{Probabilistic|Stochastic} Context-Free Grammars (PCFGs)

FSNLP, chapter 11

Christopher Manning and Hinrich Schütze © 1999-2002

327

PCFGs

A PCFG G consists of the usual parts of a CFG

- A set of terminals, $\{w^k\}$, k = 1, ..., V
- A set of nonterminals, $\{N^i\}$, i = 1, ..., n
- lacksquare A designated start symbol, N^1
- A set of rules, $\{N^i \to \zeta^j\}$, (where ζ^j is a sequence of terminals and nonterminals)

and

■ A corresponding set of probabilities on rules such that:

$$\forall i \quad \sum_{j} P(N^i \to \zeta^j) = 1$$

334

PCFG notation

Sentence: sequence of words $w_1 \cdot \cdot \cdot w_m$

 w_{ab} : the subsequence $w_a \cdots w_b$

 N_{ab}^{i} : nonterminal N^{i} dominates $w_{a} \cdots w_{b}$

 $N^i \stackrel{*}{\Longrightarrow} \zeta$: Repeated derivation from N^i gives ζ .

PCFG probability of a string

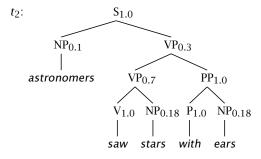
$$P(w_{1n}) = \sum_{t} P(w_{1n}, t)$$
 t a parse of w_{1n}
= $\sum_{\{t: y \in Id(t) = w_{1n}\}} P(t)$

336

335

A simple PCFG (in CNF)

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1



The two parse trees' probabilities and the sentence probability

$$P(t_1) = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4$$

$$\times 0.18 \times 1.0 \times 1.0 \times 0.18$$

$$= 0.0009072$$

$$P(t_2) = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0$$

$$\times 0.18 \times 1.0 \times 1.0 \times 0.18$$

$$= 0.0006804$$

$$P(w_{15}) = P(t_1) + P(t_2) = 0.0015876$$

Assumptions of PCFGs

1. Place invariance (like time invariance in HMM):

$$\forall k \ P(N_{k(k+c)}^j \to \zeta)$$
 is the same

2. Context-free:

$$P(N_{kl}^j \to \zeta | \text{words outside } w_k \dots w_l) = P(N_{kl}^j \to \zeta)$$

3. Ancestor-free:

$$P(N_{kl}^j \to \zeta | \text{ancestor nodes of } N_{kl}^j) = P(N_{kl}^j \to \zeta)$$

The sufficient statistics of a PCFG are thus simply counts of how often different local tree configurations occurred (= counts of which grammar rules were applied).

345

339

(Probabilistic) CKY algorithm

```
function CKY(words, grammar) returns most probable parse/probability
   score = new double[#(words)+1][#(words)+1][#(nonterms)]:
   back = new Pair[#(words)+1][#(words)+1][#(nonterms)];
   for i = 0; i < \#(words); i++
     for A in nonterms
       if A \rightarrow words[i] in grammar
          score[i][i+1][A] = P(A \rightarrow words[i])
     // handle unaries
     boolean added = true
     while added
        added = false
        for A, B in nonterms
          if score[i][i+1][B] > 0 \&\& A \rightarrow B in grammar
            prob = P(A \rightarrow B) \times score[i][i+1][B]
if (prob > score[i][i+1][A])
              score[i][i+1][A] = prob
               back[i][i+1][A] = B
               added = true
```

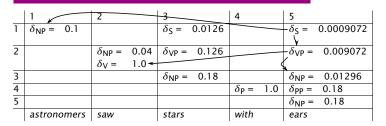
369

340

(Probabilistic) CKY algorithm [continued]

```
for span = 2 to #(words)
  for begin = 0 to #words - span
     end = begin + span
     for split = begin + 1 to end -1
       for A, B, C in nonterms
         prob = score[begin][split][B] * score[split][end][C] * P(A \rightarrow B C) if (prob > score[begin][end][A]
           score[begin][end][A] = prob
           back[begin][end][A] = new Triple(split,B,C)
     // handle unaries
     boolean added = true
    while added
       added = false
       for A, B in nonterms
         prob = P(A \rightarrow B) \times score[begin][end][B]
         if (prob > score[begin][end][A])
           score[begin][end][A] = prob
           back[begin][end][A] = B
           added = true
return buildTree(score, back)
```

Calculation of Viterbi probabilities (CKY algorithm)



Modern Statistical Parsers

- A greatly increased ability to do accurate, robust, broad coverage parsing (Charniak 1997; Collins 1997; Ratnaparkhi 1997b; Charniak 2000)
- Achieved by converting parsing into a classification task and using statistical/machine learning methods
- Statistical methods (fairly) accurately resolve structural and real world ambiguities
- Much faster: rather than being cubic in the sentence length or worse, for modern statistical parsers parsing time is made linear (by using beam search)
- Provide probabilistic language models that can be integrated with speech recognition systems.

400

Supervised ML parsing

- Crucial resource has been treebanks of parses, especially the Penn Treebank (Marcus et al. 1993)
- From these train classifiers:
 - ☐ Mainly probabilistic models, but also:
 - Conventional decision trees
 - □ Decision lists/transformation-based learning
- Possible only when extensive resources exist
- Somewhat uninteresting from Cog. Sci. viewpoint which would prefer bootstrapping from minimal supervision

401

A Penn Treebank tree (POS tags not shown)

402

Probabilistic models for parsing

■ Conditional/Parsing model: We estimate directly the probability of parses of a sentence

$$\hat{t} = \arg \max_{t} P(t|s,G)$$
 where $\sum_{t} P(t|s,G) = 1$

- We don't learn from the distribution of sentences we see (but nor do we assume some distribution for them)
 - □ (Magerman 1995; Collins 1996; Ratnaparkhi 1999)
- Generative/Joint/Language model:

$$\sum_{\{t: \text{ vield}(t) \in \mathcal{L}\}} P(t) = 1$$

■ Most likely tree

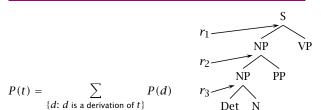
 $\hat{t} = \arg\max_{t} P(t|s) = \arg\max_{t} \frac{P(t,s)}{P(s)} = \arg\max_{t} P(t,s)$

□ (Collins 1997; Charniak 1997, 2000)

403

405

Generative/Derivational model = Chain rule



Or: P(t) = P(d) where d is the canonical derivation of t

$$d = P(S \xrightarrow{r_1} \alpha_1 \xrightarrow{r_2} \dots \xrightarrow{r_m} \alpha_m = s) = \prod_{i=1}^m P(r_i | r_1, \dots r_{i-1})$$

■ History-based grammars

$$P(d) = \prod_{i=1}^{m} P(r_i | \pi(h_i))$$

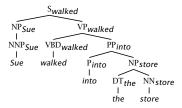
Enriching a PCFG

- A naive PCFG with traditional nonterminals (NP, PP, etc.) works quite poorly due to the independence assumptions it embodies (Charniak 1996)
- Fix: encode more information into the nonterminal space

 □ Structure sensitivity (Manning and Carpenter 1997:
 - □ Structure sensitivity (Manning and Carpenter 1997; Johnson 1998b)
 - Expansion of nodes depends a lot on their position in the tree (independent of lexical content)
 - ► E.g., enrich nodes by also recording their parents: SNP is different to VPNP

Enriching a PCFG (2)

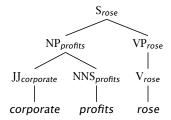
- □ (Head) Lexicalization (Collins 1997; Charniak 1997)
 - ► The head word of a phrase gives a good representation of the phrase's structure and meaning
 - ▶ Puts the properties of words back into a PCFG



406

Parsing via classification decisions: Charniak (1997)

- A very simple, conservative model of lexicalized PCFG
- Probabilistic conditioning is "top-down" (but actual computation is bottom-up)



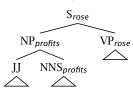
407

Charniak (1997) example

a.
$$h = profits$$
; $c = NP$

b.
$$ph = rose$$
; $pc = S$

c.
$$P(h|ph,c,pc)$$



408

410

Charniak (1997) linear interpolation/shrinkage

$$\begin{split} \hat{P}(h|ph,c,pc) &= \lambda_1(e)P_{\mathsf{MLE}}(h|ph,c,pc) \\ &+ \lambda_2(e)P_{\mathsf{MLE}}(h|C(ph),c,pc) \\ &+ \lambda_3(e)P_{\mathsf{MLE}}(h|c,pc) + \lambda_4(e)P_{\mathsf{MLE}}(h|c) \end{split}$$

- $\lambda_i(e)$ is here a function of how much one would expect to see a certain occurrence, given the amount of training data, word counts, etc.
- lacktriangledown C(ph) is semantic class of parent headword
- Techniques like these for dealing with data sparseness are vital to successful model construction

409

Charniak (1997) shrinkage example

	P(prft rose,NP,S)	P(corp prft,JJ,NP)
P(h ph,c,pc)	0	0.245
P(h C(ph),c,pc)	0.00352	0.0150
P(h c,pc)	0.000627	0.00533
P(h c)	0.000557	0.00418

- Allows utilization of rich highly conditioned estimates, but smoothes when sufficient data is unavailable
- One can't just use MLEs: one commonly sees previously unseen events, which would have probability 0.

Sparseness & the Penn Treebank

- The Penn Treebank 1 million words of parsed English WSJ has been a key resource (because of the widespread reliance on supervised learning)
- But 1 million words is like nothing:
 - 965,000 constituents, but only 66 WHADJP, of which only 6 aren't how much or how many, but there is an infinite space of these (how clever/original/incompetent (at risk assessment and evaluation))
- Most of the probabilities that you would like to compute, you can't compute

Sparseness & the Penn Treebank (2)

- Most intelligent processing depends on bilexical statistics: likelihoods of relationships between pairs of words.
- Extremely sparse, even on topics central to the WSJ:

□ stocks plummeted 2 occurrences
 □ stocks stabilized 1 occurrence
 □ stocks skyrocketed 0 occurrences
 □ #stocks discussed 0 occurrences

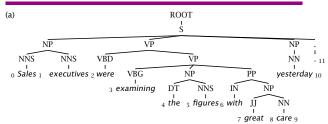
■ So far there has been very modest success augmenting the Penn Treebank with extra unannotated materials or using semantic classes or clusters (cf. Charniak 1997, Charniak 2000) – as soon as there are more than tiny amounts of annotated training data.

Probabilistic parsing

- Charniak (1997) expands each phrase structure tree in a single step.
- This is good for capturing dependencies between child nodes
- But it is bad because of data sparseness
- A pure dependency, one child at a time, model is worse
- But one can do better by in between models, such as generating the children as a Markov process on both sides of the head (Collins 1997; Charniak 2000)

413

Evaluation



(b) Brackets in gold standard tree (a.):

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)

(c) Brackets in candidate parse:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)

d) Precision: 3/8 = 37.5% Crossing Brackets: 0 Recall: 3/8 = 37.5% Crossing Accuracy: 100% Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9% Labeled Recall: 3/8 = 37.5%

Parser results

- Parsers are normally evaluated on the relation between individual postulated nodes and ones in the gold standard tree (Penn Treebank, section 23)
- Normally people make systems balanced for precision/recall
- Normally evaluate on sentences of 40 words or less
- Magerman (1995): about 85% labeled precision and recall
- Charniak (2000) gets 90.1% labeled precision and recall
- Good performance. Steady progress in error reduction
- At some point size of and errors in treebank must become the limiting factor
 - □ (Some thought that was in 1997, when several systems were getting 87.x%, but apparently not.)

417

412