speech recognition: acoustic waves

- human speech generates a wave
 - like a loudspeaker moving

- a wave for the words "speech lab" looks like:

 "i" to "a" transition:

 [image]

 graphs from simon amber's web tutorial on speech, sheffield:
 http://www.pspc.leeds.ac.uk/research/logicspeech/tutorial/

acoustic sampling

- 10 ms frame (ms = millisecond = 1/1000 second)
- ~25 ms window around frame [wide band] to allow smooth signal processing – it let's you see formants

 [image]

 result:
 acoustic feature vectors
 (after transformation, numbers in roughly \(\mathbb{R}^d \))

spectral analysis

- frequency gives pitch; amplitude gives volume
 - sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

 [image]

- fourier transform of wave displayed as a spectrogram
 - darkness indicates energy at each frequency
 - hundreds to thousands of frequency samples

the speech recognition problem

- the recognition problem: noisy channel model
 - we started out with english words, they were encoded as an audio signal, and we now wish to decode.
 - find most likely sequence \(w \) of "words" given the sequence of acoustic observation vectors \(a \)
 - use bayes' law to create a generative model and then decode
 - \(\arg\max_{w} P(w | a) = \arg\max_{w} P(a | w) P(w) / P(a) \)
 - acoustic model: \(P(a | w) \)
 - language model: \(P(w) \)
 - a probabilistic theory of a language

probabilistic language models

- assign probability \(P(w) \) to word sequence \(w = w_1, w_2, \ldots, w_k \)
- can't directly compute probability of long sequence - one needs to decompose it
 - chain rule provides a history-based model:
 \[
 P(w_1, w_2, \ldots, w_k) = P(w_k | w_{k-1}, \ldots, w_1) P(w_{k-1} | w_{k-2}, \ldots, w_1) \ldots P(w_2 | w_1)
 \]
 - cluster histories to reduce number of parameters
 - e.g., just based on the last word (1st order markov model):
 \[
 P(w_1, w_2, \ldots, w_k) = P(w_k | w_1 < s) P(w_2 | w_1) P(w_3 | w_2) \ldots P(w_k | w_{k-1})
 \]

- how do we estimate these probabilities?
 - we count word sequences in corpora
 - we "smooth" probabilities so as to allow unseen sequences

n-gram language modeling

- n-gram assumption clusters based on last n-1 words
 - \(P(w_{k} | w_{k-1}, \ldots, w_{k-n+1}) = P(w_{k-1}, \ldots, w_{k-n+1}) P(w_{k-n+1}) \)
 - unigrams \(P(w_1) \)
 - bigrams \(P(w_2 | w_1) \)
 - trigrams \(P(w_3 | w_2, w_1) \)

- trigrams often interpolated with bigram and unigram:
 \[
 \hat{P}(w_k | w_{k-1}, w_{k-2}) = \lambda_1 \frac{F(w_k | w_{k-1}, w_{k-2})}{\sum_{w_{k+1}} F(w_{k+1} | w_{k-1}, w_{k-2})} + \lambda_2 \frac{F(w_k | w_{k-1})}{\sum_{w_{k+1}} F(w_{k+1} | w_{k-1})} + \lambda_3 \frac{F(w_k)}{\sum_{w_{k+1}} F(w_{k+1})}
 \]
 - the \(\lambda \)s typically estimated by maximum likelihood estimation on held out data \(\hat{P}(w_{k+1} | w_k) \) are relative frequencies
 - many other interpolations exist (another standard is a non-linear backoff)