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WSD: Many other cases are harder

m title:

o Name/heading of a book, statute, work of art or mu-
sic, etc.
Material at the start of a film

[m]

The right of legal ownership (of land)
The document that is evidence of this right

o o o

An appellation of respect attached to a person’s name
A written work

[}
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WSD: types of problems

m Homonymy: meanings are unrelated: bank of river and
bank financial institution

m Polysemy: related meanings (as on previous slides)

m Systematic polysemy: standard methods of extending a
meaning, such as from an organization to the building
where it is housed.

m A word frequently takes on further related meanings
through systematic polysemy or metaphor
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Word sense disambiguation

m The task is to determine which of various senses of a
word are invoked in context:
O the seed companies cut off the tassels of each plant,
making it male sterile
O Nissan’s Tennessee manufacturing plant beat back a
United Auto Workers organizing effort with aggres-
sive tactics
m This is an important problem: Most words are ambigu-
ous (have multiple senses)
m Converse: words or senses that mean (almost) the same:

image, likeness, portrait, facsimile, picture

134

WSD: Many other cases are harder

= modest:

o In evident apprehension that such a prospect might frighten off the young
or composers of more modest_1 forms -

o Tort reform statutes in thirty-nine states have effected modest 9 changes
of substantive and remedial law

o The modest 9 premises are announced with a modest and simple name -

o In the year before the Nobel Foundation belatedly honoured this modest_0
and unassuming individual,

o LinkWay is IBM’s response to HyperCard, and in Glasgow (its UK launch)
it impressed many by providing colour, by its modest.9 memory require-
ments,

o In a modest_1 mews opposite TV-AM there is a rumpled hyperactive figure

He is also modest_0: the “help to” is a nice touch.

o
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Word sense disambiguation

m Most early work used semantic networks, frames, logical
reasoning, or “expert system” methods for disambigua-
tion based on contexts (e.g., Small 1980, Hirst 1988).

m The problem got quite out of hand:

o0 The word expert for ‘throw’ is “currently six pages
long, but shouw be ten times that size” (Small and
Rieger 1982)

m Supervised sense disambiguation through use of con-
text is frequently extremely successful - and is a straight-
forward classification problem

m “You shall know a word by the company it keeps” - Firth

However, it requires extensive annotated training data
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Some issues in WSD

m Supervised vs. unsupervised
o Or better: What are the knowledge sources used?
m Pseudowords
o Pain-free creation of training data
o Not as realistic as real words
m Upper and lower bounds: how hard is the task?
o Lower bound: go with most common sense (can vary
from 20% to 90+% performance)
o Upper bound: usually taken as human performance
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Unsupervised and semi-supervised WSD

m Main hope is getting indirect supervision from existing
broad coverage resources:
O Lesk (1986) used a dictionary; Yarowsky (1992) used
a thesaurus
o Use of a parallel corpus (Brown et al. 1991b) or a
bilingual dictionary (Dagan and Itai 1994)
This can be moderately successful. (Still not nearly as
good as supervised systems. Interesting research topic.
m There is work on fully unsupervised WSD
o This is effectively word sense clustering or word sense
discrimination (Schiitze 1998).
o Usually no outside source of truth
o Can be useful for IR, etc. though

143

Collocations/selectional restrictions

m Sometimes a single feature can give you very good evi-
dence - and avoids need for feature combination
m Traditional version: selectional restrictions
o Focus on constraints of main syntactic dependencies
o | hate washing dishes
o I always enjoy spicy dishes
o Selectional restrictions may be weak, made irrelevant
by negation or stretched in metaphors or by odd events
m More recent versions: Brown et al. (1991), Resnik (1993)
o Non-standard good indicators: tense, adjacent words
for collocations (mace spray; mace and parliament)
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Unsupervised and semi-supervised WSD

m Really, if you want to be able to do WSD in the large, you
need to be able to disambiguate all words as you go.

m You're unlikely to have a ton of hand-built word sense
training data for all words.

m Or you might: the OpenMind Word Expert project:
o http://teach-computers.org/word-expert.html
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Lesk (1986)

m Words in context can be mutually disambiguated by over-
lap of their defining words in a dictionary
o ash
1. the solid residue left when combustible material is
thoroughly burned ...
2. Something that symbolizes grief or repentence
o coal
1. a black or brownish black solid combustible sub-
stances ...
m We’d go with the first sense of ash
m Lesk reports performance of 50%-70% from brief exper-
imentation
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Global constraints: Yarowsky (1995)

m One sense per discourse: the sense of a word is highly
consistent within a document
o True for topic dependent words
o Not so true for other items like adjectives and verbs,
e.g. make, take
o Krovetz (1998) “More than One Sense Per Discourse”
argues it isn’t true at all once you move to fine-grained
senses
m One sense per collocation: A word reoccurring in collo-
cation with the same word will almost surely have the
same sense
g This is why Brown et al.’s (1991b) use of just one
disambiguating feature was quite effective
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Unsupervised disambiguation

m Word sense discrimination (Schiitze 1998) or clustering

m Useful in applied areas where words are usually used in
very specific senses (commonly not ones in dictionar-
ies!). E.g., water table as bit of wood at bottom of door

m One can use clustering techniques

m Or assume hidden classes and attempt to find them us-
ing the EM (Expectation Maximization) algorithm (Schiitze
1998)
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WSD Performance

m Varies widely depending on how difficult the disambigua-
tion task is

m Accuracies of over 90% are commonly reported on some
of the classic, often fairly easy, word disambiguation
tasks (pike, star, interest, ...)

m Senseval brought careful evaluation of difficult WSD (many
senses, different POS)

m Senseval 1: more fine grained senses, wider range of
types:
o Overall: about 75% accuracy
o Nouns: about 80% accuracy
o Verbs: about 70% accuracy
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Similar ‘disambiguation’ problems

m Sentence boundary detection
m | live on Palm Dr. Smith lives downtown.
m Only really ambiguous when:
o word before the period is an abbreviation (which can
end a sentence - not something like a title)
o word after the period is capitalized (and can be a
proper name - otherwise it must be a sentence end)
m Can be treated as ‘disambiguating’ periods (as abbre-
viation mark, end of sentence, or both simultaneously
[haplology])
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WSD: Senseval competitions

m Senseval 1: September 1998. Results in Computers and
the Humanities 34(1-2). OUP Hector corpus.

m Senseval 2: first half of 2001. WordNet senses.

m Senseval 3: first half of 2004. WordNet senses.

m Sense-tagged corpora available:
o http://www.itri.brighton.ac.uk/events/senseval/

m Comparison of various systems, all the usual suspects
(naive Bayes, decision lists, decomposable models, memory-
based methods), and of foundational issues
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What is a word sense?

m Particular ranges of word senses have to be distinguished
in many practical tasks, e.g.:
O translation
o IR

m But there generally isn’t one way to divide the uses of a
word into a set of non-overlapping categories. Dictionar-
ies provide neither consisentency nor non-overlapping
categories usually.

m Senses depend on the task (Kilgarriff 1997)
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Similar ‘disambiguation’ problems

m Context-sensitive spelling correction:
m | know their is a problem with there account.
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Text categorization

m Have some predefined categories for texts
O Predefined categories for news items on newswires -
Reuters categories
o Yahoo! classes (extra complexity: hierarchical)
O Spam vs. not spam
m Word sense disambiguation can actually be thought of
as text (here, context) categorization
0 But many more opportunities to use detailed (semi-)
linguistic features
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(Multinomial) Naive Bayes classifiers for WSD

m X is the context (something like a 100 word window)

m i is a sense of the word to be disambiguated
Choose ¢’ = argmaxP (ck|X)

Ck
P(X|ck)
P(X)
= argmax[log P(X|ck) + logP(cy)]
Ck

P(ck)

arg max
Ck

= argmax Z log P(vjlck) +log P(ck)
Ck vJ-in)Z

m An effective method in practice, but also an example of
a structure-blind ‘bag of words’ model
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Senseval 2 results

m The hacked Naive Bayes classifier has no particular the-
oretical justification. One really cannot make sense of it
in terms of the independence assumptions, etc., usually
invoked for a Naive Bayes model

m Butitis linguistically roughly right: nearby context is of-
ten very important for WSD: noun collocations (complete
accident), verbs (derive satisfaction)

m In Senseval 2, it scores an average accuracy of 61.2%

m This model was just a component of a system we en-
tered, but alone it would have come in 6t place out of
27 systems (on English lexical sample data), beating out
all the systems on the previous slide
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Disambiguating using ‘language’ models

m Supervised training from hand-labeled examples

m Train n-gram language model for examples of each sense,
treating examples as a ‘language’
o estimate P(frogl|large, green), etc.
O reduce parameters by backing off where there is in-

sufficient data: use P(frog|green) or P(frog)

m Disambiguate based on in which ‘language’ the sentence
would have highest probability

m Multinomial Naive Bayes models are class-conditional uni-
gram language models

m Higher oder models can give some of the advantages of
wide context bag of words models (Naive Bayes-like) and
use of local structural cues around word
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WSD methods

m One method: A multinomial naive Bayes classifier, add
1—10 smoothing. Except words near the ambiguous word
are weighted by a strongly peaked function (distance 3-
5, 3%; distance 2, 5%, distance 1, 15X)

m Other methods (Senseval 2 entries):

o0 Bagged decision trees with unigram, bigram, and long
distance bigram features

o Weighted vote of DT, NB, and kNN classifiers over
short and long distance bigram features

o Hierarchical LazyBoosting over large and small win-
dow bag-of-word features, and WordNet features

o Support vector machine with IDF feature weighting
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Naive Bayes models

m The Naive Bayes assumption is that the attributes used
for description are all conditionally independent:
Naive Bayes assumption
P(Xlcp) = P({vjlv; in X} ) =TIy inx P(vjlcg)
m This is commonly referred to as the bag of words as-
sumption
m Decision rule for Naive Bayes
Decide ¢’ if ¢’ = argrnaxck[logP(ck)+Zij>;logP(vJ-\ck)]
m Note that there are two Naive Bayes models (McCallum
and Nigam 1998)
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Two Naive Bayes models: Multinomial

m v; is word j of the context

m Model of Gale et al. (1992) (for WSD). Usual in StatNLP.

m The CPT for each multinomial is identical (tied parame-
ters)

m The multinomial is estimated over the whole vocabulary.
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Naive Bayes models

m Feature selection: commonly count, x2 or mutual infor-
mation, but there are methods to find non-overlapping

features (Koller and Sahami 1996). Only important/relevant

in Bernoulli model.

m Naive Bayes is simple, but often about as good as there
is (Friedman 1997; Domingos and Pazzani 1997)

m There are successful more complex probabilistic clas-
sifiers, particularly TAN - Tree Augmented Naive Bayes
(van Rijsbergen 1979; Friedman and Goldszmidt 1996)

m One can get value from varying context size according
to type of word being disambiguated (commonly: noun
is big context, verb is small context)
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Two Naive Bayes models: Bernoulli

w is word (type) j of the vocabulary of features

@ @)

Each feature is binary yes/no (though could be count/range)
Model normally presented in the graphical models liter-
ature

Generally (but not always) performs worse

Requires careful and aggressive feature selection

507

‘Typical’ McCallum and Nigam (1998) result:

Reuters Money-FX category
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