
Questions that linguistics should answer

� What kinds of things do people say?

� What do these things say/ask/request about the world?

Example: In addition to this, she insisted that women were

regarded as a different existence from men unfairly.

� Text corpora give us data with which to answer these

questions

� What words, rules, statistical facts do we find?

� Can we build programs that learn effectively from this

data, and can then do NLP tasks?

� They are an externalization of linguistic knowledge

5

Corpora

� A corpus is a body of naturally occurring text, normally

one organized or selected in some way

� Latin: one corpus, two corpora

� A balanced corpus tries to be representative across a

language or other domain

� Balance is something of a chimaera: What is balanced?

Who spends what percent of their time reading the sports

pages?

21

The Brown corpus

� Famous early corpus. Made by W. Nelson Francis and

Henry Kučera at Brown University in the 1960s. A bal-

anced corpus of written American English in 1960 (ex-

cept poetry!).

� 1 million words, which seemed huge at the time.
Sorting the words to produce a word list took 17 hours of (dedicated)
processing time, because the computer (an IBM 7070) had the equiva-
lent of only about 40 kilobytes of memory, and so the sort algorithm
had to store the data being sorted on tape drives.

� Its significance has increased over time, but also aware-

ness of its limitations.

� Tagged for part of speech in the 1970s

� The/AT General/JJ-TL Assembly/NN-TL ,/, which/WDT

adjourns/VBZ today/NR ,/, has/HVZ performed/VBN

22

Recent corpora

� British National Corpus. 100 million words, tagged for

part of speech. Balanced.

� Newswire (NYT or WSJ are most commonly used): Some-

thing like 600 million words is fairly easily available.

� Legal reports; UN or EU proceedings (parallel multilin-

gual corpora – same text in multiple languages)

� The Web (in the billions of words, but need to filter for

distinctness).

� Penn Treebank: 2 million words (1 million WSJ, 1 million

speech) of parsed sentences (as phrase structure trees).

23

Common words in Tom Sawyer (71,370 words)

Word Freq. Use

the 3332 determiner (article)

and 2972 conjunction

a 1775 determiner

to 1725 preposition, verbal infinitive marker

of 1440 preposition

was 1161 auxiliary verb

it 1027 (personal/expletive) pronoun

in 906 preposition

that 877 complementizer, demonstrative

he 877 (personal) pronoun

I 783 (personal) pronoun

his 772 (possessive) pronoun

you 686 (personal) pronoun

Tom 679 proper noun

with 642 preposition

24

Frequencies of frequencies in Tom Sawyer

Word Frequency of

Frequency Frequency

1 3993 71,730 word tokens

2 1292 8,018 word types

3 664

4 410

5 243

6 199

7 172

8 131

9 82

10 91

11–50 540

51–100 99

> 100 102

25

Zipf’s law in Tom Sawyer

Word Freq. Rank f · r

(f) (r)

the 3332 1 3332

and 2972 2 5944

a 1775 3 5235

he 877 10 8770

but 410 20 8400

be 294 30 8820

there 222 40 8880

one 172 50 8600

about 158 60 9480

more 138 70 9660

never 124 80 9920

Oh 116 90 10440

two 104 100 10400

26

Zipf’s law in Tom Sawyer

Word Freq. Rank f · r

(f) (r)

turned 51 200 10200

you’ll 30 300 9000

name 21 400 8400

comes 16 500 8000

group 13 600 7800

lead 11 700 7700

friends 10 800 8000

begin 9 900 8100

family 8 1000 8000

brushed 4 2000 8000

sins 2 3000 6000

Could 2 4000 8000

Applausive 1 8000 8000

27

Zipf’s law

f ∝
1

r
(1)

There is a constant k such that

f · r = k (2)

(Now frequently invoked for the web too!

See http://linkage.rockefeller.edu/wli/zipf/)

Mandelbrot’s law

f = P(r + ρ)−B (3)

log f = logP − B log(r + ρ) (4)

28

Zipf’s law for the Brown corpus

• • •
• •

• •
•
•••

•••••••••••••••••••••••••••••••••••••••
••

••

•••

rank

fr
eq

ue
nc

y

1 10 100 1000 10000 100000

1
10

10
0

10
00

10
00

0
10

00
00

1 10 100 1000 10000 100000

1
10

10
0

10
00

10
00

0
10

00
00

29

NLP: Large, sparse, discrete distributions

� Both features and assigned classes regularly involve multi-

nomial distributions over huge numbers of values (often

in the tens of thousands).

� The distributions are very uneven, and have fat tails

� Enormous problems with data sparseness: much work

on smoothing distributions/backoff (shrinkage), etc.

� We normally have inadequate (labeled) data to estimate

probabilities

� Unknown/unseen things are usually a central problem

� Generally dealing with discrete distributions though

41

Sparsity

� How often does an every day word like kick occur in a

million words of text?

� kick : about 10 [depends vastly on genre, of course]

� wrist : about 5

� Normally we want to know about something bigger than

a single word, like how often you kick a ball, or how

often the conative alternation he kicked at the balloon

occurs.

� How often can we expect that to occur in 1 million words?

� Almost never.

� “There’s no data like more data” [if of the right domain]

42

Probabilistic language modeling

� Assigns probability P(t) to a word sequence t = w1w2 · · ·wn

� Chain rule and joint/conditional probabilities for text t:

P(t) = P(w1 · · ·wn) = P(w1) · · ·P(wn|w1, · · ·wn−1)

=

n
∏

i=1

P(wi|w1 · · ·wi−1)

where

P(wk|w1 . . . wk−1) =
P(w1 . . . wk)

P(w1 . . . wk−1)
≈

C(w1 . . . wk)

C(w1 . . . wk−1)

� The chain rule leads to a history-based model: we pre-

dict following things from past things

� We cluster histories into equivalence classes to reduce

the number of parameters to estimate

91

n-gram models: the classic example of a

statistical model of language

� Each word is predicted according to a conditional distri-

bution based on a limited context

� Conditional Probability Table (CPT): P(X|both)

� P(of |both) = 0.066

� P(to|both) = 0.041

� P(in|both) = 0.038

� From 1940s onward (or even 1910s – Markov 1913)

� a.k.a. Markov (chain) models

92

Markov models = n-gram models

� Deterministic FSMs with probabilities

eats:0.01

broccoli:0.002
in:0.01

for:0.05

fish:0.1

chicken:0.15

at:0.03

for:0.1
� No long distance dependencies

� “The future is independent of the past given the present”

� No notion of structure or syntactic dependency

� But lexical

� (And: robust, have frequency information, . . .)

93

n-gram models

W1

〈s〉

W2

In

W3

both

W4

??

aij aij aij

� Simplest linear graphical model

� Words are random variables, arrows are direct depen-

dencies between them (CPTs)

� These simple engineering models have just been amaz-

ingly successful.

94

n-gram models

� Core language model for the engineering task of better

predicting the next word:

� Speech recognition

� OCR

� Context-sensitive spelling correction

� It is only recently that they have been improved on for

these tasks (Chelba and Jelinek 1998; Charniak 2001).

� But linguistically, they are appalling simple and naive

95

n-th order Markov models

� First order Markov assumption = bigram

P(wk|w1 . . . wk−1) ≈ P(wk|wk−1) =
P(wk−1wk)

P(wk−1)

� Similarly, n-th order Markov assumption

� Most commonly, trigram (2nd order):

P(wk|w1 . . . wk−1) ≈ P(wk|wk−2, wk−1) =
P(wk−2wk−1wk)

P(wk−2, wk−1)

96

Why mightn’t n-gram models work?

� Relationships (say between subject and verb) can be ar-

bitrarily distant and convoluted, as linguists love to point

out:

� The man that I was watching without pausing to look

at what was happening down the street, and quite

oblivious to the situation that was about to befall him

confidently strode into the center of the road.

97

Why do they work?

� That kind of thing doesn’t happen much

� Collins (1997):

� 74% of dependencies (in the Penn Treebank – WSJ)

are with an adjacent word (95% with one ≤ 5 words

away), once one treats simple NPs as units:

� Below, 4/6 = 66% based on words

The post office will hold out discounts

98

Why is that?

Sapir (1921: 14):

‘When I say, for instance, “I had a good breakfast this

morning,” it is clear that I am not in the throes of

laborious thought, that what I have to transmit is

hardly more than a pleasurable memory symbolically

rendered in the grooves of habitual expression. . . . It

is somewhat as though a dynamo capable of gener-

ating enough power to run an elevator were operated

almost exclusively to feed an electric doorbell.’

99

Evaluation of language models

� Best evaluation of probability model is task-based

� As substitute for evaluating one component, standardly

use corpus per-word cross entropy:

H(X,p) = −
1

n

n
∑

i=1

log2 P(wi|w1, . . . , wi−1)

� Or perplexity (measure of uncertainty of predictions):

PP(X,p) = 2H(X,p) =





n
∏

i=1

P(wi|w1, . . . , wi−1)





−1/n

� Needs to be assessed on independent, unseen, test data

100

Relative frequency = Maximum Likelihood

Estimate

P(w2|w1) =
C(w1, w2)

C(w1)

(or similarly for higher order or joint probabilities)

Makes training data as probable as possible

101

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

Selected bigram counts (Berkeley Restaurant Project – J&M)

102

I want to eat Chinese food lunch

I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .56 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Selected bigram probabilities (Berkeley Restaurant Project –

J&M)

103

Limitations of Maximum Likelihood Estimator

Problem: often infinitely surprised when unseen word ap-

pears (P(unseen) = 0)

� Problem: this happens commonly.

� Probabilities of zero count words are too low

� Probabilities of nonzero count words are too high

� Estimates for high count words are fairly accurate

� Estimates for low count words are unstable

� We need smoothing!

104

Adding one = Laplace’s law (1851)

P(w2|w1) =
C(w1, w2)+ 1

C(w1)+ V

� V is the vocabulary size (assume fixed, closed vocabu-

lary)

� This is the Bayesian (MAP) estimator you get by assum-

ing a uniform unit prior on events (= a Dirichlet prior)

105

I want to eat Chinese food lunch

I 9 1088 1 14 1 1 1
want 4 1 787 1 7 9 7
to 4 1 11 861 4 1 13
eat 1 1 3 1 20 3 53
Chinese 3 1 1 1 1 121 2
food 20 1 18 1 1 1 1
lunch 5 1 1 1 1 2 1

Add one counts (Berkeley Restaurant Project – J&M)

106

I want to eat Chinese food lunch

I .0018 .22 .00020 .0028 .00020 .00020 .00020
want .0014 .00035 .28 .00035 .0025 .0032 .0025
to .00082 .00021 .0023 .18 .00082 .00021 .0027
eat .00039 .00039 .0012 .00039 .0078 .0012 .021
Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011
food .0064 .00032 .0058 .00032 .00032 .00032 .00032
lunch .0024 .00048 .00048 .00048 .00048 .00096 .00048

Add one probabilities (Berkeley Restaurant Project – J&M)

107

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I want to eat Chinese food lunch

I 6 740 .68 10 .68 .68 .68
want 2 .42 331 .42 3 4 3
to 3 .69 8 594 3 .69 9
eat .37 .37 1 .37 7.4 1 20
Chinese .36 .12 .12 .12 .12 15 .24
food 10 .48 9 .48 .48 .48 .48
lunch 1.1 .22 .22 .22 .22 .44 .22

Original versus add-one predicted counts

108

Add one estimator

� Problem: gives too much probability mass to unseens.

� Not good for large vocab, comparatively little data (i.e.,

NLP)

� e.g 10,000 word vocab, 1,000,000 words of training

data, but comes across occurs 10 times. Of those, 8

times next word is as

� PMLE(as|comes across) = 0.8

� P+1(as|comes across) = 8+1
10+10000 ≈ 0.0009

109

Partial fixes

� Quick fix: Lidstone’s law (Mitchell’s (1997) “m-estimate”):

P(w2|w1) =
C(w1, w2)+ λ

C(w1)+ λV
for λ < 1, e.g., 1/2 or 0.05.

� Mitchell’s m-estimate sets λV to be m and subdivid-

ing it between the words

� Doesn’t correctly estimate difference between things

seen 0 and 1 time

� Unigram prior

� More likely to see next unseen words that are a priori

common

P(w2|w1) =
C(w1, w2)+ λP(w2)

C(w1)+ λ

110

Absolute discounting

� Idea is that we want to discount counts of seen things a

little, and reallocate this probability mass to unseens

� By subtracting a fixed count, probability estimates for

commonly seen things are scarcely affected, while prob-

abilities of rare things are greatly affected

� If the discount is around δ = 0.75, then seeing some-

thing once is not so different to not having seen it at

all

P(w2|w1) = (C(w1, w2)− δ)/C(w1) if C(w1, w2) > 0

P(w2|w1) = (V −N0)δ/N0 otherwise

111

The frequency of previously unseen events

How do you know how likely you are to see a new word type

in the future (in a certain context)?

� Examine some further text and find out [empirical held

out estimators = validation]

� Use things you’ve seen once to estimate probability of

unseen things:

P(unseen) =
N1

N

where N1 is number of things seen once. (Good-Turing:

Church and Gale 1991; Gale and Sampson 1995)

112

Good-Turing smoothing

� All words with same count get same probability

� Count mass of words with r +1 occurrences assigned to

words with r occurrences

� r* is corrected frequency estimate for word occurring r

times

� Nr × r* = Nr+1 × (r + 1) or

� r* =
Nr+1×(r+1)

Nr

113

Good-Turing smoothing

Derivation reflects leave-one out estimation (Ney et al. 1997):

� For each word token in data, call it the test set; remain-

ing data is training set

� See how often word in test set has r counts in training

set

� This will happen every time word left out has r+1 counts

in original data

� So total count mass of r count words is assigned from

mass of r + 1 count words [= Nr+1 × (r + 1)]

� Needs smoothing; accurate when lots of data

But doesn’t require held out data (which is good!)

114

Smoothing: Rest of the story (1)

� Other methods: backoff (Katz 1987), cross-validation,

Witten-Bell discounting, . . . (Chen and Goodman 1998;

Goodman 2001)

� Simple, but surprisingly effective: Simple linear interpo-

lation (deleted interpolation; mixture model; shrinkage):

P̂ (w3|w1,w2)=λ3P3(w3|w1,w2)+λ2P2(w3|w2)+λ1P1(w3)

� The λi can be estimated on held out data

� They can be functions of (equivalence-classed) histories

� For open vocabulary, need to handle words unseen in

any context (just use UNK, spelling models, etc.)

115

Smoothing: Rest of the story (2)

� Recent work emphasizes constraints on the smoothed

model

� Kneser and Ney (1995): Backoff n-gram counts not pro-

portional to frequency of n-gram in training data but to

expectation of how often it should occur in novel trigram

– since one only uses backoff estimate when trigram not

found

� (Smoothed) maximum entropy (a.k.a. loglinear) models

again place constraints on the distribution (Rosenfeld

1996, 2000)

116

Size of language models with cutoffs

Seymore and Rosenfeld (ICSLP, 1996): 58,000 word diction-

ary, 45 M words of training data, WSJ, Sphinx II

Bi/Tri-gram cutoff # Bigrams # Trigrams Memory (Mb)

0/0 4,627,551 16,838,937 104

0/1 4,627,551 3,581,187 51

1/1 1,787,935 3,581,187 29

10/10 347,647 367,928 4

80% of unique trigrams occur only once!

� Note the possibilities for compression (if you’re confi-

dent that you’ll be given English text and the encoder/

decoder can use very big tables)

117

100

150

200

250

300

350

0 10 20 30 40 50 60

Pe
rp

le
xi

ty

Memory (MB)

Cutoff method
Weighted Difference method

118

18

19

20

21

22

23

24

25

26

0 10 20 30 40 50 60

W
E

R
 (

%
)

Memory (MB)

Cutoff method
Weighted Difference method

119

More LM facts

� Seymore, Chen, Eskenazi and Rosenfeld (1996)

� HUB-4: Broadcast News 51,000 word vocab, 130M words

training. Katz backoff smoothing (1/1 cutoff).

� Perplexity 231

� 0/0 cutoff: 3% perplexity reduction

� 7-grams: 15% perplexity reduction

� Note the possibilities for compression, if you’re confi-

dent that you’ll be given English text (and the encoder/

decoder can use very big tables)

120

