Machine Translation：
Word alignment models
Christopher Manning
C S224N
［Based on sidids byevin Knight，Dan Klein，
Dan Jurafkky

Centauri／Arcturan［Knight，1997］： It＇s Really Spanish／English	
	9，
	len

From No Data to Sentence Pairs

－Really hard way：pay $\$ \$ \$$
－Suppose one billion words of parallel data were sufficient －At 20 cents／word，that＇s $\$ 200$ million
－Pretty hard way：Find it，and then earn it！
－De－formatting
－Remove strange characters
－Character code conversion
－Document alignment
－Sentence alignment
－Tokenization（also called Segmentation）
－Easy way：Linguistic Data Consortium（LDC）

Tokenization（or Segmentation）

－English
－Input（some character stream）：

> "There," said Bob.
－Output（7＂tokens＂or＂words＂）：
＂There ，＂said Bob ．
－Chinese
－Input（char stream）：美国关岛国际机场及其办公室均接获一名自称沙地阿拉伯富商拉登等发出的电子邮件。
－Output：
至均接蔅拉登 名等发自妳沙地阿拉伯伯的邮件

Sentence Alignment

The old man is happy. He has fished many times. His wife talks to him. The fish are jumping. The sharks await.

El viejo está feliz porque ha pescado muchos veces. Su mujer habla con él. Los tiburones esperan.

Sentence Alignment

1. The old man is happy.
2. He has fished many times.
3. His wife talks to him.
4. The fish are jumping.
5. The sharks await.
6. El viejo está feliz porque ha pescado muchos veces.
7. Su mujer habla con él.
8. Los tiburones esperan.

Sentence Alignment

1. The old man is happy.
2. He has fished many times.
3. His wife talks to him.
4. The fish are jumping.
5. The sharks await.

Statistical MT Systems

A division of labor

- Use of Bayes Rule ("the noisy channel model") allows a division of labor:
- Job of the translation model P(E|S) is just to model how various Spanish words typically get translated into English (perhaps in a certain context)
- $\mathrm{P}(\mathrm{E} \mid \mathrm{S})$ doesn't have to worry about language-particular facts about English word order: that's the job of $\mathrm{P}(\mathrm{E})$
- The job of the language model is to choose felicitous bags of words and to correctly order them for English - $\mathrm{P}(\mathrm{E})$ can do bag generation: putting a bag of words in order:
- E.g., hungry I am so \rightarrow I am so hungry
- Both can be incomplete/sloppy

Statistical MT Systems

Word Alignment Examples: Grid

Word alignment examples: easy
Japan shaken by two new quakes

Le Japon secoué par deux noveaux séismes

Extra word appears in French: "spurious" word

Alignments: harder

Alignments: harder

The balance was the territory of the aboriginal people

- A minimal aligned subset of words is called a 'cept' in the IBM work; often a 'bead' or '(aligned) statistical phrase' elsewhere.

Statistical Machine Translation

All word alignments equally likely
All P (french-word | english-word) equally likely

Statistical Machine Translation

"la" and "the" observed to co-occur frequently, so $P(l a \mid$ the $)$ is increased.

Statistical Machine Translation

"house" co-occurs with both "la" and "maison", but P (maison | house) can be raised without limit, to 1.0 , while P(la | house) is limited because of "the"
(pigeonhole principle)

Word alignment learning with EM

Hidden structure revealed by EM training!
That was IBM Model 1. For details, see later and:

- "A Statistical MT Tutorial Workbook" (Knight, 1999).
- "The Mathematics of Statistical Machine Translation" (Brown et al, 1993)
- Software: GIZA++

Statistical Machine Translation

IBM StatMT Translation Models

- IBM1 - lexical probabilities only
- IBM2 - lexicon plus absolute position
- HMM - lexicon plus relative position
- IBM3 - plus fertilities
- IBM4 - inverted relative position alignment
- IBM5 - non-deficient version of model 4
- All the models we discuss today handle $0: 1,1: 0,1: 1,1: n$ alignments only
[Brown, et.al. 93, Vogel, et.al. 96]

IBM models 1,2,3,4,5

- Models for P(F|E)
- There is a set of English words and the extra English word NULL
- Each English word generates and places 0 or more French words
- Any remaining French words are deemed to have been produced by NULL

Model 1 parameters

- $P(f \mid e)=\Sigma_{a} P(f, a \mid e)$
- $P(f, a \mid e)=\Pi_{j} P\left(a_{j}=i\right) P\left(f_{j} \mid e_{i}\right)=\Pi_{j}[1 /(I+1)] P\left(f_{j} \mid e_{i}\right)$

Model 1: Word alignment learning

 with Expectation-Maximization (EM)- Start with $P\left(\mathrm{f}^{\mathrm{j}} \mid \mathrm{e}^{\mathrm{i}}\right)$ uniform, including $\mathrm{P}(\mathrm{fj} \mid$ null $)$
- For each sentence
- For each French position j
- Calculate posterior over English positions P($\left.a_{j} \mid i\right)$

$$
P\left(a_{j}=i \mid f, e\right)=\frac{P\left(f_{j} \mid e_{i}\right)}{\sum_{i^{\prime}} P\left(f_{j} \mid e_{i^{\prime}}\right)}
$$

- Increment count of word f_{j} with word $e_{a_{j}}$ $-C\left(f_{j} \mid e_{i}\right)+=P\left(a_{j}=i \mid f, e\right)$
- Renormalize counts to give probabilities
- Iterate until convergence

IBM models 1,2,3,4,5

- In Model 2, the placement of a word in the French depends on where it was in the English
(1)

IBM models 1,2,3,4,5

- In model 3 we model how many French words an English word can produce, using a concept called fertility

Figure 32.3
Alignment example.

IBM Model 3, Brown et al., 1993

Generative approach:

IBM Model 3 (from Knight 1999)

- For each word e_{i} in English sentence, choose a fertility Φ_{i}. The choice of Φ_{i} depends only on e_{i}, not other words or Φ 's.
- For each word e_{i}, generate Φ_{i} Spanish words. Choice of French word depends only on English word e_{i}, not English context or any Spanish words.
- Permute all the Spanish words. Each Spanish word gets assigned absolute target position slot ($1,2,3$, etc). Choice of Spanish word position dependent only on absolute position of English word generating it.

Model 3: $\mathrm{P}(\mathrm{S} \mid \mathrm{E})$ training parameters

- What are the parameters for this model?
- Words: P(casa|house)
- Spurious words: $\mathrm{P}(\mathrm{a} \mid n u l l)$
- Fertilities: $n(1 \mid$ house $)$: prob that "house" will produce 1 Spanish word whenever 'house' appears.
- Distortions: $\mathrm{d}(5 \mid 2)$ prob. that English word in position 2 of English sentence generates French word in position 5 of French translation
- Actually, distortions are $\mathrm{d}(5 \mid 2,4,6)$ where 4 is length of English sentence, 6 is Spanish length

Spurious words

- We could have $\mathrm{n}(3 \mid \mathrm{NULL})$ (probability of being exactly 3 spurious words in a Spanish translation)
- But instead, of $n(0 \mid N U L L), n(1 \mid N U L L)$... $\mathrm{n}(25 \mid \mathrm{NULL})$, have a single parameter p 1
- After assign fertilities to non-NULL English words we want to generate (say) z Spanish words.
- As we generate each of z words, we optionally toss in spurious Spanish word with probability p1
- Probability of not tossing in spurious word $\mathrm{p} 0=1-\mathrm{p} 1$

Real Model 3

- For each word e_{i} in English sentence, choose fertility Φ_{i} with prob $n\left(\Phi_{\mathrm{i}} \mid \mathrm{e}_{\mathrm{i}}\right)$
- Choose number Φ_{0} of spurious Spanish words to be generated from e0=NULL using p1 and sum of fertilities from step 1
- Let m be sum of fertilities for all words including NULL
- For each $\mathrm{i}=0,1,2, \ldots \mathrm{~L}, \mathrm{k}=1,2, \ldots \Phi_{1}$:
- choose Spanish word τ_{ik} with probability $\mathrm{t}\left(\tau_{\mathrm{ik}} \mid \mathrm{e}_{\mathrm{i}}\right)$
- For each $\mathrm{i}=1,2, \ldots \mathrm{~L}, \mathrm{k}=1,2, \ldots \Phi_{1}$:
- choose target Spanish position π_{ik} with prob $\mathrm{d}\left(\pi_{\mathrm{ik}} \mathrm{l}, \mathrm{L}, \mathrm{m}\right)$
- For each $\mathrm{k}=1,2, \ldots, \Phi_{0}$ choose position $\pi_{0 \mathrm{k}}$ from $\Phi_{0}-\mathrm{k}+1$ remaining vacant positions in $1,2, \ldots \mathrm{~m}$ for total prob of $1 / \Phi_{0}$!
- Output Spanish sentence with words τ_{ik} in positions π_{ik}

$$
\left(0<=1<=1,1<=k<=\Phi_{1}\right)
$$ ($0<=1<=1,1<=k<=\Phi_{1}$)

-

Distortion probabilities for spurious words

- Can't just have d(5|0,4,6), I.e. chance that NULL word will end up in position 5.
- Why? These are spurious words! Could occur anywhere!! Too hard to predict
- Instead,
- Use normal-word distortion parameters to choose positions for normally-generated Spanish words
- Put Null-generated words into empty slots left over
- If three NULL-generated words, and three empty slots, then there are 3!, or six, ways for slotting them all in
- We'll assign a probability of $1 / 6$ for each way

Model 3 parameters

- n,t,p,d
- Again, if we had complete data of English strings and step-by-step rewritings into Spanish, we could:
- Compute $n(0 \mid d i d)$ by locating every instance of "did", and seeing how many words it translates to
- t(maison|house) how many of all French words generated by "house" were "maison"
- $\mathrm{d}(5 \mid 2,4,6)$ out of all times some word2 was translated, how many times did it become word5?

Since we don't have word-aligned data...

- We bootstrap alignments from incomplete data
- From a sentence-aligned bilingual corpus

1) Assume some startup values for n, d, Φ, etc
2) Use values for n,d, Φ, etc to use model 3 to work out chances of different possible alignments. Use these alignments to retrain $\mathrm{n}, \mathrm{d}, \Phi$, etc
3) Go to 2

- This is a more complicated case of the EM algorithm

IBM models 1,2,3,4,5

- In model 4 the placement of later French words produced by an English word depends on what happened to earlier French words generated by that same English word

IBM models 1,2,3,4, $\underline{5}$

- In model 5 they do non-deficient alignment. That is, you can't put probability mass on impossible things.

Why all the models?

- We don't start with aligned text, so we have to get initial alignments from somewhere.
- Model 1 is words only, and is relatively easy and fast to train.
- We are working in a space with many local maxima, so output of model 1 can be a good place to start model 2. Etc.
- The sequence of models allows a better model to be found faster [the intuition is like deterministic annealing].

Alignments: linguistics

- There isn't enough linguistics to explain this in the translation model ... have to depend on the language model ... that may be unrealistic ... and may be harming our translation model

