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Introduction 

  So far we’ve looked at “generative models” 
  Language models, Naive Bayes, IBM MT  

  In recent years there has been extensive use 
of conditional or discriminative probabilistic 
models in NLP, IR, and Speech 

  Because: 
  They give high accuracy performance 

  They make it easy to incorporate lots of 
linguistically important features 

  They allow automatic building of language 
independent, retargetable NLP modules 

Joint vs. Conditional Models 

  Joint (generative) models place probabilities over 
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff):  
  All the best known StatNLP models: 

  n-gram models, Naive Bayes classifiers, hidden 
Markov models, probabilistic context-free grammars 

  Discriminative (conditional) models take the data 
as given, and put a probability over hidden 
structure given the data: 

  Logistic regression, conditional loglinear models, 
maximum entropy markov models, (SVMs, 
perceptrons) 

P(c,d) 

P(c|d) 

Bayes Net/Graphical Models 

  Bayes net diagrams draw circles for random 
variables, and lines for direct dependencies 

  Some variables are observed; some are hidden 
  Each node is a little classifier (conditional 

probability table) based on incoming arcs 

c 

d1 d 2 d 3 

Naive Bayes 

c 

d1 d2 d3 

Generative 

Logistic Regression 

Discriminative 

Conditional models work well: 
Word Sense Disambiguation 

  Even with exactly the 
same features, changing 
from joint to conditional 
estimation increases 
performance 

  That is, we use the same 
smoothing, and the same 
word-class features, we 
just change the numbers 
(parameters)  

Training Set 

Objective Accuracy 

Joint Like. 86.8 

Cond. Like. 98.5 

Test Set 

Objective Accuracy 

Joint Like. 73.6 

Cond. Like. 76.1 

(Klein and Manning 2002, using Senseval-1 Data) 

Features 

  In these slides and most maxent work:      
features are elementary pieces of evidence that 
link aspects of what we observe d with a category 
c that we want to predict. 

  A feature has a (bounded) real value: f: C × D → R  
  Usually features specify an indicator function of 

properties of the input and a particular class 
(every one we present is).  They pick out a subset. 

  fi(c, d) ≡ [Φ(d) ∧ c = ci]            [Value is 0 or 1] 
  We will freely say that Φ(d) is a feature of the data 

d, when, for each ci, the conjunction Φ(d) ∧ c = ci is 
a feature of the data-class pair (c, d). 
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Features 

  For example: 
  f1(c, d) ≡ [c= “NN” ∧ islower(w0) ∧ ends(w0, “d”)] 
  f2(c, d) ≡ [c = “NN” ∧ w-1 = “to” ∧ t-1 = “TO”] 
  f3(c, d) ≡ [c = “VB” ∧ islower(w0)] 

  Models will assign each feature a weight 

  Empirical count (expectation) of a feature: 

  Model expectation of a feature: 

TO NN 
to aid 

IN   JJ   
in blue 

TO VB 
to aid 

IN NN 
in bed 
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Feature-Based Models 

  The decision about a data point is based 
only on the features active at that point. 

BUSINESS: Stocks 
hit a yearly low … 

Data 

Features 

{…, stocks, hit, a, 
yearly, low, …} 

Label 

BUSINESS 

Text 
Categorization 

… to restructure 
bank:MONEY debt. 

Data 

Features 

{…, P=restructure, 
N=debt, L=12, …} 

Label 

MONEY 

Word-Sense 
Disambiguation 

 DT      JJ       NN … 
The previous fall … 

Data 

Features 

{W=fall, PT=JJ 
PW=previous} 

Label 

NN 

POS Tagging 

Example: Text Categorization 

(Zhang and Oles 2001) 

  Features are a word in document and class (they 
do feature selection to use reliable indicators) 

  Tests on classic Reuters data set (and others) 

  Naïve Bayes: 77.0% F1 

  Linear regression: 86.0% 

  Logistic regression: 86.4% 
  Support vector machine: 86.5% 

  Emphasizes the importance of regularization 
(smoothing) for successful use of discriminative 
methods (not used in most early NLP/IR work) 

Example: POS Tagging 

  Features can include: 
  Current, previous, next words in isolation or together. 

  Previous (or next) one, two, three tags. 

  Word-internal features: word types, suffixes, dashes, etc. 

-3 -2 -1 0 +1 

DT NNP VBD ??? ??? 

The Dow fell 22.6 % 

Local Context 

Features 
W0 22.6 

W+1 % 

W-1 fell 

T-1 VBD 

T-1-T-2 NNP-VBD 

hasDigit? true 

… … 

Decision Point 

(Ratnaparkhi 1996; Toutanova et al. 2003, etc.) 

Other Maxent Examples 

  Sentence boundary detection (Mikheev 2000) 

  Is period end of sentence or abbreviation? 

  PP attachment (Ratnaparkhi 1998) 

  Features of head noun, preposition, etc. 

  Language models (Rosenfeld 1996)  

  P(w0|w-n,…,w-1). Features are word n-gram 
features, and trigger features which model 
repetitions of the same word. 

  Parsing (Ratnaparkhi 1997; Johnson et al. 1999, etc.) 

  Either: Local classifications decide parser 
actions or feature counts choose a parse. 

Conditional vs. Joint Likelihood 

  We have some data {(d, c)} and we want to place 
probability distributions over it. 

  A joint model gives probabilities P(d,c) and tries 
to maximize this likelihood. 

  It turns out to be trivial to choose weights: 
just relative frequencies. 

  A conditional model gives probabilities P(c|d). It 
takes the data as given and models only the 
conditional probability of the class. 
  We seek to maximize conditional likelihood. 

  Harder to do (as we’ll see…) 

  More closely related to classification error. 
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Feature-Based Classifiers 

  “Linear” classifiers: 

  Classify from features sets {fi} to classes {c}.  
  Assign a weight λi to each feature fi. 

  For a pair (c,d), features vote with their weights:  
  vote(c) = Σλifi(c,d) 

  Choose the class c which maximizes Σλifi(c,d) = VB 

  There are many ways to chose weights 
  Perceptron: find a currently misclassified example, and 

nudge weights in the direction of a correct classification 

TO NN 
to aid 

TO VB 
to aid 

1.2      –1.8  0.3 

Feature-Based Classifiers 

  Exponential (log-linear, maxent, logistic, Gibbs) models: 
  Use the linear combination Σλifi(c,d) to produce a 

probabilistic model:  

  P(NN|to, aid, TO) = e1.2e–1.8/(e1.2e–1.8 + e0.3) = 0.29 

  P(VB|to, aid, TO) = e0.3 /(e1.2e–1.8 + e0.3) = 0.71 

  The weights are the parameters of the probability 
model, combined via a “soft max” function 

  Given this model form, we will choose parameters 
{λi} that maximize the conditional likelihood of the 
data according to this model. 

∑ ∑
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),'(exp
c i

ii dcfλ
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ii dcf ),(exp λ Makes votes positive. 

Normalizes votes. 

Other Feature-Based Classifiers 

  The exponential model approach is one way of 
deciding how to weight features, given data. 

  It constructs not only classifications, but 
probability distributions over classifications.  

  There are other (good!) ways of discriminating 
classes: SVMs, boosting, even perceptrons – 
though these methods are not as trivial to 
interpret as distributions over classes. 

Comparison to Naïve-Bayes 
  Naïve-Bayes is another tool for classification: 

  We have a bunch of random variables 
(data features) which we would like to use 
to predict another variable (the class): 

  The Naïve-Bayes likelihood over classes is: 
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Naïve-Bayes is just an 
exponential model. 

Comparison to Naïve-Bayes 

  The primary differences between Naïve-Bayes 
and maxent models are: 

Naïve-Bayes Maxent 

Features assumed to supply 
independent evidence. 

Features weights take feature 
dependence into account. 

Feature weights can be set 
independently. 

Feature weights must be 
mutually estimated. 

Features must be of the 
conjunctive Φ(d) ∧ c = ci 
form. 

Features need not be of the 
conjunctive form (but 
usually are). 

Trained to maximize joint 
likelihood of data and classes. 

Trained to maximize the 
conditional likelihood of classes. 

Example: Sensors 

NB FACTORS: 

  P(s)  = 1/2  

  P(+|s) = 1/4  
  P(+|r) = 3/4 

Raining Sunny 

P(+,+,r) = 3/8 P(+,+,s) = 1/8 

Reality 

P(-,-,r) = 1/8 P(-,-,s) = 3/8 

Raining? 

M1 M2 

NB Model PREDICTIONS: 

  P(r,+,+) = (½)(¾)(¾) 

  P(s,+,+) = (½)(¼)(¼) 
  P(r|+,+) = 9/10 

  P(s|+,+) = 1/10 
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Example: Sensors 

  Problem: NB multi-counts the evidence. 

  Maxent behavior: 

  Take a model over (M1,…Mn,R) with features: 

  fri: Mi=+, R=r weight: λri 
  fsi: Mi=+, R=s weight: λsi 

  exp(λri-λsi) is the factor analogous to P(+|r)/P(+|s) 
  … but instead of being 3, it will be 31/n 

  … because if it were 3, E[fri] would be far higher 
than the target of 3/8! 

)|(
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rP

sP
rP
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+

+

+
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Example: Stoplights 

Lights Working Lights Broken 

P(g,r,w) = 3/7 P(r,g,w) = 3/7 P(r,r,b) = 1/7 

Working? 

NS EW 

NB Model 

Reality 

NB FACTORS: 

  P(w) = 6/7  

  P(r|w) = 1/2  
  P(g|w) = 1/2 

  P(b) = 1/7  

  P(r|b) = 1  
  P(g|b) = 0 

Example: Stoplights 

  What does the model say when both lights are red? 
  P(b,r,r) = (1/7)(1)(1)  = 1/7  = 4/28 
  P(w,r,r) = (6/7)(1/2)(1/2)  = 6/28 = 6/28 
  P(w|r,r) = 6/10! 

  We’ll guess that (r,r) indicates lights are working! 

  Imagine if P(b) were boosted higher, to 1/2: 
  P(b,r,r) = (1/2)(1)(1)  = 1/2  = 4/8 
  P(w,r,r) = (1/2)(1/2)(1/2)  = 1/8  = 1/8 
  P(w|r,r) = 1/5! 

  Changing the parameters, bought conditional 
accuracy at the expense of data likelihood! 

Exponential Model Likelihood 

  Maximum Likelihood (Conditional) Models : 
  Given a model form, choose values of 

parameters to maximize the (conditional) 
likelihood of the data. 

  Exponential model form, for a data set (C,D): 
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Building a Maxent Model 

  Define features (indicator functions) over data 
points. 
  Features represent sets of data points which are 

distinctive enough to deserve model parameters. 

  Usually features are added incrementally to “target” 
errors. 

  For any given feature weights, we want to be able to 
calculate: 
  Data (conditional) likelihood 

  Derivative of the likelihood wrt each feature weight 
  Use expectations of each feature according to the model 

  Find the optimum feature weights (next part). 

The Likelihood Value 

  The (log) conditional likelihood is a function of the iid data 
(C,D) and the parameters λ: 

  If there aren’t many values of c, it’s easy to calculate: 

  We can separate this into two components: 

  The derivative is the difference between the derivatives of each component 
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The Derivative I: Numerator 
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Derivative of the numerator is: the empirical count(fi, c) 

The Derivative II: Denominator 
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The Derivative III 

  The optimum parameters are the ones for which 
each feature’s predicted expectation equals its 
empirical expectation.  The optimum distribution is: 
  Always unique (but parameters may not be unique) 

  Always exists (if feature counts are from actual data). 

  These models are also called maximum entropy 
models because we find the model having maximum 
entropy and satisfying the constraints: 
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Fitting the Model 

  To find the parameters  

  write out the conditional log-likelihood of the 
training data and maximize it 

  The log-likelihood is concave and has a 
single maximum; use your favorite 
numerical optimization package 

  Good large scale techniques: conjugate 
gradient or limited memory quasi-Newton  
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Fitting the Model 
Generalized Iterative Scaling 

  A simple optimization algorithm which 
works when the features are non-negative 

  We need to define a slack feature to make 
the features sum to a constant over all 
considered pairs from  

  Define 

  Add new feature  
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Generalized Iterative Scaling 

  Compute empirical expectation for all features 

  Initialize 
  Repeat 

  Compute feature expectations according to current 
model 

  Update parameters 

  Until converged  
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Maximum Entropy Models 

  An equivalent approach: 
  Lots of distributions out there, most of them 

very spiked, specific, overfit. 

  We want a distribution which is uniform 
except in specific ways we require. 

  Uniformity means high entropy – we can 
search for distributions which have properties 
we desire, but also have high entropy. 

(Maximum) Entropy 

  Entropy: the uncertainty of a distribution. 

  Quantifying uncertainty  (“surprise”): 

  Event   x 
  Probability  px 

  “Surprise”  log(1/px) 
  Entropy: expected surprise (over p): 

∑−=
x

xx ppp log)(H









=

x
p p
Ep 1log)(H

A coin-flip is 
most uncertain 
for a fair coin. 

pHEADS 

H 

Maxent Examples I 

  What do we want from a distribution? 
  Minimize commitment = maximize entropy. 

  Resemble some reference distribution (data). 

  Solution: maximize entropy H, subject to 
feature-based constraints: 

  Adding constraints (features): 
  Lowers maximum entropy 

  Raises maximum likelihood of data 

  Brings the distribution further from uniform 

  Brings the distribution closer to data 

[ ] [ ]ipip fEfE ˆ= ∑
∈

=
ifx

ix Cp
Unconstrained, 

max at 0.5 

Constraint that 
pHEADS = 0.3 

Maxent Examples II 
H(pH pT,) pH + pT = 1 pH = 0.3 

- x log x 

1/e 

Maxent Examples III 

  Lets say we have the following event space: 

  … and the following empirical data: 

  Maximize H: 

  … want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1 

NN NNS NNP NNPS VBZ VBD 

1/e 1/e 1/e 1/e 1/e 1/e 

1/6 1/6 1/6 1/6 1/6 1/6 

3 5 11 13 3 1 

Maxent Examples IV 
  Too uniform! 

  N* are more common than V*, so we add the feature fN = {NN, 

NNS, NNP, NNPS}, with E[fN] =32/36 

  … and proper nouns are more frequent than common nouns, 
so we add fP = {NNP, NNPS}, with E[fP] =24/36 

  … we could keep refining the models, e.g. by adding a feature 
to distinguish singular vs. plural nouns, or verb types. 

8/36 8/36 8/36 8/36 2/36 2/36 

4/36 4/36 12/36 12/36 2/36 2/36 

NN NNS NNP NNPS VBZ VBD 
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Convexity 

)( ii
i
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i
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)( xwf ∑

Convex Non-Convex 

Convexity guarantees a single, global maximum 
because any higher points are greedily reachable. 

Convexity II 

  Constrained H(p) = – ∑ x log x is 
convex: 
  – x log x is convex 
  – ∑ x log x is convex (sum of 

convex functions is convex). 
  The feasible region of 

constrained H is a linear 
subspace (which is convex) 

  The constrained entropy 
surface is therefore convex. 

  The maximum likelihood 
exponential model (dual) 
formulation is also convex. 

Feature Overlap 
  Maxent models handle overlapping features well. 
  Unlike a NB model, there is no double counting! 

A a 

B 2 1 

b 2 1 
A a 

B 1/4 1/4 

b 1/4 1/4 

Empirical 

All = 1 

A a 

B 

b 

A a 

B 1/3 1/6 

b 1/3 1/6 

A = 2/3 

A a 

B 

b 

A a 

B 1/3 1/6 

b 1/3 1/6 

A = 2/3 

A a 

B 

b 

A a 

B 

b 

A a 

B λA 

b λA 

A a 

B λ’A+λ’’A 

b λ’A+λ’’A 

Example: NER Overlap 

Feature Type Feature PERS LOC 

Previous word at -0.73 0.94 

Current word Grace 0.03 0.00 

Beginning bigram <G 0.45 -0.04 

Current POS tag NNP 0.47 0.45 

Prev and cur tags IN NNP -0.10 0.14 

Previous state Other -0.70 -0.92 

Current signature Xx 0.80 0.46 

Prev state, cur sig O-Xx 0.68 0.37 

Prev-cur-next sig x-Xx-Xx -0.69 0.37 

P. state - p-cur sig O-x-Xx -0.20 0.82 

… 

Total: -0.58 2.68 

Prev Cur Next 

State Other ??? ??? 

Word at Grace Road 

Tag IN NNP NNP 

Sig x Xx Xx 

Local Context 

Feature Weights 
Grace is correlated 
with PERSON, but 
does not add much 
evidence on top of 
already knowing 
prefix features. 

Feature Interaction 
  Maxent models handle overlapping features well, but 

do not automatically model feature interactions. 

A a 

B 1 1 

b 1 0 
A a 

B 1/4 1/4 

b 1/4 1/4 

Empirical 

All = 1 

A a 

B 

b 

A a 

B 1/3 1/6 

b 1/3 1/6 

A = 2/3 

A a 

B 

b 

A a 

B 4/9 2/9 

b 2/9 1/9 

B = 2/3 

A a 

B 

b 

A a 

B 0 0 

b 0 0 

A a 

B λA 

b λA 

A a 

B λA+λB λB 

b λA 

Feature Interaction 
  If you want interaction terms, you have to add them: 

  A disjunctive feature would also have done it (alone): 

A a 

B 1 1 

b 1 0 

Empirical 

A a 

B 1/3 1/6 

b 1/3 1/6 

A = 2/3 

A a 

B 

b 

A a 

B 4/9 2/9 

b 2/9 1/9 

B = 2/3 

A a 

B 

b 

A a 

B 1/3 1/3 

b 1/3 0 

AB = 1/3 

A a 

B 

b 

A a 

B 

b 

A a 

B 1/3 1/3 

b 1/3 0 
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Feature Interaction 

  For loglinear/logistic regression models in 
statistics, it is standard to do a greedy 
stepwise search over the space of all 
possible interaction terms. 

  This combinatorial space is exponential in 
size, but that’s okay as most statistics 
models only have 4–8 features. 

  In NLP, our models commonly use hundreds 
of thousands of features, so that’s not okay. 

  Commonly, interaction terms are added by 
hand based on linguistic intuitions. 

Example: NER Interaction 

Feature Type Feature PERS LOC 

Previous word at -0.73 0.94 

Current word Grace 0.03 0.00 

Beginning bigram <G 0.45 -0.04 

Current POS tag NNP 0.47 0.45 

Prev and cur tags IN NNP -0.10 0.14 

Previous state Other -0.70 -0.92 

Current signature Xx 0.80 0.46 

Prev state, cur sig O-Xx 0.68 0.37 

Prev-cur-next sig x-Xx-Xx -0.69 0.37 

P. state - p-cur sig O-x-Xx -0.20 0.82 

… 

Total: -0.58 2.68 

Prev Cur Next 

State Other ??? ??? 

Word at Grace Road 

Tag IN NNP NNP 

Sig x Xx Xx 

Local Context 

Feature Weights Previous-state and current-
signature have interactions, 
e.g. P=PERS-C=Xx indicates 
C=PERS much more strongly 
than C=Xx and P=PERS 
independently. 

This feature type allows the 
model to capture this 
interaction. 

Classification 

  What do these joint models of P(X) have to do 
with conditional models P(C|D)? 

  Think of the space C×D as a complex X. 

  C is generally small (e.g., 2-100 topic classes) 
  D is generally huge (e.g., number of documents) 

  We can, in principle, build models over P(C,D). 
  This will involve calculating expectations of 

features (over C×D): 

  Generally impractical: can’t enumerate d 
efficiently. 

X 

C×D 

D 

C 

∑ ∈
=
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DCdc ii dcfdcPfE

Classification II 

  D may be huge or infinite, but only a few d 
occur in our data.  

  What if we add one feature for each d and 
constrain its expectation to match our 
empirical data? 

  Now, most entries of P(c,d) will be zero. 

  We can therefore use the much easier sum: 
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Classification III 

  But if we’ve constrained the D marginals 

 then the only thing that can vary is the conditional 
distributions:  

  This is the connection between joint and conditional 
maxent / exponential models: 
  Conditional models can be thought of as joint models 

with marginal constraints. 
  Maximizing joint likelihood and conditional 

likelihood of the data in this model are equivalent! 

)(ˆ)|(

)()|(),(

dPdcP

dPdcPdcP

=

=

)(ˆ)()( dPdPDd =∈∀

Smoothing: Issues of Scale 

  Lots of features: 
  NLP maxent models can have over 1M features. 

  Even storing a single array of parameter values can 
have a substantial memory cost. 

  Lots of sparsity: 
  Overfitting very easy – need smoothing! 

  Many features seen in training will never occur again at 
test time. 

  Optimization problems: 
  Feature weights can be infinite, and iterative solvers 

can take a long time to get to those infinities. 
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Smoothing: Issues 

  Assume the following empirical distribution: 

  Features: {Heads}, {Tails} 

  We’ll have the following model distribution: 

  Really, only one degree of freedom (λ = λH-λT) 

Heads Tails 

h t 

TH

H

HEADS λλ

λ

ee
ep
+

=
TH

T

TAILS λλ

λ

ee
ep
+

=

0HEADS TTTH

TH

ee
e

eeee
eep

+
=

+
= −−

−

λ

λ

λλλλ

λλ

0

0

TAILS ee
ep
+

= λ

λ 

Smoothing: Issues 

  The data likelihood in this model is: 

TAILSHEADS loglog)|,(log ptphthP +=λ

)1(log)()|,(log λλλ ehththP ++−=

Heads Tails 

2 2 
Heads Tails 

3 1 
Heads Tails 

4 0 

λ λ λ 

log P log P log P 

Smoothing: Early Stopping 

  In the 4/0 case, there were two problems: 

  The optimal value of λ was ∞, which is a 
long trip for an optimization procedure. 

  The learned distribution is just as spiked 
as the empirical one – no smoothing. 

  One way to solve both issues is to just 
stop the optimization early, after a few 
iterations. 
  The value of λ will be finite (but 

presumably big). 
  The optimization won’t take forever 

(clearly). 
  Commonly used in early maxent work. 

Heads Tails 

4 0 

Heads Tails 

1 0 

Input 

Output 

λ 

Smoothing: Priors (MAP) 

  What if we had a prior expectation that parameter values 
wouldn’t be very large? 

  We could then balance evidence suggesting large 
parameters (or infinite) against our prior. 

  The evidence would never totally defeat the prior, and 
parameters would be smoothed (and kept finite!). 

  We can do this explicitly by changing the optimization 
objective to maximum posterior likelihood: 

),|(log)(log)|,(log λλλ DCPPDCP +=

Posterior Prior Evidence 

Smoothing: Priors 

  Gaussian, or quadratic, priors: 

  Intuition: parameters shouldn’t be large. 

  Formalization: prior expectation that each 
parameter will be distributed according to 
a gaussian with mean µ and variance σ2. 

  Penalizes parameters for drifting to far 
from their mean prior value (usually µ=0). 

  2σ2=1 works surprisingly well. 

They don’t even 
capitalize my 

name anymore! 







 −
−= 2

2

2
)(exp

2
1)(

i

ii

i
iP

σ
µλ

πσ
λ

2σ2

=1 

2σ2 
= 10 

2σ2 = ∞ 

Example: NER Smoothing 

Feature Type Feature PERS LOC 

Previous word at -0.73 0.94 

Current word Grace 0.03 0.00 

Beginning bigram <G 0.45 -0.04 

Current POS tag NNP 0.47 0.45 

Prev and cur tags IN NNP -0.10 0.14 

Previous state Other -0.70 -0.92 

Current signature Xx 0.80 0.46 

Prev state, cur sig O-Xx 0.68 0.37 

Prev-cur-next sig x-Xx-Xx -0.69 0.37 

P. state - p-cur sig O-x-Xx -0.20 0.82 

… 

Total: -0.58 2.68 

Prev Cur Next 

State Other ??? ??? 

Word at Grace Road 

Tag IN NNP NNP 

Sig x Xx Xx 

Local Context 

Feature Weights 
Because of smoothing, 
the more common prefix 
and single-tag features 
have larger weights even 
though entire-word and 
tag-pair features are 
more specific. 
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Example: POS Tagging 

  From (Toutanova et al., 2003): 

  Smoothing helps: 
  Softens distributions. 

  Pushes weight onto more explanatory features. 

  Allows many features to be dumped safely into the mix. 

  Speeds up convergence (if both are allowed to converge)! 

Overall 
Accuracy 

Unknown  

Word Acc 

Without 
Smoothing 

96.54 85.20 

With 
Smoothing 

97.10 88.20 

Smoothing: Priors 

  If we use gaussian priors: 
  Trade off some expectation-matching for smaller parameters. 

  When multiple features can be recruited to explain a data 
point, the more common ones generally receive more weight. 

  Accuracy generally goes up! 

  Change the objective: 

  Change the derivative: 

),|(log)|,(log λλ DCPDCP =

∑
∈

=
),(),(

),|()|,(log
DCdc

dcPDCP λλ

),(predicted),(actual/)|,(log λλλ iii fCfDCP −=∂∂

2σ2

=1 

2σ2 
= 10 

2σ2 = ∞ 

€ 

−
(λi −µi)

2

2σ i
2

i
∑ + k

€ 

−logP(λ)

€ 

−(λi −µi) /σ
2

Smoothing: Priors 

  If we use gaussian priors: 
  Trade off some expectation-matching for smaller parameters. 

  When multiple features can be recruited to explain a data 
point, the more common ones generally receive more weight. 

  Accuracy generally goes up! 

  Change the objective: 

  Change the derivative: 

),|(log)|,(log λλ DCPDCP =

∑
∈

=
),(),(

),|()|,(log
DCdc

dcPDCP λλ

),(predicted),(actual/)|,(log λλλ iii fCfDCP −=∂∂

2σ2

=1 

2σ2 
= 10 

2σ2 = ∞ 

€ 

−
λi
2

2σ i
2

i
∑ + k

€ 

−logP(λ)

€ 

−λi /σ
2

Smoothing: Virtual Data 

  Another option: smooth the data, not the parameters. 

  Example: 

  Equivalent to adding two extra data points. 

  Similar to add-one smoothing for generative models. 
  Hard to know what artificial data to create! 

Heads Tails 

4 0 
Heads Tails 

5 1 

Smoothing: Count Cutoffs 

  In NLP, features with low empirical counts were 
usually dropped. 
  Very weak and indirect smoothing method. 
  Equivalent to locking their weight to be zero. 
  Equivalent to assigning them gaussian priors with 

mean zero and variance zero. 
  Dropping low counts does remove the features 

which were most in need of smoothing… 
  … and speeds up the estimation by reducing model 

size … 
  … but count cutoffs generally hurt accuracy in the 

presence of proper smoothing. 

  We recommend: don’t use count cutoffs unless 
absolutely necessary. 

Inference in Systems 

Sequence Level 

Local Level 

Local 
Data 

Feature 
Extraction 

Features 

Label 

Optimization 

Smoothing 

Classifier Type 

Features 

Label 

Sequence 
Data 

Maximum 
Entropy Models 

Quadratic 
Penalties 

Conjugate 
Gradient 

Sequence Model 

NLP Issues 

Inference 

Local 
Data 

Local 
Data 
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MEMM inference in systems 

  For a Conditional Markov Model (CMM) a.k.a. a 
Maximum Entropy Markov Model (MEMM), the classifier 
makes a single decision at a time, conditioned on 
evidence from observations and previous decisions. 

  A larger space of sequences is explored via search 

-3 -2 -1 0 +1 

DT NNP VBD ??? ??? 

The Dow fell 22.6 % 

Local Context 

Features 
W0 22.6 

W+1 % 

W-1 fell 

T-1 VBD 

T-1-T-2 NNP-VBD 

hasDigit? true 

… … 

Decision Point 

(Ratnaparkhi 1996; Toutanova et al. 2003, etc.) 

Beam Inference 

  Beam inference: 

  At each position keep the top k complete sequences. 
  Extend each sequence in each local way. 

  The extensions compete for the k slots at the next position. 

  Advantages: 
  Fast; and beam sizes of 3–5 are as good or almost as good 

as exact inference in many cases. 
  Easy to implement (no dynamic programming required). 

  Disadvantage: 
  Inexact: the globally best sequence can fall off the beam. 

Sequence Model 

Inference 

Best Sequence 

Viterbi Inference 

  Viterbi inference: 
  Dynamic programming or memoization. 
  Requires small window of state influence (e.g., past two 

states are relevant). 
  Advantage: 

  Exact: the global best sequence is returned. 

  Disadvantage: 
  Harder to implement long-distance state-state interactions 

(but beam inference tends not to allow long-distance 
resurrection of sequences anyway). 

Sequence Model 

Inference 

Best Sequence 

CRFs [Lafferty, Pereira, and McCallum 2001] 

  Another sequence model: Conditional Random Fields (CRFs) 
  A whole-sequence conditional model rather than a chaining 

of local models. 

  The space of c’s is now the space of sequences 
  But if the features fi remain local, the conditional sequence likelihood 

can be calculated exactly using dynamic programming 

  Training is slow, but CRFs avoid causal-competition biases 

  These (or a variant using a max margin criterion) are seen 
as the state-of-the-art these days 

∑ ∑
'

),'(exp
c i

ii dcfλ
=),|( λdcP ∑

i
ii dcf ),(exp λ

HMM Tagging Models - Brants 
2000 

  Highly competitive with other state-of-the art models 
  Trigram HMM with smoothed transition probabilities 

  Capitalization feature becomes part of the state – each 
tag state is split into two e.g.  
NN → <NN,cap>,<NN,not cap> 

  Suffix features for unknown words 

)(ˆ/)|(~)(ˆ
)|)(|()|(

tagPsuffixtagPsuffixP

suffixwtagsuffixPtagwP

≈

=

)(ˆ...)|(ˆ)|(ˆ)|(~ 121 tagPsuffixtagPsuffixtagPsuffixtagP nnnn λλλ +++= −

t 

suffixn suffixn-1 suffix2 suffix1 

MEMM Tagging Models -II 

  Ratnaparkhi (1996): local distributions are estimated 
using maximum entropy models 
  Previous two tags, current word, previous two words, next 

two words, suffix, prefix, hyphenation, and capitalization 
features for unknown words 

  Toutanova et al. (2003) 
  Richer features, bidirectional inference, better smoothing, 

better unknown word handling 

Model Overall 
Accuracy 

Unknown 
Words 

HMM (Brants 2000) 96.7 85.5 

MEMM (Ratn. 1996) 96.63 85.56 

MEMM (T. et al 2003) 97.24 89.04 
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Smoothing: POS Tagging 

  From (Toutanova et al., 2003): 

  Smoothing helps: 
  Softens distributions. 

  Pushes weight onto more explanatory features. 

  Allows many features to be dumped safely into the mix. 

  Speeds up convergence (if both are allowed to converge)! 

Overall 
Accuracy 

Unknown  

Word Acc 

Without 
Smoothing 

96.54 85.20 

With 
Smoothing 

97.10 88.20 

Summary of Tagging 

For tagging, the change from generative to discriminative 
model does not by itself result in great improvement  

One profits from discriminative models for specifying 
dependence on overlapping features of the 
observation such as spelling, suffix analysis,etc 

A CMM allows integration of rich features of the 
observations, but can suffer strongly from assuming 
independence from following observations; this effect 
can be relieved by adding dependence on following 
words 

This additional power (of the CMM ,CRF, Perceptron 
models) has been shown to result in improvements in 
accuracy 

The higher accuracy of discriminative models comes at 
the price of much slower training 


