

Illustrative translation results

－la politique de la haine
－politics of hate
－the policy of the hatred．
－nous avons signé le protocole
－we did sign the memorandum of agreement
－we have signed the protocol
－où était le plan solide？
－but where was the solid plan？
－where was the economic base ？
（Foreign Original）
（Reference Translation）
（IBM4＋N－grams＋Stack）
（Foreign Original） （Reference Translation） （IBM4＋N－grams＋Stack）
（Foreign Original） （Reference Translation） （IBM4＋N－grams＋Stack）

MT Evaluation

－Manual（the best！？）：
－SSER（subjective sentence error rate）
－Correct／Incorrect
－Adequacy and Fluency
－Error categorization
－Testing in an application that uses MT as one sub－ component
－Question answering from foreign language documents
－Automatic metric：
－WER（word error rate）－why problematic？
－BLEU（Bilingual Evaluation Understudy）

BLEU Evaluation Metric

（Papineni et al，ACL－2002）

Reference（human）translation： The U．S．island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e－mail fronit someone calling himself the Sauẹ̣i Arabian Osamia bin Laden and threatening a biological／ chemtical attack against public places such as the airport．	－BLEU is a weighted geometric mean，with a brevity penalty factor added． －Note that it＇s precision－oriented －BLEU4 formula （counts n－grams up to length 4） $\begin{array}{r} \exp \left(1.0^{*} \log \mathrm{p} 1+\right. \\ 0.5^{*} \log \mathrm{p} 2+ \end{array}$
	$\begin{aligned} & 0.25 * \log \mathrm{p} 3+ \\ & 0.125 * \log \mathrm{p} 4- \end{aligned}$
Machine translation： The Amierig̣an［？］internatị̀nal airport and its the office al receives．one calls self the sand Arab rick business［？］and so on electronic mail ，which sends out ； The threat will be able after public place and：so on the airport to start the biochẹmistry attack，［？］highly alerts after the maintenance．	$\begin{aligned} & \text { max(words-in-reference } / \text { words-in-machine }-1,0 \text {) } \\ & \text { p1 }=1 \text {-gram precision } \\ & \text { P2 }=2 \text {-gram precision } \\ & \text { P3 }=3 \text {-gram precision } \\ & \text { P4 }=4 \text {-gram precision } \end{aligned}$

BLEU in Action

BLEU Tends to Predict Human Judgments

A complete translation system

Decoding for IBM Models

- Of all conceivable English word strings, find the one maximizing $P(e) \times P(f \mid e)$
- Decoding is NP hard
- (Knight, 1999)
- Several search strategies are available
- Usually a beam search where we keep multiple stacks for candidates covering the same number of source words
- Each potential English output is called a hypothesis.

The "Fundamental Equation of Machine
 Translation" (Brown et al. 1993)

```
ê=argmax P(e|f)
e
```

$=\operatorname{argmax} P(e) \times P(f \mid e) / P(f)$
e
$=\operatorname{argmax} P(e) \times P(f \mid e)$
e

What StatMT people do in the privacy of their own homes

$\operatorname{argmax} P(e \mid f)=$
e
$\operatorname{argmax} P(e) \times P(f \mid e) / P(f)=$ e
$\operatorname{argmax} P(e)^{2.4} \times P(f \mid e) \quad \ldots$ works better!
e
Which model are you now paying more attention to?

What StatMT people do in the

 privacy of their own homes$\operatorname{argmax} P(e \mid f)=$
e
$\operatorname{argmax} P(e) \times P(f \mid e) / P(f)$
e
$\operatorname{argmax} P(e)^{2.4} \times P(f \mid e) \times$ length $(e)^{1.1}$
e
Rewards longer hypotheses, since these are 'unfairly' punished by $\mathrm{P}(\mathrm{e})$

What StatMT people do in the

 privacy of their own homes```
argmax P(e) 2.4 }\timesP(f|e)\times length(e)1.1 x KS 3.7 ...
```

    e
    Lots of knowledge sources vote on any given hypothesis.
"Knowledge source" = "feature function" = "score component" Feature function simply scores a hypothesis with a real value.

## Flaws of Word-Based MT

- Multiple English words for one French word
- IBM models can do one-to-many (fertility) but not many-to-one
- Phrasal Translation
- "real estate", "note that", "interested in"
- Syntactic Transformations
- Verb at the beginning in Arabic
- Translation model penalizes any proposed re-ordering
- Language model not strong enough to force the verb to move to the right place


## Alignments: linguistics



- There isn't enough linguistics to explain this in the translation model ... have to depend on the language model ... that may be unrealistic ... and may be harming our translation model
Phrase-Based Statistical MT


## Phrase-Based Statistical MT



- Foreign input segmented into phrases - "phrase" is any sequence of words
- Each phrase is probabilistically translated into English - P(to the conference | zur Konferenz)
- P (into the meeting | zur Konferenz)
- Phrases are probabilistically re-ordered

See [Koehn et al, 2003] for an intro.
This is the state-of-the-art!

## Advantages of Phrase-Based

- Many-to-many mappings can handle noncompositional phrases
- Local context is very useful for disambiguating
- "interest rate" $\rightarrow$...
- "interest in" $\rightarrow$...
- The more data, the longer the learned phrases
- Sometimes whole sentences


## How to Learn the Phrase Translation Table?

- One method: "alignment templates" (Och et al, 1999)
- Start with word alignment, build phrases from that.



## How to Learn the Phrase Translation Table?

- One method: "alignment templates" (Och et al, 1999)
- Start with word alignment, build phrases from that.



## IBM Models are 1-to-Many

- Run IBM-style aligner both directions, then merge:




## Syntax and Semantics in Statistical MT



## Why Syntax?

- Need much more grammatical output
- Need accurate control over re-ordering
- Need accurate insertion of function words
- Word translations need to depend on grammatically-related words



## Syntax-based Model

- $\mathrm{E} \rightarrow \mathrm{J}$ Translation (Channel) Model

- Preprocess English by a parser
- Probabilistic Operations on a parse-tree

1. Reorder child nodes
2. Insert extra nodes
3. Translate leaf words


## Parameter Table: Translate

| E | adores | he | listening | music | to |
| :---: | :---: | :---: | :---: | :---: | :---: |
| J | daisuki 1.000 | kare 0.952 <br> NULL 0.016 <br> nani 0.005 <br> da 0.003 <br> shi 0.003 <br>   <br>   | $\begin{array}{\|ll} \hline \text { kiku } & 0.333 \\ \text { kii } & 0.333 \\ \text { mi } & 0.333 \end{array}$ | $\begin{array}{\|l\|} \hline \text { ongaku } 0.900 \\ \text { naru } \\ 0.100 \end{array}$ | ni 0.216 <br> NULL 0.204 <br> to 0.133 <br> no 0.046 <br> wo 0.038 <br> $\quad$ 1 |

Note: Translation to NULL $=$ deletion

## Experiment

- Training Corpus: J-E 2K sentence pairs
- J: Tokenized by Chasen [Matsumoto, et al., 1999]
- E: Parsed by Collins Parser [Collins, 1999]
--- Trained: 40K Treebank, Accuracy: ~90\%
- E: Flatten parse tree
--- To Capture word-order difference (SVO->SOV)
- EM Training: 20 Iterations
--- 50 min/iter (Sparc 200Mhz 1-CPU) or
--- 30 sec/iter (Pentium3 700Mhz 30-CPU)


## Result: Alignments

Ave. Score \# perf sent
Y/K Model
0.582

10
$\begin{array}{lll}\text { IBM Model } 5 & 0.431 & 0\end{array}$

- Ave. by 3 humans for 50 sents
- okay(1.0), not sure(0.5), wrong(0.0)
- precision only


## Result: Alignment 2

Syntax-based model


IBM Model 3


## Result: Alignment 3



- Usable Technologies
- "Translation memories" to aid translator
- Low quality screening/web translators
- Technologies
- Traditional: Systran (Altavista Babelfish, what you got till mid-2006 on Google) is now seen as a limited success
- Statistical MT over huge training sets is successful (ISI/LanguageWeaver, Microsoft, Google)
- Key ideas for the future
- Statistical phrases
- Syntax based models
- Better language models in other respects (e.g., grammar)
- Usably efficient decoding models (by restricting model?)

