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Why study computational 
semantics? 

•  Because everyone has been wanting me to talk 
about this all course!? 

•  Obvious high-level applications 
•  Summarization 

•  Translation 

•  Question answering 

•  Information access 
•  Talking to your pet robot 

•  Speech user interfaces 

•  The next generation of intelligent applications 
need deeper semantics than we have seen so far 
•  Often you must understand well to be able to act 



Shallow vs. deep semantics 

•  We can do more than one might have thought without 
deep linguistic analysis 
•  This is the lesson of the last decade 

•  But we can’t do everything we would like: 
•  Not all tasks can ignore higher structure 

•  Unsuitable if new text must be generated 

•  Unsuitable if machine must act rather than relying on user to 
interpret material written by the author of the document 

•  You get what you pay for: 
•  Cheap, fast, low-level techniques are appropriate in domains 

where speed and volume are more important than accuracy 

•  More computationally expensive, higher-level techniques are 
appropriate when high-quality results are required 



MSN Search: Which is the largest 
African country?  



Live Search: Which is the largest 
African country?  



Live Search: What is the capital of 
Sudan?  



MSN Search: Which countries does the 
Danube flow through? 



MSN Search: What are the capitals of 
the countries bordering the Baltic? 







Precise semantics. An early example: 
Chat-80 

•  Developed between 1979 and 1982 by Fernando 
Pereira and David Warren; became Pereira’s 
dissertation 

•  Proof-of-concept natural language interface to 
database system 

•  Used in projects: e.g. Shoptalk (Cohen et al. 1989), a 
natural language and graphical interface for 
decision support in manufacturing 

•  Even used in an AppliedNLP-2000 conference 
paper! [Asking about train routes and schedules] 

•  Available in cs224n src directory 
•  Need sicstus prolog: /usr/sweet/bin/sicstus 



The CHAT-80 Database 

% Facts about countries. 
% country(Country,Region,Latitude,Longitude, 

%     Area (sqmiles), Population, Capital,Currency) 

country(andorra,southern_europe,42,-1,179, 
25000,andorra_la_villa,franc_peseta). 

country(angola,southern_africa,-12,-18,481351, 
5810000,luanda,?). 

country(argentina,south_america,-35,66, 1072067, 
23920000,buenos_aires,peso). 

capital(C,Cap) :- country(C,_,_,_,_,_,Cap,_). 



Chat-80 trace (illegibly small) 

Question: What is the capital of 
Australia? 

Parse: 0.0sec. 
whq 
   $VAR 
      1 
   s 
      np 
         3+sin 
         wh(B) 
         [] 
      verb(be,active,pres+fin,[],pos) 
      arg 
         dir 
        np 
            3+sin 

        np_head 
           det(the(sin)) 
               [] 
               capital 
            pp 
               prep(of) 
               np 
                  3+sin 
                  name(australia) 
                  [] 
      [] 

Semantics: 0.0sec. 
answer([B]) :- 
   capital(australia,B) 

canberra. 



Programming Language Interpreter 

•  What is meaning of 3+5*6? 

•  First parse it into 3+(5*6) 
•  Now give a meaning to 

each node in the tree 
(bottom-up) 
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More complex meanings 

•  How about 3+5*x? 

•  Don’t know x at compile time 
•  “Meaning” at a node is a 

piece of code, not a number 

•  Form is “rule-to-rule” 
translation 
•  We provide a way to form the 

semantics of each parent in 
terms of the semantics of the 
children 
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What Counts as Understanding? 

•  A somewhat difficult philosophical question 

•  We understand if we can respond appropriately 
•  “throw axe at dwarf” 

•  We understand statement if we can determine its truth 

•  We understand statement if we can use it to answer questions  
[similar to above – requires reasoning] 
•  Easy: John ate pizza.  What was eaten by John? 

•  Understanding is the ability to translate 
•  English to Chinese?     requires deep understanding?? String transduction! 

•  English to logic?      deepest - the definition we’ll use! 
•  all humans are mortal     =    ∀x [human(x) ⇒mortal(x)] 

•  We assume we have logic-manipulating rules to tell us how to 
act, draw conclusions, answer questions …  



Lecture Plan 

•  Today:  
•  Look at some sentences and phrases  

•  What would be reasonable logical representations for them? 
•  Get some idea of compositional semantics 

•  An alternative semantic approach 
•  Semantic grammars 

•  Next wednesday: 
•  How can we build those representations? 

•  Another course (somewhere in AI, hopefully): 
•  How can we reason with those representations? 

•  Last week of lectures: 
•  Lexical semantics 

•  Question answering/semantic search/textual entailment  



Logic: Some Preliminaries 

Three major kinds of objects 
1.  Booleans (Bool) 

•  Roughly, the semantic values of sentences 

2.  Individuals/Entities (Ind) 
•  Values of NPs, i.e., objects 

•  Maybe also other types of entities, like times 

3.  Functions of various types  
•  A function returning a boolean is called a “predicate”  

•  e.g., frog(x), green(x) 

•  A predicate defines a set of individuals that satisfy it 

•  A one argument predicate is called a “property” 

•  More complex functions return other functions! 

•  Some functions take other functions as arguments! 
•  (Higher order functions.) 



Logic: Lambda Terms 
•  Lambda terms:  

•  A way of writing “anonymous functions”  
•  No function header or function name 

•  But defines the key thing: behavior of the function 
•  Just as we can talk about 3 without naming it “x” 

•  Let square = λp. p*p    

•  Equivalent to int square(p) { return p*p; } 

•  But we can talk about λp p*p without naming it 

•  Format of a lambda term: λ variable . expression 



Logic: Lambda Terms 

•  Lambda terms: 
•  Let square = λp p*p    

•  Then square(3)  =  (λp p*p)(3) = 3*3 

•  Note: square(x) isn’t a function!  It’s just the value x*x. 

•  But λx square(x) = λx x*x = λp p*p = square 
(proving that these functions are equal – and indeed they are, 

as they act the same on all arguments: what is (λx square(x))(y)? ) 

•  Let even = λp (p mod 2 == 0)    a predicate: returns true/false 

•  even(x) is true if x is even 

•  How about even(square(x))?   

•  λx even(square(x)) is true of numbers with even squares 
•  Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0) 

•  This happens to denote the same predicate as even does 



Logic: Multiple Arguments 
•  All lambda terms have one argument 

•  But we can fake multiple arguments ... 

•  Suppose we want to write times(5,6) 
•  Remember: square can be written as λx.square(x) 

•  Similarly, times is equivalent to λx.[λy.times(x,y)] 

•  Claim that times(5)(6) means same as times(5,6) 
•  times(5) = (λx.λy.times(x,y)) (5) = λy.times(5,y) 

•  If this function weren’t anonymous, what would we call it? 

•  times(5)(6) = (λy times(5,y))(6) = times(5,6) 

•  Referred to as “currying” 



Logic: Interesting Constants 
•  We have “constants” that name some of the entities 

and functions (e.g., times): 
•  GeorgeWBush  - an entity 
•  red – a predicate on entities 

•  holds of just the red entities: red(x) is true if x is red! 

•  loves – a predicate on 2 entities 
•  loves(GeorgeWBush, LauraBush) 

•  Question: What does loves(LauraBush) denote? 

•  Constants used to define meanings of words 
•  Meanings of phrases will be built from the constants 



Logic: Interesting Constants 

•  Generalized Quantifiers 

•  most – a predicate on 2 predicates on entities 
•  most(pig, big)  = “most pigs are big” 

•  Equivalently,  most(λx pig(x), λx big(x)) 

•  returns true if most of the things satisfying the first predicate 
also satisfy the second predicate 

•  similarly for other quantifiers 
•  all(pig,big)   (equivalent to ∀x pig(x) ⇒ big(x)) 

•  exists(pig,big)   (equivalent to ∃x pig(x) AND big(x)) 

•  can even build complex quantifiers from English phrases: 
•  “between 12 and 75”; “a majority of”; “all but the smallest 2” 



Quantifier Order 

•  Groucho Marx celebrates quantifier order ambiguity: 
•  In this country a woman gives birth every 15 min.  
Our job is to find that woman and stop her. 

• ∃woman (∀15min gives-birth-during(woman, 15min)) 

• ∀15min (∃woman gives-birth-during(15min, woman)) 
• Surprisingly, both are possible in natural language! 
• Which is the joke meaning? 

•  (where it’s always the same woman) 



•  We’ve discussed what semantic representations 
should look like. 

•  But how do we get them from sentences??? 
•  First - parse to get a syntax tree. 
•  Second - look up the semantics for each word. 
•  Third - build the semantics for each constituent 

•  Work from the bottom up 
•  The syntax tree is a “recipe” for how to do it 

•  Principle of Compositionality 
•  The meaning of a whole is derived from the meanings of the 

parts, via composition rules 

Compositional Semantics 



A simple grammar of English 
(in Definite Clause Grammar, DCG, form – as in Prolog) 

sentence --> noun_phrase, verb_phrase. 

noun_phrase --> proper_noun. 
noun_phrase --> determiner, noun. 

verb_phrase --> verb, noun_phrase. 

Proper_noun --> [John]  verb --> [ate] 

Proper_noun --> [Mary]   verb --> [kissed] 
determiner --> [the]     noun --> [cake]   

determiner--> [a]   noun --> [lion] 



Extending the grammar to check number 
agreement between subjects and verbs 

S --> NP(Num), VP(Num). 

NP(Num) --> Proper_noun(Num). 
NP(Num) --> det(Num), noun(Num). 

VP(Num) --> verb(Num), noun_phrase(_). 

Proper_noun(s) --> [Mary]. noun(s) --> [lion]. 

det(s) --> [the].   noun(p) --> [lions]. 
det(p) --> [the].   verb(s) --> [eats]. 

      verb(p) --> [eat]. 



A simple DCG grammar with 
semantics 

sentence(SMeaning) --> noun_phrase(NPMeaning), 
verb_phrase(VPMeaning), {combine (NPMeaning, 
VPMeaning, SMeaning)}. 

verb_phrase(VPMeaning) --> verb(Vmeaning), 
noun_phrase(NPMeaning), {combine (NPMeaning, 
VMeaning, VPMeaning)}. 

noun_phrase (NPMeaning) --> name(NPMeaning). 

name(john) --> [john].  verb(λx.jumps(x)) --> [jumps] 

name(mary) --> [mary]. verb(λy.λx.loves(x,y)) -->[loves] 

Combine(X, Y, Z) --> apply(Y, X, Z) 



Sentence 
loves(john,mary) 

Noun Phrase 
john 

Verb Phrase 
λx.loves(x,mary) 

Name 
john 

Verb 
λy.λx.loves(x,y) 

Noun Phrase 

Name 
mary 

“John” 
john 

“loves” 
λy.λx.loves(x,y) “Mary” 

mary 

Parse tree with associated 
semantics 



Augmented CFG Rules 

•  We can also accomplish this just by attaching semantic 
formation rules to our syntactic CFG rules 

•  This should be read as the semantics we attach to A can 
be computed from some function applied to the 
semantics of A’s parts. 

•  The functions/operations permitted in the semantic rules 
are restricted, falling into two classes 
•  Pass the semantics of a daughter up unchanged to the 

mother 
•  Apply (as a function) the semantics of one of the daughters 

of a node to the semantics of the other daughters 

)}.,...,.({... 11 semsemfA nn αααα→



How do things get more complex? 
(The former) GRE analytic section 

•  Six sculptures – C, D, E, F, G, H – are to be exhibited in rooms 1, 2, 
and 3 of an art gallery. 
•  Sculptures C and E may not be exhibited in the same room. 

•  Sculptures D and G must be exhibited in the same room. 
•  If sculptures E and F are exhibited in the same room, no other 

sculpture may be exhibited in that  room. 
•  At least one sculpture must be exhibited in each room, and no more 

than three sculptures may be exhibited in any room. 

•  If sculpture D is exhibited in room 3 and sculptures E and F are 
exhibited in room 1, which of the following may be true? 
1.  Sculpture C is exhibited in room 1. 

2.  Sculpture H is exhibited in room 1. 
3.  Sculpture G is exhibited in room 2. 

4.  Sculptures C and H are exhibited in the same room. 
5.  Sculptures G and F are exhibited in the same room. 



Scope Needs to be Resolved! 

At least one sculpture must be exhibited in each room. 

The same sculpture in each room? 

No more than three sculptures may be exhibited in any room.  
Reading 1:  For every room, there are no more than three sculptures 

exhibited in it. 

Reading 2: Only three or less sculptures are exhibited ( the rest are 
not shown). 

Reading 3: Only a certain set of three or less sculptures may be 
exhibited in any room ( for the other sculptures there are 
restrictions in allowable rooms). 

•  Some readings will be ruled out by being uninformative or by 
contradicting other statements 

•  Otherwise we must be content with distributions over scope-
resolved semantic forms 



Semantic Grammars 

•  A problem with traditional linguistic grammars is 
that they don’t necessarily reflect the semantics in a 
straightforward way 

•  You can deal with this by… 
•  Fighting with the grammar 

•  Complex lambdas and complex terms, etc. 

•  Rewriting the grammar to reflect the semantics 
•  And in the process give up on some syntactic niceties 

•  known as “Semantic grammars” 
•  Simple idea, dumb name 



Semantic Grammar 

•  The term semantic grammar refers to the motivation for 
the grammar rules 
•  The technology (plain CFG rules with a set of terminals) is the 

same as we’ve been using 
•  The good thing about them is that you get exactly the 

semantic rules you need 
•  The bad thing is that you need to develop a new grammar for 

each new domain 
•  Typically used in conversational agents in constrained 

domains 
•  Limited vocabulary 
•  Limited grammatical complexity 
•  Syntactic parsing can often produce all that’s needed for 

semantic interpretation even in the face of “ungrammatical” 
input – write fragment rules 



Lifer Semantic Grammars 

•  Example domain—access to DB of US Navy ships 
 S    <present> the <attribute> of <ship> 
 <present>   what is | [can you] tell me 
 <attribute>   length | beam | class 
 <ship>   the <shipname> 
 <shipname>   kennedy | enterprise 
 <ship>   <classname> class ships 
 <classname> kitty hawk | lafayette 

•  Example inputs recognized by above grammar: 
 can you tell me the class of the Enterprise 
 what is the length of Kitty Hawk class ships 

•  Many categories are not "true" syntactic categories 
•  Words are recognized by their context rather than category (e.g. 

class) 
•  Recognition is strongly directed 
•  Strong direction useful for error detection and correction 

•  G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J.Slocum. 1978. Developing a natural language 
interface to complex data. ACM Transactions on Database Systems 3:105-147 



Semantic Grammars Summary 

•  Advantages: 
•  Efficient recognition of limited domain input 
•  Absence of overall grammar allows pattern-matching possibilities 

for idioms, etc. 
•  No separate interpretation phase 
•  Strength of top-down constraints allows powerful ellipsis 

mechanisms 
What is the length of the Kennedy?  The Kittyhawk? 

•  Disadvantages: 
•  Different grammar required for each new domain 
•  Lack of overall syntax can lead to "spotty" grammar coverage 

•  E.g. fronting possessive in "<attribute> of <ship>“ to <ship> ’s 
<attribute> doesn't imply fronting in "<rank> of <officer>" 

•  Difficult to develop grammars past a certain size 
•  Suffers from fragility 


