
Statistical Natural Language Parsing

Christopher Manning

Parsing in the early 1990s

•  The parsers produced detailed, linguistically rich
representations

•  Parsers had uneven and usually rather poor
coverage
•  E.g., 30% of sentences received no analysis

•  Even quite simple sentences had many possible
analyses
•  Parsers either had no method to choose between them

or a very ad hoc treatment of parse preferences

•  Parsers could not be learned from data
•  Parser performance usually wasn’t or couldn’t be

assessed quantitatively and the performance of
different parsers was often incommensurable

Statistical parsing

•  Over the last 15 years statistical parsing has
succeeded wonderfully!

•  NLP researchers have produced a range of (often
free, open source) statistical parsers, which can
parse any sentence and often get most of it
correct

•  These parsers are now a commodity component
•  The parsers are still improving year-on-year.

•  Collins (C) or Bikel reimplementation (Java)
•  Charniak or Johnson-Charniak parser (C++)

•  Stanford Parser (Java)

•  …

Statistical parsing applications

•  High precision question answering systems
(Pasca and Harabagiu SIGIR 2001)

•  Improving biological named entity extraction
(Finkel et al. JNLPBA 2004):

•  Syntactically based sentence compression (Lin
and Wilbur Inf. Retr. 2007)

•  Extracting people’s opinions about products
(Bloom et al. NAACL 2007)

•  Improved interaction in computer games
(Gorniak and Roy, AAAI 2005)

•  Helping linguists find data (Resnik et al. BLS
2005)

Ambiguity: natural languages vs.
programming languages

•  Programming languages have only local
ambiguities, which a parser can resolve with
lookahead (and conventions)

•  Natural languages have global ambiguities
•  I saw that gasoline can explode

•  “Construe an else statement with which if makes most
sense.”

Classical NLP Parsing

•  Wrote symbolic grammar and lexicon
•  S → NP VP NN → interest
•  NP → (DT) NN NNS → rates
•  NP → NN NNS NNS → raises
•  NP → NNP VBP → interest
•  VP → V NP VBZ → rates
•  …

•  Used proof systems to prove parses from words

•  This scaled very badly and didn’t give coverage
•  Minimal grammar on “Fed raises” sentence: 36 parses
•  Simple 10 rule grammar: 592 parses
•  Real-size broad-coverage grammar: millions of parses

Classical NLP Parsing:
The problem and its solution

•  Very constrained grammars attempt to limit
unlikely/weird parses for sentences
•  But the attempt make the grammars not robust: many

sentences have no parse

•  A less constrained grammar can parse more
sentences
•  But simple sentences end up with ever more parses

•  Solution: We need mechanisms that allow us to
find the most likely parse(s)
•  Statistical parsing lets us work with very loose

grammars that admit millions of parses for sentences
but to still quickly find the best parse(s)

The rise of annotated data:
The Penn Treebank

((S
 (NP-SBJ (DT The) (NN move))
 (VP (VBD followed)
 (NP
 (NP (DT a) (NN round))
 (PP (IN of)
 (NP
 (NP (JJ similar) (NNS increases))
 (PP (IN by)
 (NP (JJ other) (NNS lenders)))
 (PP (IN against)
 (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
 (, ,)
 (S-ADV
 (NP-SBJ (-NONE- *))
 (VP (VBG reflecting)
 (NP
 (NP (DT a) (VBG continuing) (NN decline))
 (PP-LOC (IN in)
 (NP (DT that) (NN market)))))))
 (. .)))

The rise of annotated data

•  Starting off, building a treebank seems a lot
slower and less useful than building a grammar

•  But a treebank gives us many things
•  Reusability of the labor

•  Broad coverage
•  Frequencies and distributional information

•  A way to evaluate systems

Two views of linguistic structure:
1. Constituency (phrase structure)

•  Phrase structure organizes words into nested
constituents.

•  How do we know what is a constituent? (Not
that linguists don't argue about some cases.)
•  Distribution: a constituent behaves as a unit

that can appear in different places:
•  John talked [to the children] [about drugs].

•  John talked [about drugs] [to the children].

•  *John talked drugs to the children about

•  Substitution/expansion/pro-forms:
•  I sat [on the box/right on top of the box/there].

•  Coordination, regular internal structure, no
intrusion, fragments, semantics, …

Two views of linguistic structure:
2. Dependency structure

•  Dependency structure shows which words depend on
(modify or are arguments of) which other words.

The boy put the tortoise on the rug
rug

the
the

on tortoise

put

boy

The

Attachment ambiguities:
Two possible PP attachments

Attachment ambiguities

•  The key parsing decision: How do we ‘attach’
various kinds of constituents – PPs, adverbial or
participial phrases, coordinations, etc.

•  Prepositional phrase attachment:
•  I saw the man with a telescope

•  What does with a telescope modify?
•  The verb saw?

•  The noun man?

•  Is the problem ‘AI complete’? Yes, but …

Attachment ambiguities

•  Proposed simple structural factors
•  Right association (Kimball 1973) = ‘low’ or ‘near’ attachment

= ‘early closure’ (of NP)

•  Minimal attachment (Frazier 1978). Effects depend on
grammar, but gave ‘high’ or ‘distant’ attachment = ‘late
closure’ (of NP) under the assumed model

•  Which is right?
•  Such simple structural factors dominated in early

psycholinguistics (and are still widely invoked).

•  In the V NP PP context, right attachment usually gets right
55–67% of cases.

•  But that means it gets wrong 33–45% of cases.

Attachment ambiguities

•  Words are good predictors of attachment (even
absent understanding)
•  The children ate the cake with a spoon
•  The children ate the cake with frosting

•  Moscow sent more than 100,000 soldiers into
Afghanistan …

•  Sydney Water breached an agreement with NSW Health
…

The importance of lexical factors

•  Ford, Bresnan, and Kaplan (1982) [promoting
‘lexicalist’ linguistic theories] argued:
•  Order of grammatical rule processing [by a person]

determines closure effects

•  Ordering is jointly determined by strengths of
alternative lexical forms, strengths of alternative
syntactic rewrite rules, and the sequences of
hypotheses in the parsing process.

•  “It is quite evident, then, that the closure effects in
these sentences are induced in some way by the choice
of the lexical items.” (Psycholinguistic studies show
that this is true independent of discourse context.)

A simple prediction

•  Use a likelihood ratio:
•  E.g.,

•  P(with|agreement) = 0.15

•  P(with|breach) = 0.02

•  LR(breach, agreement, with) = 0.13
→ Choose noun attachment

€

LR(v,n, p) =
P(p | v)
P(p | n)

A problematic example

•  Chrysler confirmed that it would end its troubled
venture with Maserati.

•  Should be a noun attachment but get wrong
answer:
•  w C(w) C(w, with)

•  end 5156 607

•  venture 1442 155

€

P(with | v) =
607
5156

≈ 0.118 > P(with | n) =
155
1442

≈ 0.107

A problematic example

•  What might be wrong here?
•  If you see a V NP PP sequence, then for the PP to attach

to the V, then it must also be the case that the NP
doesn’t have a PP (or other postmodifier)
•  Since, except in extraposition cases, such dependencies

can’t cross

•  Parsing allows us to factor in and integrate such
constraints.

A better predictor would use n2
as well as v, n1, p

Attachment ambiguities in a real
sentence

•  Catalan numbers
•  Cn = (2n)!/[(n+1)!n!]

•  An exponentially growing series, which arises in many tree-like contexts:
•  E.g., the number of possible triangulations of a polygon with n+2 sides

What is parsing?

•  We want to run a grammar backwards to find
possible structures for a sentence

•  Parsing can be viewed as a search problem
•  Parsing is a hidden data problem

•  For the moment, we want to examine all
structures for a string of words

•  We can do this bottom-up or top-down
•  This distinction is independent of depth-first or

breadth-first search – we can do either both ways

•  We search by building a search tree which his distinct
from the parse tree

A phrase structure grammar

•  S → NP VP N → cats
•  VP → V NP N → claws
•  VP → V NP PP N → people
•  NP → NP PP N → scratch
•  NP → N V → scratch
•  NP → e P → with
•  NP → N N
•  PP → P NP

•  By convention, S is the start symbol, but in the PTB,
we have an extra node at the top (ROOT, TOP)

Phrase structure grammars =
context-free grammars

•  G = (T, N, S, R)
•  T is set of terminals

•  N is set of nonterminals
•  For NLP, we usually distinguish out a set P ⊂ N of

preterminals, which always rewrite as terminals

•  S is the start symbol (one of the nonterminals)

•  R is rules/productions of the form X → γ, where X is a
nonterminal and γ is a sequence of terminals and
nonterminals (possibly an empty sequence)

•  A grammar G generates a language L.

Soundness and completeness

•  A parser is sound if every parse it returns is
valid/correct

•  A parser terminates if it is guaranteed to not go
off into an infinite loop

•  A parser is complete if for any given grammar
and sentence, it is sound, produces every valid
parse for that sentence, and terminates

•  (For many purposes, we settle for sound but
incomplete parsers: e.g., probabilistic parsers
that return a k-best list.)

Top-down parsing

•  Top-down parsing is goal directed
•  A top-down parser starts with a list of

constituents to be built. The top-down parser
rewrites the goals in the goal list by matching
one against the LHS of the grammar rules, and
expanding it with the RHS, attempting to match
the sentence to be derived.

•  If a goal can be rewritten in several ways, then
there is a choice of which rule to apply (search
problem)

•  Can use depth-first or breadth-first search, and
goal ordering.

Top-down parsing

Problems with top-down parsing

•  Left recursive rules
•  A top-down parser will do badly if there are many different

rules for the same LHS. Consider if there are 600 rules for
S, 599 of which start with NP, but one of which starts with
V, and the sentence starts with V.

•  Useless work: expands things that are possible top-down
but not there

•  Top-down parsers do well if there is useful grammar-
driven control: search is directed by the grammar

•  Top-down is hopeless for rewriting parts of speech
(preterminals) with words (terminals). In practice that is
always done bottom-up as lexical lookup.

•  Repeated work: anywhere there is common substructure

Bottom-up parsing

•  Bottom-up parsing is data directed

•  The initial goal list of a bottom-up parser is the string to
be parsed. If a sequence in the goal list matches the RHS
of a rule, then this sequence may be replaced by the LHS
of the rule.

•  Parsing is finished when the goal list contains just the
start category.

•  If the RHS of several rules match the goal list, then there
is a choice of which rule to apply (search problem)

•  Can use depth-first or breadth-first search, and goal
ordering.

•  The standard presentation is as shift-reduce parsing.

Shift-reduce parsing: one path

 cats scratch people with claws
cats scratch people with claws SHIFT
N scratch people with claws REDUCE
NP scratch people with claws REDUCE
NP scratch people with claws SHIFT
NP V people with claws REDUCE
NP V people with claws SHIFT
NP V N with claws REDUCE

NP V NP with claws REDUCE
NP V NP with claws SHIFT
NP V NP P claws REDUCE
NP V NP P claws SHIFT
NP V NP P N REDUCE
NP V NP P NP REDUCE
NP V NP PP REDUCE

NP VP REDUCE
S REDUCE

What other search paths are there for parsing this sentence?

Problems with bottom-up parsing

•  Unable to deal with empty categories:
termination problem, unless rewriting empties
as constituents is somehow restricted (but then
it’s generally incomplete)

•  Useless work: locally possible, but globally
impossible.

•  Inefficient when there is great lexical ambiguity
(grammar-driven control might help here)

•  Conversely, it is data-directed: it attempts to
parse the words that are there.

•  Repeated work: anywhere there is common
substructure

Repeated work…

Principles for success: take 1

•  If you are going to do parsing-as-search with a
grammar as is:
•  Left recursive structures must be found, not predicted
•  Empty categories must be predicted, not found

•  Doing these things doesn't fix the repeated work
problem:
•  Both TD (LL) and BU (LR) parsers can (and frequently

do) do work exponential in the sentence length on NLP
problems.

Principles for success: take 2

•  Grammar transformations can fix both left-
recursion and epsilon productions

•  Then you parse the same language but with
different trees

•  Linguists tend to hate you
•  But this is a misconception: they shouldn't
•  You can fix the trees post hoc:

•  The transform-parse-detransform paradigm

•  But the big problem is the global ambiguities
leading to exponentially many parses

Principles for success: take 3

•  Rather than doing parsing-as-search, we do
parsing as dynamic programming

•  This is the most standard way to do things
•  E.g., CKY parsing

•  It solves the problem of doing repeated work

•  But there are also other ways of solving the
problem of doing repeated work
•  Memoization (remembering solved subproblems)

•  Doing graph-search rather than tree-search.

Human parsing

•  Humans often do ambiguity maintenance
•  Have the police … eaten their supper?

•  come in and look around.
•  taken out and shot.

•  But humans also commit early and are “garden
pathed”:
•  The man who hunts ducks out on weekends.

•  The cotton shirts are made from grows in Mississippi.

•  The horse raced past the barn fell.

Polynomial time parsing of PCFGs

Probabilistic or stochastic
context-free grammars (PCFGs)

•  G = (T, N, S, R, P)
•  T is set of terminals

•  N is set of nonterminals
•  For NLP, we usually distinguish out a set P ⊂ N of

preterminals, which always rewrite as terminals
•  S is the start symbol (one of the nonterminals)

•  R is rules/productions of the form X → γ, where X is a
nonterminal and γ is a sequence of terminals and
nonterminals (possibly an empty sequence)

•  P(R) gives the probability of each rule.

•  A grammar G generates a language model L.

€

∀X ∈ N, P(X →γ) =1
X→γ ∈R
∑

€

P(γ) =1
γ ∈T *∑

PCFGs – Notation

•  w1n = w1 … wn = the word sequence from 1 to n
(sentence of length n)

•  wab = the subsequence wa … wb
•  Nj

ab
 = the nonterminal Nj dominating wa … wb

 Nj

 wa … wb

•  We’ll write P(Ni → ζj) to mean P(Ni → ζj | Ni)

•  We’ll want to calculate maxt P(t ⇒* wab)

The probability of trees and
strings

•  P(t) -- The probability of tree is the product of
the probabilities of the rules used to generate it.

•  P(w1n) -- The probability of the string is the sum
of the probabilities of the trees which have that
string as their yield

 P(w1n) = Σj P(w1n, t) where t is a parse of w1n

 = Σj P(t)

A Simple PCFG (in CNF)

S → NP VP 1.0

VP → V NP 0.7

VP → VP PP 0.3

PP → P NP 1.0
P → with 1.0

V → saw 1.0

 NP → NP PP 0.4

 NP → astronomers 0.1

 NP → ears 0.18

 NP → saw 0.04
 NP → stars 0.18

 NP → telescopes 0.1

Tree and String Probabilities

•  w15 = astronomers saw stars with ears
•  P(t1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18
 * 1.0 * 1.0 * 0.18
 = 0.0009072
•  P(t2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18
 * 1.0 * 1.0 * 0.18
 = 0.0006804
•  P(w15) = P(t1) + P(t2)
 = 0.0009072 + 0.0006804
 = 0.0015876

Chomsky Normal Form

•  All rules are of the form X → Y Z or X → w.

•  A transformation to this form doesn’t change
the weak generative capacity of CFGs.
•  With some extra book-keeping in symbol names, you

can even reconstruct the same trees with a detransform

•  Unaries/empties are removed recursively

•  n-ary rules introduce new nonterminals (n > 2)
•  VP → V NP PP becomes VP → V @VP-V and @VP-V → NP PP

•  In practice it’s a pain
•  Reconstructing n-aries is easy

•  Reconstructing unaries can be trickier

•  But it makes parsing easier/more efficient

N-ary Trees in Treebank

Lexicon and Grammar

Binary Trees

TreeAnnotations.annotateTree

Parsing

TODO:
CKY parsing

Treebank binarization

ROOT

S

NP VP

N

cats

V NP PP

P NP

claws with people scratch

N
N

An example: before binarization…

P

NP

claws

N

@PP->_P

with

NP

N

cats people scratch

N

VP

V NP PP

@VP->_V

@VP->_V_NP

ROOT

S

@S->_NP

After binarization…

Treebank: empties and unaries

TOP

S-HLN

NP-SUBJ VP

VB -NONE-

ε Atone

PTB Tree

TOP

S

NP VP

VB -NONE-

ε Atone

NoFuncTags

TOP

S

VP

VB

Atone

NoEmpties

TOP

S

Atone

NoUnaries

TOP

VB

Atone

High Low

Constituency Parsing

Rule Probs θi

θ0: S → NP VP

θ1: NP → NN NNS

…

θ42: NN→Factory

θ43: NNS→payrolls

…

PCFG

Cocke-Kasami-Younger (CKY)
Constituency Parsing

Factory payrolls fell in September

(Max) Inside Scores

Factory payrolls

NN 0.0023
NNP 0.001

NNS 0.0014

NP→NN NNS 0.13
iNP = (0.13)(0.0023)

(0.0014)
 = 1.87 × 10-7

NP→NNP NNS 0.056
iNP = (0.056)(0.001)

(0.0014)
 = 7.84 × 10-8

NP 1.87 × 10-7

