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Parsing in the early 1990s 

•  The parsers produced detailed, linguistically rich 
representations 

•  Parsers had uneven and usually rather poor 
coverage 
•  E.g., 30% of sentences received no analysis 

•  Even quite simple sentences had many possible 
analyses 
•  Parsers either had no method to choose between them 

or a very ad hoc treatment of parse preferences 

•  Parsers could not be learned from data 
•  Parser performance usually wasn’t or couldn’t be 

assessed quantitatively and the performance of 
different parsers was often incommensurable 



Statistical parsing 

•  Over the last 15 years statistical parsing has 
succeeded wonderfully! 

•  NLP researchers have produced a range of (often 
free, open source) statistical parsers, which can 
parse any sentence and often get most of it 
correct 

•  These parsers are now a commodity component 
•  The parsers are still improving year-on-year. 

•  Collins (C) or Bikel reimplementation (Java) 
•  Charniak or Johnson-Charniak parser (C++) 

•  Stanford Parser (Java) 

•  … 



Statistical parsing applications 

•  High precision question answering systems 
(Pasca and Harabagiu SIGIR 2001) 

•  Improving biological named entity extraction 
(Finkel et al. JNLPBA 2004): 

•  Syntactically based sentence compression (Lin 
and Wilbur Inf. Retr. 2007) 

•  Extracting people’s opinions about products 
(Bloom et al. NAACL 2007) 

•  Improved interaction in computer games 
(Gorniak and Roy, AAAI 2005) 

•  Helping linguists find data (Resnik et al. BLS 
2005) 



Ambiguity: natural languages vs. 
programming languages 

•  Programming languages have only local 
ambiguities, which a parser can resolve with 
lookahead (and conventions) 

•  Natural languages have global ambiguities 
•  I saw that gasoline can explode 

•  “Construe an else statement with which if makes most 
sense.” 



Classical NLP Parsing 

•  Wrote symbolic grammar and lexicon 
•  S → NP VP   NN → interest 
•  NP → (DT) NN   NNS → rates 
•  NP → NN NNS   NNS → raises 
•  NP → NNP   VBP → interest 
•  VP →  V NP   VBZ → rates 
•  … 

•  Used proof systems to prove parses from words 

•  This scaled very badly and didn’t give coverage 
•  Minimal grammar on “Fed raises” sentence: 36 parses 
•  Simple 10 rule grammar: 592 parses 
•  Real-size broad-coverage grammar: millions of parses 



Classical NLP Parsing: 
The problem and its solution 

•  Very constrained grammars attempt to limit 
unlikely/weird parses for sentences 
•  But the attempt make the grammars not robust: many 

sentences have no parse 

•  A less constrained grammar can parse more 
sentences 
•  But simple sentences end up with ever more parses 

•  Solution: We need mechanisms that allow us to 
find the most likely parse(s) 
•  Statistical parsing lets us work with very loose 

grammars that admit millions of parses for sentences 
but to still quickly find the best parse(s) 



The rise of annotated data: 
The Penn Treebank 

( (S 
    (NP-SBJ (DT The) (NN move)) 
    (VP (VBD followed) 
      (NP 
        (NP (DT a) (NN round)) 
        (PP (IN of) 
          (NP 
            (NP (JJ similar) (NNS increases)) 
            (PP (IN by) 
              (NP (JJ other) (NNS lenders))) 
            (PP (IN against) 
              (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans)))))) 
      (, ,) 
      (S-ADV 
        (NP-SBJ (-NONE- *)) 
        (VP (VBG reflecting) 
          (NP 
            (NP (DT a) (VBG continuing) (NN decline)) 
            (PP-LOC (IN in) 
              (NP (DT that) (NN market))))))) 
    (. .))) 



The rise of annotated data 

•  Starting off, building a treebank seems a lot 
slower and less useful than building a grammar 

•  But a treebank gives us many things 
•  Reusability of the labor 

•  Broad coverage 
•  Frequencies and distributional information 

•  A way to evaluate systems 



Two views of linguistic structure: 
1. Constituency (phrase structure) 

•  Phrase structure organizes words into nested 
constituents. 

•  How do we know what is a constituent?  (Not 
that linguists don't argue about some cases.) 
•  Distribution: a constituent behaves as a unit 

that can appear in different places: 
•  John talked [to the children] [about drugs]. 

•  John talked [about drugs] [to the children]. 

•  *John talked drugs to the children about 

•  Substitution/expansion/pro-forms: 
•  I sat [on the box/right on top of the box/there]. 

•  Coordination, regular internal structure, no 
intrusion, fragments, semantics, … 



Two views of linguistic structure: 
2. Dependency structure 

•  Dependency structure shows which words depend on 
(modify or are arguments of) which other words. 

The boy put the tortoise on the rug 
rug 

the 
the 

on tortoise 

put 

boy 

The 



Attachment ambiguities:  
Two possible PP attachments 



Attachment ambiguities 

•  The key parsing decision: How do we ‘attach’ 
various kinds of constituents – PPs, adverbial or 
participial phrases, coordinations, etc. 

•  Prepositional phrase attachment: 
•  I saw the man with a telescope 

•  What does with a telescope modify?   
•  The verb saw? 

•  The noun man? 

•  Is the problem ‘AI complete’? Yes, but … 



Attachment ambiguities 

•  Proposed simple structural factors 
•  Right association (Kimball 1973) = ‘low’ or ‘near’ attachment 

= ‘early closure’ (of NP) 

•  Minimal attachment (Frazier 1978). Effects depend on 
grammar, but gave ‘high’ or ‘distant’ attachment = ‘late 
closure’ (of NP) under the assumed model 

•  Which is right? 
•  Such simple structural factors dominated in early 

psycholinguistics (and are still widely invoked). 

•  In the V NP PP context, right attachment usually gets right 
55–67% of cases. 

•  But that means it gets wrong 33–45% of cases. 



Attachment ambiguities  

•  Words are good predictors of attachment (even 
absent understanding) 
•  The children ate the cake with a spoon 
•  The children ate the cake with frosting 

•  Moscow sent more than 100,000 soldiers into 
Afghanistan … 

•  Sydney Water breached an agreement with NSW Health 
… 



The importance of lexical factors

•  Ford, Bresnan, and Kaplan (1982) [promoting 
‘lexicalist’ linguistic theories] argued: 
•  Order of grammatical rule processing [by a person] 

determines closure effects 

•  Ordering is jointly determined by strengths of 
alternative lexical forms, strengths of alternative 
syntactic rewrite rules, and the sequences of 
hypotheses in the parsing process. 

•  “It is quite evident, then, that the closure effects in 
these sentences are induced in some way by the choice 
of the lexical items.” (Psycholinguistic studies show 
that this is true independent of discourse context.) 



A simple prediction 

•  Use a likelihood ratio: 
•  E.g., 

•  P(with|agreement) = 0.15 

•  P(with|breach) = 0.02 

•  LR(breach, agreement, with) = 0.13 
→ Choose noun attachment  

€ 

LR(v,n, p) =
P(p | v)
P(p | n)



A problematic example 

•  Chrysler confirmed that it would end its troubled 
venture with Maserati. 

•  Should be a noun attachment but get wrong 
answer: 
•  w  C(w)  C(w, with) 

•  end 5156  607 

•  venture 1442  155 

€ 

P(with | v) =
607
5156

≈ 0.118 > P(with | n) =
155
1442

≈ 0.107



A problematic example  

•  What might be wrong here? 
•  If you see a V NP PP sequence, then for the PP to attach 

to the V, then it must also be the case that the NP 
doesn’t have a PP (or other postmodifier) 
•  Since, except in extraposition cases, such dependencies 

can’t cross 

•  Parsing allows us to factor in and integrate such 
constraints. 



A better predictor would use n2 
as well as v, n1, p 



Attachment ambiguities in a real 
sentence 

•  Catalan numbers 
•  Cn = (2n)!/[(n+1)!n!] 

•  An exponentially growing series, which arises in many tree-like contexts: 
•  E.g., the number of possible triangulations of a polygon with n+2 sides 



What is parsing? 

•  We want to run a grammar backwards to find 
possible structures for a sentence 

•  Parsing can be viewed as a search problem 
•  Parsing is a hidden data problem 

•  For the moment, we want to examine all 
structures for a string of words 

•  We can do this bottom-up or top-down 
•  This distinction is independent of depth-first or 

breadth-first search – we can do either both ways 

•  We search by building a search tree which his distinct 
from the parse tree 



A phrase structure grammar 

•  S → NP  VP  N → cats 
•  VP → V  NP  N → claws 
•  VP → V  NP  PP  N → people 
•  NP → NP  PP  N → scratch 
•  NP → N   V → scratch 
•  NP → e   P → with 
•  NP → N  N 
•  PP → P  NP 

•  By convention, S is the start symbol, but in the PTB, 
we have an extra node at the top (ROOT, TOP) 



Phrase structure grammars = 
context-free grammars 

•  G = (T, N, S, R) 
•  T is set of terminals 

•  N is set of nonterminals 
•  For NLP, we usually distinguish out a set P ⊂ N of 

preterminals, which always rewrite as terminals 

•  S is the start symbol (one of the nonterminals) 

•  R is rules/productions of the form X → γ, where X is a 
nonterminal and γ is a sequence of terminals and 
nonterminals (possibly an empty sequence) 

•  A grammar G generates a language L. 



Soundness and completeness 

•  A parser is sound if every parse it returns is 
valid/correct 

•  A parser terminates if it is guaranteed to not go 
off into an infinite loop 

•  A parser is complete if for any given grammar 
and sentence, it is sound, produces every valid 
parse for that sentence, and terminates 

•  (For many purposes, we settle for sound but 
incomplete parsers: e.g., probabilistic parsers 
that return a k-best list.) 



Top-down parsing 

•  Top-down parsing is goal directed 
•  A top-down parser starts with a list of 

constituents to be built. The top-down parser 
rewrites the goals in the goal list by matching 
one against the LHS of the grammar rules, and 
expanding it with the RHS, attempting to match 
the sentence to be derived. 

•  If a goal can be rewritten in several ways, then 
there is a choice of which rule to apply (search 
problem) 

•  Can use depth-first or breadth-first search, and 
goal ordering. 



Top-down parsing 



Problems with top-down parsing 

•  Left recursive rules 
•  A top-down parser will do badly if there are many different 

rules for the same LHS.  Consider if there are 600 rules for 
S, 599 of which start with NP, but one of which starts with 
V, and the sentence starts with V. 

•  Useless work: expands things that are possible top-down 
but not there 

•  Top-down parsers do well if there is useful grammar-
driven control: search is directed by the grammar 

•  Top-down is hopeless for rewriting parts of speech 
(preterminals) with words (terminals).  In practice that is 
always done bottom-up as lexical lookup. 

•  Repeated work: anywhere there is common substructure 



Bottom-up parsing 

•  Bottom-up parsing is data directed 

•  The initial goal list of a bottom-up parser is the string to 
be parsed. If a sequence in the goal list matches the RHS 
of a rule, then this sequence may be replaced by the LHS 
of the rule. 

•  Parsing is finished when the goal list contains just the 
start category. 

•  If the RHS of several rules match the goal list, then there 
is a choice of which rule to apply (search problem) 

•  Can use depth-first or breadth-first search, and goal 
ordering. 

•  The standard presentation is as shift-reduce parsing. 



Shift-reduce parsing: one path 

    cats scratch people with claws 
cats   scratch people with claws  SHIFT 
N    scratch people with claws  REDUCE 
NP    scratch people with claws  REDUCE 
NP scratch  people with claws   SHIFT 
NP V    people with claws   REDUCE 
NP V people  with claws    SHIFT 
NP V N   with claws    REDUCE 

NP V NP   with claws    REDUCE 
NP V NP with  claws    SHIFT 
NP V NP P   claws    REDUCE 
NP V NP P claws      SHIFT 
NP V NP P N      REDUCE 
NP V NP P NP      REDUCE 
NP V NP PP      REDUCE 

NP VP       REDUCE 
S        REDUCE 

What other search paths are there for parsing this sentence? 



Problems with bottom-up parsing 

•  Unable to deal with empty categories: 
termination problem, unless rewriting empties 
as constituents is somehow restricted (but then 
it’s generally incomplete) 

•  Useless work: locally possible, but globally 
impossible. 

•  Inefficient when there is great lexical ambiguity 
(grammar-driven control might help here) 

•  Conversely, it is data-directed: it attempts to 
parse the words that are there. 

•  Repeated work: anywhere there is common 
substructure 



Repeated work… 



Principles for success: take 1 

•  If you are going to do parsing-as-search with a 
grammar as is: 
•  Left recursive structures must be found, not predicted 
•  Empty categories must be predicted, not found 

•  Doing these things doesn't fix the repeated work 
problem: 
•  Both TD (LL) and BU (LR) parsers can (and frequently 

do) do work exponential in the sentence length on NLP 
problems. 



Principles for success: take 2 

•  Grammar transformations can fix both left-
recursion and epsilon productions 

•  Then you parse the same language but with 
different trees 

•  Linguists tend to hate you 
•  But this is a misconception: they shouldn't 
•  You can fix the trees post hoc: 

•  The transform-parse-detransform paradigm 

•  But the big problem is the global ambiguities 
leading to exponentially many parses 



Principles for success: take 3 

•  Rather than doing parsing-as-search, we do 
parsing as dynamic programming 

•  This is the most standard way to do things 
•  E.g., CKY parsing 

•  It solves the problem of doing repeated work 

•  But there are also other ways of solving the 
problem of doing repeated work 
•  Memoization (remembering solved subproblems) 

•  Doing graph-search rather than tree-search. 



Human parsing 

•  Humans often do ambiguity maintenance 
•  Have the police … eaten their supper? 

•                               come in and look around. 
•                               taken out and shot. 

•  But humans also commit early and are “garden 
pathed”: 
•  The man who hunts ducks out on weekends. 

•  The cotton shirts are made from grows in Mississippi. 

•  The horse raced past the barn fell. 



Polynomial time parsing of PCFGs 



Probabilistic or stochastic 
context-free grammars (PCFGs) 

•  G = (T, N, S, R, P) 
•  T is set of terminals 

•  N is set of nonterminals 
•  For NLP, we usually distinguish out a set P ⊂ N of 

preterminals, which always rewrite as terminals 
•  S is the start symbol (one of the nonterminals) 

•  R is rules/productions of the form X → γ, where X is a 
nonterminal and γ is a sequence of terminals and 
nonterminals (possibly an empty sequence) 

•  P(R) gives the probability of each rule. 

•  A grammar G generates a language model L. 

€ 

∀X ∈ N, P(X →γ) =1
X→γ ∈R
∑

€ 

P(γ) =1
γ ∈T *∑



PCFGs – Notation 

•  w1n = w1 … wn  = the word sequence from 1 to n 
(sentence of length n)  

•  wab = the subsequence wa … wb   
•  Nj

ab
  = the nonterminal Nj dominating wa … wb  

                         Nj 

                 wa … wb 

•  We’ll write P(Ni  → ζj) to mean    P(Ni → ζj | Ni ) 

•  We’ll want to calculate maxt P(t ⇒* wab) 



The probability of trees and 
strings 

•  P(t) -- The probability of tree is the product of 
the probabilities of the rules used to generate it. 

•  P(w1n) -- The probability of the string is the sum 
of the probabilities of the trees which have that 
string as their yield 

    P(w1n) = Σj P(w1n, t)  where t is a parse of w1n  

                   = Σj P(t)  



A Simple PCFG (in CNF) 

S      →    NP  VP       1.0      

VP    →    V  NP         0.7 

VP    →    VP  PP        0.3 

PP    →   P  NP          1.0 
P      →   with           1.0 

V      →  saw            1.0 

 NP  →    NP PP             0.4 

 NP   →   astronomers  0.1          

 NP   →   ears               0.18 

 NP   →   saw                0.04 
 NP   →   stars              0.18 

 NP   →   telescopes      0.1 







Tree and String Probabilities  

•  w15   = astronomers saw stars with ears 
•  P(t1)     = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18  
                     * 1.0 * 1.0 * 0.18 
                =  0.0009072 
•  P(t2)     = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 
                     * 1.0 * 1.0 * 0.18 
                = 0.0006804  
•  P(w15)  =      P(t1)      +     P(t2) 
             = 0.0009072 + 0.0006804 
                = 0.0015876  



Chomsky Normal Form 

•  All rules are of the form X → Y Z or X → w. 

•  A transformation to this form doesn’t change 
the weak generative capacity of CFGs. 
•  With some extra book-keeping in symbol names, you 

can even reconstruct the same trees with a detransform 

•  Unaries/empties are removed recursively 

•  n-ary rules introduce new nonterminals (n > 2) 
•  VP → V NP PP  becomes  VP → V @VP-V  and  @VP-V → NP PP 

•  In practice it’s a pain 
•  Reconstructing n-aries is easy 

•  Reconstructing unaries can be trickier 

•  But it makes parsing easier/more efficient 



N-ary Trees in Treebank 

Lexicon and Grammar 

Binary Trees 

TreeAnnotations.annotateTree 

Parsing 

TODO: 
CKY parsing  

Treebank binarization 



ROOT 

S 

NP VP 

N 

cats 

V NP PP 

P NP 

claws with people scratch 

N 
N 

An example: before binarization… 



P 

NP 

claws 

N 

@PP->_P 

with 

NP 

N 

cats people scratch 

N 

VP 

V NP PP 

@VP->_V 

@VP->_V_NP 

ROOT 

S 

@S->_NP 

After binarization… 



Treebank: empties and unaries 

TOP 

S-HLN 

NP-SUBJ VP 

VB -NONE- 

ε Atone 

PTB Tree 

TOP 

S 

NP VP 

VB -NONE- 

ε Atone 

NoFuncTags 

TOP 

S 

VP 

VB 

Atone 

NoEmpties 

TOP 

S 

Atone 

NoUnaries 

TOP 

VB 

Atone 

High Low 



Constituency Parsing 

Rule Probs θi  

θ0: S → NP VP 

θ1: NP → NN NNS 

… 

θ42: NN→Factory 

θ43: NNS→payrolls 

… 

PCFG 



Cocke-Kasami-Younger (CKY) 
Constituency Parsing 

Factory   payrolls   fell         in    September 



(Max) Inside Scores 

Factory                      payrolls 

NN 0.0023 
NNP 0.001 

NNS 0.0014 

NP→NN NNS 0.13 
iNP = (0.13)(0.0023)

(0.0014) 
     = 1.87 × 10-7 

NP→NNP NNS 0.056 
iNP = (0.056)(0.001)

(0.0014) 
     = 7.84 × 10-8 

NP   1.87 × 10-7  


