
Computational Semantics

CS224N 2007

Christopher Manning

(Borrows some slides from Mary Dalrymple,

Jason Eisner, and Jim Martin)

Why study computational
semantics?

•  Because everyone has been wanting me to talk
about this all course!?

•  Obvious high-level applications
•  Summarization

•  Translation

•  Question answering

•  Information access
•  Talking to your pet robot

•  Speech user interfaces

•  The next generation of intelligent applications
need deeper semantics than we have seen so far
•  Often you must understand well to be able to act

Shallow vs. deep semantics

•  We can do more than one might have thought without
deep linguistic analysis
•  This is the lesson of the last decade

•  But we can’t do everything we would like:
•  Not all tasks can ignore higher structure

•  Unsuitable if new text must be generated

•  Unsuitable if machine must act rather than relying on user to
interpret material written by the author of the document

•  You get what you pay for:
•  Cheap, fast, low-level techniques are appropriate in domains

where speed and volume are more important than accuracy

•  More computationally expensive, higher-level techniques are
appropriate when high-quality results are required

MSN Search: Which is the largest
African country?

Live Search: Which is the largest
African country?

Live Search: What is the capital of
Sudan?

MSN Search: Which countries does the
Danube flow through?

MSN Search: What are the capitals of
the countries bordering the Baltic?

Precise semantics. An early example:
Chat-80

•  Developed between 1979 and 1982 by Fernando
Pereira and David Warren; became Pereira’s
dissertation

•  Proof-of-concept natural language interface to
database system

•  Used in projects: e.g. Shoptalk (Cohen et al. 1989), a
natural language and graphical interface for
decision support in manufacturing

•  Even used in an AppliedNLP-2000 conference
paper! [Asking about train routes and schedules]

•  Available in cs224n src directory
•  Need sicstus prolog: /usr/sweet/bin/sicstus

The CHAT-80 Database

% Facts about countries.
% country(Country,Region,Latitude,Longitude,

% Area (sqmiles), Population, Capital,Currency)

country(andorra,southern_europe,42,-1,179,
25000,andorra_la_villa,franc_peseta).

country(angola,southern_africa,-12,-18,481351,
5810000,luanda,?).

country(argentina,south_america,-35,66, 1072067,
23920000,buenos_aires,peso).

capital(C,Cap) :- country(C,_,_,_,_,_,Cap,_).

Chat-80 trace (illegibly small)

Question: What is the capital of
Australia?

Parse: 0.0sec.
whq
 $VAR
 1
 s
 np
 3+sin
 wh(B)
 []
 verb(be,active,pres+fin,[],pos)
 arg
 dir
 np
 3+sin

 np_head
 det(the(sin))
 []
 capital
 pp
 prep(of)
 np
 3+sin
 name(australia)
 []
 []

Semantics: 0.0sec.
answer([B]) :-
 capital(australia,B)

canberra.

Programming Language Interpreter

•  What is meaning of 3+5*6?

•  First parse it into 3+(5*6)
•  Now give a meaning to

each node in the tree
(bottom-up)

+

3 *

5 6

E E F

E

E E

3

F

N

5

N

6

N *

+

3

5 6

30

33

3

5 6

30

33

add
mult

More complex meanings

•  How about 3+5*x?

•  Don’t know x at compile time
•  “Meaning” at a node is a

piece of code, not a number

•  Form is “rule-to-rule”
translation
•  We provide a way to form the

semantics of each parent in
terms of the semantics of the
children

E E F

E

E E

3

F

N

5

N

x

N *

+ 3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

What Counts as Understanding?

•  A somewhat difficult philosophical question

•  We understand if we can respond appropriately
•  “throw axe at dwarf”

•  We understand statement if we can determine its truth

•  We understand statement if we can use it to answer questions
[similar to above – requires reasoning]
•  Easy: John ate pizza. What was eaten by John?

•  Understanding is the ability to translate
•  English to Chinese? requires deep understanding?? String transduction!

•  English to logic? deepest - the definition we’ll use!
•  all humans are mortal = ∀x [human(x) ⇒mortal(x)]

•  We assume we have logic-manipulating rules to tell us how to
act, draw conclusions, answer questions …

Lecture Plan

•  Today:
•  Look at some sentences and phrases

•  What would be reasonable logical representations for them?
•  Get some idea of compositional semantics

•  An alternative semantic approach
•  Semantic grammars

•  Next wednesday:
•  How can we build those representations?

•  Another course (somewhere in AI, hopefully):
•  How can we reason with those representations?

•  Last week of lectures:
•  Lexical semantics

•  Question answering/semantic search/textual entailment

Logic: Some Preliminaries

Three major kinds of objects
1.  Booleans (Bool)

•  Roughly, the semantic values of sentences

2.  Individuals/Entities (Ind)
•  Values of NPs, i.e., objects

•  Maybe also other types of entities, like times

3.  Functions of various types
•  A function returning a boolean is called a “predicate”

•  e.g., frog(x), green(x)

•  A predicate defines a set of individuals that satisfy it

•  A one argument predicate is called a “property”

•  More complex functions return other functions!

•  Some functions take other functions as arguments!
•  (Higher order functions.)

Logic: Lambda Terms
•  Lambda terms:

•  A way of writing “anonymous functions”
•  No function header or function name

•  But defines the key thing: behavior of the function
•  Just as we can talk about 3 without naming it “x”

•  Let square = λp. p*p

•  Equivalent to int square(p) { return p*p; }

•  But we can talk about λp p*p without naming it

•  Format of a lambda term: λ variable . expression

Logic: Lambda Terms

•  Lambda terms:
•  Let square = λp p*p

•  Then square(3) = (λp p*p)(3) = 3*3

•  Note: square(x) isn’t a function! It’s just the value x*x.

•  But λx square(x) = λx x*x = λp p*p = square
(proving that these functions are equal – and indeed they are,

as they act the same on all arguments: what is (λx square(x))(y)?)

•  Let even = λp (p mod 2 == 0) a predicate: returns true/false

•  even(x) is true if x is even

•  How about even(square(x))?

•  λx even(square(x)) is true of numbers with even squares
•  Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)

•  This happens to denote the same predicate as even does

Logic: Multiple Arguments
•  All lambda terms have one argument

•  But we can fake multiple arguments ...

•  Suppose we want to write times(5,6)
•  Remember: square can be written as λx.square(x)

•  Similarly, times is equivalent to λx.[λy.times(x,y)]

•  Claim that times(5)(6) means same as times(5,6)
•  times(5) = (λx.λy.times(x,y)) (5) = λy.times(5,y)

•  If this function weren’t anonymous, what would we call it?

•  times(5)(6) = (λy times(5,y))(6) = times(5,6)

•  Referred to as “currying”

Logic: Interesting Constants
•  We have “constants” that name some of the entities

and functions (e.g., times):
•  GeorgeWBush - an entity
•  red – a predicate on entities

•  holds of just the red entities: red(x) is true if x is red!

•  loves – a predicate on 2 entities
•  loves(GeorgeWBush, LauraBush)

•  Question: What does loves(LauraBush) denote?

•  Constants used to define meanings of words
•  Meanings of phrases will be built from the constants

Logic: Interesting Constants

•  Generalized Quantifiers

•  most – a predicate on 2 predicates on entities
•  most(pig, big) = “most pigs are big”

•  Equivalently, most(λx pig(x), λx big(x))

•  returns true if most of the things satisfying the first predicate
also satisfy the second predicate

•  similarly for other quantifiers
•  all(pig,big) (equivalent to ∀x pig(x) ⇒ big(x))

•  exists(pig,big) (equivalent to ∃x pig(x) AND big(x))

•  can even build complex quantifiers from English phrases:
•  “between 12 and 75”; “a majority of”; “all but the smallest 2”

Quantifier Order

•  Groucho Marx celebrates quantifier order ambiguity:
•  In this country a woman gives birth every 15 min.
Our job is to find that woman and stop her.

• ∃woman (∀15min gives-birth-during(woman, 15min))

• ∀15min (∃woman gives-birth-during(15min, woman))
• Surprisingly, both are possible in natural language!
• Which is the joke meaning?

•  (where it’s always the same woman)

•  We’ve discussed what semantic representations
should look like.

•  But how do we get them from sentences???
•  First - parse to get a syntax tree.
•  Second - look up the semantics for each word.
•  Third - build the semantics for each constituent

•  Work from the bottom up
•  The syntax tree is a “recipe” for how to do it

•  Principle of Compositionality
•  The meaning of a whole is derived from the meanings of the

parts, via composition rules

Compositional Semantics

A simple grammar of English
(in Definite Clause Grammar, DCG, form – as in Prolog)

sentence --> noun_phrase, verb_phrase.

noun_phrase --> proper_noun.
noun_phrase --> determiner, noun.

verb_phrase --> verb, noun_phrase.

Proper_noun --> [John] verb --> [ate]

Proper_noun --> [Mary] verb --> [kissed]
determiner --> [the] noun --> [cake]

determiner--> [a] noun --> [lion]

Extending the grammar to check number
agreement between subjects and verbs

S --> NP(Num), VP(Num).

NP(Num) --> Proper_noun(Num).
NP(Num) --> det(Num), noun(Num).

VP(Num) --> verb(Num), noun_phrase(_).

Proper_noun(s) --> [Mary]. noun(s) --> [lion].

det(s) --> [the]. noun(p) --> [lions].
det(p) --> [the]. verb(s) --> [eats].

 verb(p) --> [eat].

A simple DCG grammar with
semantics

sentence(SMeaning) --> noun_phrase(NPMeaning),
verb_phrase(VPMeaning), {combine (NPMeaning,
VPMeaning, SMeaning)}.

verb_phrase(VPMeaning) --> verb(Vmeaning),
noun_phrase(NPMeaning), {combine (NPMeaning,
VMeaning, VPMeaning)}.

noun_phrase (NPMeaning) --> name(NPMeaning).

name(john) --> [john]. verb(λx.jumps(x)) --> [jumps]

name(mary) --> [mary]. verb(λy.λx.loves(x,y)) -->[loves]

Combine(X, Y, Z) --> apply(Y, X, Z)

Sentence
loves(john,mary)

Noun Phrase
john

Verb Phrase
λx.loves(x,mary)

Name
john

Verb
λy.λx.loves(x,y)

Noun Phrase

Name
mary

“John”
john

“loves”
λy.λx.loves(x,y) “Mary”

mary

Parse tree with associated
semantics

Augmented CFG Rules

•  We can also accomplish this just by attaching semantic
formation rules to our syntactic CFG rules

•  This should be read as the semantics we attach to A can
be computed from some function applied to the
semantics of A’s parts.

•  The functions/operations permitted in the semantic rules
are restricted, falling into two classes
•  Pass the semantics of a daughter up unchanged to the

mother
•  Apply (as a function) the semantics of one of the daughters

of a node to the semantics of the other daughters

)}.,...,.({... 11 semsemfA nn αααα→

How do things get more complex?
(The former) GRE analytic section

•  Six sculptures – C, D, E, F, G, H – are to be exhibited in rooms 1, 2,
and 3 of an art gallery.
•  Sculptures C and E may not be exhibited in the same room.

•  Sculptures D and G must be exhibited in the same room.
•  If sculptures E and F are exhibited in the same room, no other

sculpture may be exhibited in that room.
•  At least one sculpture must be exhibited in each room, and no more

than three sculptures may be exhibited in any room.

•  If sculpture D is exhibited in room 3 and sculptures E and F are
exhibited in room 1, which of the following may be true?
1.  Sculpture C is exhibited in room 1.

2.  Sculpture H is exhibited in room 1.
3.  Sculpture G is exhibited in room 2.

4.  Sculptures C and H are exhibited in the same room.
5.  Sculptures G and F are exhibited in the same room.

Scope Needs to be Resolved!

At least one sculpture must be exhibited in each room.

The same sculpture in each room?

No more than three sculptures may be exhibited in any room.
Reading 1: For every room, there are no more than three sculptures

exhibited in it.

Reading 2: Only three or less sculptures are exhibited (the rest are
not shown).

Reading 3: Only a certain set of three or less sculptures may be
exhibited in any room (for the other sculptures there are
restrictions in allowable rooms).

•  Some readings will be ruled out by being uninformative or by
contradicting other statements

•  Otherwise we must be content with distributions over scope-
resolved semantic forms

Semantic Grammars

•  A problem with traditional linguistic grammars is
that they don’t necessarily reflect the semantics in a
straightforward way

•  You can deal with this by…
•  Fighting with the grammar

•  Complex lambdas and complex terms, etc.

•  Rewriting the grammar to reflect the semantics
•  And in the process give up on some syntactic niceties

•  known as “Semantic grammars”
•  Simple idea, dumb name

Semantic Grammar

•  The term semantic grammar refers to the motivation for
the grammar rules
•  The technology (plain CFG rules with a set of terminals) is the

same as we’ve been using
•  The good thing about them is that you get exactly the

semantic rules you need
•  The bad thing is that you need to develop a new grammar for

each new domain
•  Typically used in conversational agents in constrained

domains
•  Limited vocabulary
•  Limited grammatical complexity
•  Syntactic parsing can often produce all that’s needed for

semantic interpretation even in the face of “ungrammatical”
input – write fragment rules

Lifer Semantic Grammars

•  Example domain—access to DB of US Navy ships
 S <present> the <attribute> of <ship>
 <present> what is | [can you] tell me
 <attribute> length | beam | class
 <ship> the <shipname>
 <shipname> kennedy | enterprise
 <ship> <classname> class ships
 <classname> kitty hawk | lafayette

•  Example inputs recognized by above grammar:
 can you tell me the class of the Enterprise
 what is the length of Kitty Hawk class ships

•  Many categories are not "true" syntactic categories
•  Words are recognized by their context rather than category (e.g.

class)
•  Recognition is strongly directed
•  Strong direction useful for error detection and correction

•  G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J.Slocum. 1978. Developing a natural language
interface to complex data. ACM Transactions on Database Systems 3:105-147

Semantic Grammars Summary

•  Advantages:
•  Efficient recognition of limited domain input
•  Absence of overall grammar allows pattern-matching possibilities

for idioms, etc.
•  No separate interpretation phase
•  Strength of top-down constraints allows powerful ellipsis

mechanisms
What is the length of the Kennedy? The Kittyhawk?

•  Disadvantages:
•  Different grammar required for each new domain
•  Lack of overall syntax can lead to "spotty" grammar coverage

•  E.g. fronting possessive in "<attribute> of <ship>“ to <ship> ’s
<attribute> doesn't imply fronting in "<rank> of <officer>"

•  Difficult to develop grammars past a certain size
•  Suffers from fragility

