The task of part of speech tagging

m A lightweight (usually linear time) processing task, which

can usefully empower other applications:

o Knowing how to pronounce a word: récord [noun] vs.
record [verb]; lead as noun vs. verb

o Matching small phrasal chunks or particular word class
patterns for tasks such as information retrieval, in-
formation extraction or terminology acquisition (col-
location extraction). E.g., just matching nouns, com-
pound nouns, and adjective noun patterns:
» {AIN}* N

o POS information can be used to lemmatize a word
correctly (i.e., to remove inflections):
» saw [n] — saw; saw [v] — see

245

(Hidden) Markov model tagger

m View sequence of tags as a Markov chain. Assumptions:
o Limited horizon. P(Xj,1 = tJ|X1,...,Xi) = P(Xj41 =

t1X;)
o Time invariant (stationary). P(Xijy1 = tJIX,-) =
P(Xz = tJ|Xy)

We assume that a word’s tag only depends on the previ-
ous tag (limited horizon) and that this dependency does
not change over time (time invariance)

m A state (part of speech) generates a word. We assume it
depends only on the state

249

Standard HMM formalism

m (X,0,I1,A,B)
m X is hidden state sequence; O is observation sequence
m IT is probability of starting in some state
(can be folded into A: let A" = [TI|A], i.e., apj = 1))
m A is matrix of transition probabilities (top row condi-
tional probability tables (CPTs))
m B is matrix of output probabilities (vertical CPTs)
HMM is also a probabilistic (hondeterministic) finite state
automaton, with probabilistic outputs (from vertices, not
arcs, in the simplest case)

251

The task of part of speech tagging

m 0 Can differentiate word senses that involve part of speech

differences

o POS can be used as backoff in various class-based
models, when too little information is known about a
particular word

o Can be a preprocessor for a parser (speeds up parser;
often better, but more expensive, to let the parser do
the tagging as well)

O Tagged text helps linguists find interesting syntactic
constructions in texts (ssh used as a verb)

246

Hidden Markov Models - POS example

P(x21x1) P (x31x2) P(x41X3)
%

P(rix3)

P(slx1) P(Flxp)

© e ()

m Top row is unobserved states, interpreted as POS tags

m Bottom row is observed output observations
m We normally do supervised training, and then (Bayesian
network style) inference to decide POS tags

250

Most likely hidden state sequence

m Given O = (01,...,07) and model u = (A, B,II)

m We want to find:

P(X,0]p)
P(Olp)

P(OIX,u) = bxlolbx202 T beUT

P(X|u) = TTx; Ax xp0x0x3 * * CAXT_1 X1

P(O,X|p) = P(OIX,)P (X|u)

argmaxy P(O, X|p) = arg maxy, ...xy Hthl ax,_, X:bxio;

argmax P (X|0, u) = arg max =argmaxP(X,0|u)
X X X

m Problem: Exponential in sequence length!

253

Dynamic Programming Trellis algorithms

m Efficient computation of this maximum: Viterbi algo-

rithm . %O

m Intuition: Probability of the first t observations is the t -'%O
same for all possible t + 1 length state sequences.

m Define forward score Tag 3 %@
6i(t) = maxx,..x,_, P(0102 - - - 0¢—1,X1 -+ - X¢—1, X¢ = 1|p)

m 5j(t +1) = maxf-\il 6,-(t)b,-0[aij

m Compute it recursively from beginnin i

m Remember best paths ’ i N ;)‘! 3§O %

m A version of Bayes Net most likely state inference Word, k

254 255

Viterbi algorithm (Viterbi 1967)

Closeup of the computation at one node

m Used to efficiently find the state sequence that gives the
highest probability to the observed outputs

m A dynamic programming algorithm. Essentially the same
except you do a max instead of a summation, and record
the path taken:

Siv1(t)) = lmkaxT[éi(tk) x P(wiltK) x P(¢J|t%)]

Wir1(t)) = argmax[8;(t5) x P(wiltX) x P(t7]t%)]

{ 1<k<T
m This gives a best tag sequence for POS tagging
t

. 5i(t+1) = maX{\Ll 8i(Dbigai m (Note: this is different to finding the most likely tag for

each time t!)

256 257

