Left recursive rules

� A top-down parser will do badly if there are many dif-

ferent rules for the same LHS. Consider if there are 600

rules for S, 599 of which start with NP, but one of which

starts with V, and the sentence starts with V.

� Useless work: expands things that are possible top-down

but not there

� Top-down parsers do well if there is useful grammar-

driven control: search is directed by the grammar

� Top-down is hopeless for rewriting parts of speech (preter-

minals) with words (terminals). In practice that is always

done bottom-up as lexical lookup.

� Repeated work: anywhere there is common substructure

86

Problems with bottom-up parsing

� Unable to deal with empty categories: termination prob-

lem, unless rewriting empties as constituents is some-

how restricted (but then it’s generally incomplete)

� Useless work: locally possible, but globally impossible.

� Inefficient when there is great lexical ambiguity (grammar-

driven control might help here)

� Conversely, it is data-directed: it attempts to parse the

words that are there.

� Repeated work: anywhere there is common substructure

� Both TD (LL) and BU (LR) parsers can (and frequently

do) do work exponential in the sentence length on NLP

problems.

87

Principles for success: what one needs to do

� Left recursive structures must be found, not predicted

� Empty categories must be predicted, not found

An alternative way to fix things

� Grammar transformations can fix both left-recursion and

epsilon productions

� Then you parse the same language but with different

trees

� Linguists tend to hate you.

� But they shouldn’t providing you can fix the trees post

hoc.

88

