
{Probabilistic|Stochastic}

Context-Free Grammars (PCFGs)

FSNLP, chapter 11

Christopher Manning and

Hinrich Schütze

© 1999–2002

327

PCFGs

A PCFG G consists of the usual parts of a CFG

� A set of terminals, {wk}, k = 1, . . . , V

� A set of nonterminals, {Ni}, i = 1, . . . , n

� A designated start symbol, N1

� A set of rules, {Ni → ζj}, (where ζj is a sequence of

terminals and nonterminals)

and

� A corresponding set of probabilities on rules such that:

∀i
∑

j

P(Ni → ζj) = 1

334

PCFG notation

Sentence: sequence of words w1 · · ·wm

wab: the subsequence wa · · ·wb

Niab: nonterminal Ni dominates wa · · ·wb

Nj

wa · · ·wb

Ni
∗
=⇒ ζ: Repeated derivation from Ni gives ζ.

335

PCFG probability of a string

P(w1n) =
∑

t

P(w1n, t) t a parse of w1n

=
∑

{t :yield(t)=w1n}

P(t)

336

A simple PCFG (in CNF)

S → NP VP 1.0 NP → NP PP 0.4

PP → P NP 1.0 NP → astronomers 0.1

VP → V NP 0.7 NP → ears 0.18

VP → VP PP 0.3 NP → saw 0.04

P → with 1.0 NP → stars 0.18

V → saw 1.0 NP → telescopes 0.1

337

t1: S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

338



t2: S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

339

The two parse trees’ probabilities and the sen-

tence probability

P(t1) = 1.0× 0.1× 0.7× 1.0× 0.4

×0.18× 1.0× 1.0× 0.18

= 0.0009072

P(t2) = 1.0× 0.1× 0.3× 0.7× 1.0

×0.18× 1.0× 1.0× 0.18

= 0.0006804

P(w15) = P(t1)+ P(t2) = 0.0015876

340

Assumptions of PCFGs

1. Place invariance (like time invariance in HMM):

∀k P(N
j
k(k+c) → ζ)is the same

2. Context-free:

P(N
j
kl → ζ|words outside wk . . . wl) = P(N

j
kl → ζ)

3. Ancestor-free:

P(N
j
kl → ζ|ancestor nodes of N

j
kl) = P(N

j
kl → ζ)

The sufficient statistics of a PCFG are thus simply counts of

how often different local tree configurations occurred

(= counts of which grammar rules were applied).

345

(Probabilistic) CKY algorithm

function CKY(words, grammar) returns most probable parse/probability

score = new double[#(words)+1][#(words)+1][#(nonterms)];

back = new Pair[#(words)+1][#(words)+1][#(nonterms)];

for i = 0; i < #(words); i++

for A in nonterms

if A → words[i] in grammar

score[i][i+1][A] = P(A → words[i])

// handle unaries

boolean added = true

while added

added = false

for A, B in nonterms

if score[i][i+1][B] > 0 && A → B in grammar

prob = P(A → B) × score[i][i+1][B]

if (prob > score[i][i+1][A])

score[i][i+1][A] = prob

back[i][i+1][A] = B

added = true

369

(Probabilistic) CKY algorithm [continued]

for span = 2 to #(words)

for begin = 0 to #words − span

end = begin + span

for split = begin + 1 to end − 1

for A, B, C in nonterms

prob = score[begin][split][B] * score[split][end][C] * P(A → B C)

if (prob > score[begin][end][A]

score[begin][end][A] = prob

back[begin][end][A] = new Triple(split,B,C)

// handle unaries

boolean added = true

while added

added = false

for A, B in nonterms

prob = P(A → B) × score[begin][end][B]

if (prob > score[begin][end][A])

score[begin][end][A] = prob

back[begin][end][A] = B

added = true

return buildTree(score, back)

370

Calculation of Viterbi probabilities (CKY algorithm)

1 2 3 4 5

1 δNP = 0.1 δS = 0.0126 δS = 0.0009072

2 δNP = 0.04

δV = 1.0

δVP = 0.126 δVP = 0.009072

3 δNP = 0.18 δNP = 0.01296

4 δP = 1.0 δPP = 0.18

5 δNP = 0.18

astronomers saw stars with ears

371



Modern Statistical Parsers

� A greatly increased ability to do accurate, robust, broad

coverage parsing (Charniak 1997; Collins 1997; Ratna-

parkhi 1997b; Charniak 2000)

� Achieved by converting parsing into a classification task

and using statistical/machine learning methods

� Statistical methods (fairly) accurately resolve structural

and real world ambiguities

� Much faster: rather than being cubic in the sentence

length or worse, for modern statistical parsers parsing

time is made linear (by using beam search)

� Provide probabilistic language models that can be inte-

grated with speech recognition systems.

400

Supervised ML parsing

� Crucial resource has been treebanks of parses, espe-

cially the Penn Treebank (Marcus et al. 1993)

� From these train classifiers:

� Mainly probabilistic models, but also:

� Conventional decision trees

� Decision lists/transformation-based learning

� Possible only when extensive resources exist

� Somewhat uninteresting from Cog. Sci. viewpoint – which

would prefer bootstrapping from minimal supervision

401

A Penn Treebank tree (POS tags not shown)

( (S (NP-SBJ The move)

(VP followed

(NP (NP a round)

(PP of

(NP (NP similar increases)

(PP by

(NP other lenders))

(PP against

(NP Arizona real estate loans)))))

,

(S-ADV (NP-SBJ *)

(VP reflecting

(NP (NP a continuing decline)

(PP-LOC in

(NP that market))))))

.))

402

Probabilistic models for parsing

� Conditional/Parsing model: We estimate directly the

probability of parses of a sentence

t̂ = arg maxt P(t|s,G) where
∑
t P(t|s,G) = 1

� We don’t learn from the distribution of sentences we see

(but nor do we assume some distribution for them)

� (Magerman 1995; Collins 1996; Ratnaparkhi 1999)

� Generative/Joint/Language model:
∑
{t : yield(t)∈L} P(t) = 1

� Most likely tree

t̂ = arg maxt P(t|s) = arg maxt
P(t,s)
P(s) = arg maxt P(t, s)

� (Collins 1997; Charniak 1997, 2000)

403

Generative/Derivational model = Chain rule

P(t) =
∑

{d: d is a derivation of t}

P(d)

r1

r2

r3

S

NP

NP

Det N

PP

VP

Or: P(t) = P(d) where d is the canonical derivation of t

d = P(S
r1
→α1

r2
→ . . .

rm
→ αm = s) =

m∏

i=1

P(ri|r1, . . . ri−1)

� History-based grammars

P(d) =
∏m
i=1 P(ri|π(hi))

404

Enriching a PCFG

� A naive PCFG with traditional nonterminals (NP, PP, etc.)

works quite poorly due to the independence assump-

tions it embodies (Charniak 1996)

� Fix: encode more information into the nonterminal space

� Structure sensitivity (Manning and Carpenter 1997;

Johnson 1998b)

ñ Expansion of nodes depends a lot on their position

in the tree (independent of lexical content)

ñ E.g., enrich nodes by also recording their parents:

SNP is different to VPNP

405



Enriching a PCFG (2)

� (Head) Lexicalization (Collins 1997; Charniak 1997)

ñ The head word of a phrase gives a good represen-

tation of the phrase’s structure and meaning

ñ Puts the properties of words back into a PCFG

Swalked

NPSue

NNPSue

Sue

VPwalked

VBDwalked

walked

PPinto

Pinto

into

NPstore

DTthe

the

NNstore

store

406

Parsing via classification decisions:

Charniak (1997)

� A very simple, conservative model of lexicalized PCFG

� Probabilistic conditioning is “top-down” (but actual com-

putation is bottom-up)

Srose

NPprofits

JJcorporate

corporate

NNSprofits

profits

VProse

Vrose

rose

407

Charniak (1997) example

Srose

NP VProse

a. h = profits; c = NP

b. ph = rose; pc = S

c. P(h|ph, c, pc)

d. P(r |h, c, pc)

Srose

NPprofits VProse

Srose

NPprofits

JJ NNSprofits

VProse

408

Charniak (1997) linear interpolation/shrinkage

P̂ (h|ph, c, pc) = λ1(e)PMLE(h|ph, c, pc)

+λ2(e)PMLE(h|C(ph), c, pc)

+λ3(e)PMLE(h|c, pc)+ λ4(e)PMLE(h|c)

� λi(e) is here a function of how much one would expect

to see a certain occurrence, given the amount of training

data, word counts, etc.

� C(ph) is semantic class of parent headword

� Techniques like these for dealing with data sparseness

are vital to successful model construction

409

Charniak (1997) shrinkage example

P(prft|rose,NP, S) P(corp|prft, JJ,NP)

P(h|ph, c, pc) 0 0.245

P(h|C(ph), c, pc) 0.00352 0.0150

P(h|c, pc) 0.000627 0.00533

P(h|c) 0.000557 0.00418

� Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable

� One can’t just use MLEs: one commonly sees previously

unseen events, which would have probability 0.

410

Sparseness & the Penn Treebank

� The Penn Treebank – 1 million words of parsed English

WSJ – has been a key resource (because of the widespread

reliance on supervised learning)

� But 1 million words is like nothing:

� 965,000 constituents, but only 66 WHADJP, of which

only 6 aren’t how much or how many, but there is an

infinite space of these (how clever/original/incompetent

(at risk assessment and evaluation))

� Most of the probabilities that you would like to compute,

you can’t compute

411



Sparseness & the Penn Treebank (2)

� Most intelligent processing depends on bilexical statis-

tics: likelihoods of relationships between pairs of words.

� Extremely sparse, even on topics central to the WSJ :

� stocks plummeted 2 occurrences

� stocks stabilized 1 occurrence

� stocks skyrocketed 0 occurrences

�
#stocks discussed 0 occurrences

� So far there has been very modest success augmenting

the Penn Treebank with extra unannotated materials or

using semantic classes or clusters (cf. Charniak 1997,

Charniak 2000) – as soon as there are more than tiny

amounts of annotated training data.

412

Probabilistic parsing

� Charniak (1997) expands each phrase structure tree in

a single step.

� This is good for capturing dependencies between child

nodes

� But it is bad because of data sparseness

� A pure dependency, one child at a time, model is worse

� But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)

413

Evaluation

(a) ROOT

S

NP

NNS

0 Sales 1

NNS

executives 2

VP

VBD

were

VP

VBG

3 examining

NP

DT

4 the

NNS

5 figures

PP

IN

6 with

NP

JJ

7 great

NN

8 care 9

NP

NN

yesterday 10

.

. 11

(b) Brackets in gold standard tree (a.):

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)

(c) Brackets in candidate parse:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)

(d) Precision: 3/8 = 37.5% Crossing Brackets: 0

Recall: 3/8 = 37.5% Crossing Accuracy: 100%

Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%

Labeled Recall: 3/8 = 37.5%

417

Parser results

� Parsers are normally evaluated on the relation between

individual postulated nodes and ones in the gold stan-

dard tree (Penn Treebank, section 23)

� Normally people make systems balanced for precision/recall

� Normally evaluate on sentences of 40 words or less

� Magerman (1995): about 85% labeled precision and re-

call

� Charniak (2000) gets 90.1% labeled precision and recall

� Good performance. Steady progress in error reduction

� At some point size of and errors in treebank must be-

come the limiting factor

� (Some thought that was in 1997, when several sys-

tems were getting 87.x%, but apparently not.)

418


