Polynomial time parsing of PCFGs

Christopher Manning

(some slides from Pi-Chuan Chang)
0. Chomsky Normal Form

- All rules are of the form $X \rightarrow YZ$ or $X \rightarrow w$.
- A transformation to this form doesn’t change the weak generative capacity of CFGs.
 - With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- Unaries/empties are removed recursively
- n-ary rules introduce new nonterminals ($n > 2$)
 - $VP \rightarrow V \text{ NP PP}$ becomes $VP \rightarrow V@VP-V$ and $@VP-V \rightarrow NP \text{ PP}$
- In practice it’s a pain
 - Reconstructing n-aries is easy
 - Reconstructing unaries can be trickier
- But it makes parsing easier/more efficient
An example: before binarization...
After binarization...

cats scratch people with claws
Treebank: empties and unaries

- PTB Tree
- NoFuncTags
- NoEmpty
- High
- Low
- NoUnaries
Constituency Parsing

PCFG

Rule Probs θ_i

θ_0: $S \rightarrow NP \ VP$

θ_1: $NP \rightarrow NN \ NNS$

θ_{42}: $NN \rightarrow \text{Factory}$

θ_{43}: $NNS \rightarrow \text{payrolls}$

...
1. Cocke-Kasami-Younger (CKY) Constituency Parsing

Factory payrolls fell in September
Viterbi (Max) Scores

\[NP \rightarrow NN \quad NNS = 0.13 \]
\[i_{NP} = (0.13)(0.0023) \]
\[(0.0014) \]
\[= 1.87 \times 10^{-7} \]

\[NP \rightarrow NNP \quad NNS = 0.056 \]
\[i_{NP} = (0.056)(0.001) \]
\[(0.0014) \]
\[= 7.84 \times 10^{-8} \]
Extended CKY parsing

• Unaries can be incorporated into the algorithm
 • Messy, but doesn’t increase algorithmic complexity
• Empties can be incorporated
 • Use fenceposts
 • Doesn’t increase complexity; essentially like unaries

• Binarization is *vital*
 • Without binarization, you don’t get parsing cubic in the length of the sentence
 • Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it’s always there.
The CKY algorithm (1960/1965) ... generalized

function CKY(words, grammar) returns most probable parse/prob
 score = new double[#(words)+1][#(words)+1][#(nonterms)]
 back = new Pair[#(words)+1][#(words)+1][#(nonterms)]
 for i=0; i<#(words); i++
 for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i])
 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 if score[i][i+1][B] > 0 && A->B in grammar
 prob = P(A->B)*score[i][i+1][B]
 if(prob > score[i][i+1][A])
 score[i][i+1][A] = prob
 back[i][i+1][A] = B
 added = true
The CKY algorithm (1960/1965) ... generalized

for span = 2 to #(words)
 for begin = 0 to #(words)- span
 end = begin + span
 for split = begin+1 to end-1
 for A,B,C in nonterms
 prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
 if(prob > score[begin][end][A])
 score[begin][end][A] = prob
 back[begin][end][A] = new Triple(split,B,C)

 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 prob = P(A->B)*score[begin][end][B];
 if(prob > score[begin][end] [A])
 score[begin][end] [A] = prob
 back[begin][end] [A] = B
 added = true
 return buildTree(score, back)
cats scratch walls with claws

0

score[0][1] score[0][2] score[0][3] score[0][4] score[0][5]

1

score[1][2] score[1][3] score[1][4] score[1][5]

2

3

score[3][4] score[3][5]

4

score[4][5]
```plaintext
for i=0; i<#(words); i++
    for A in nonterms
        if A -> words[i] in grammar
            score[i][i+1][A] = P(A -> words[i]);
```
<table>
<thead>
<tr>
<th>0</th>
<th>cats</th>
<th>1</th>
<th>scratch</th>
<th>2</th>
<th>walls</th>
<th>3</th>
<th>with</th>
<th>4</th>
<th>claws</th>
</tr>
</thead>
<tbody>
<tr>
<td>N→cats</td>
<td>P→cats</td>
<td>V→cats</td>
<td>NP→N</td>
<td>N→scratch</td>
<td>P→scratch</td>
<td>V→scratch</td>
<td>NP→N</td>
<td>N→with</td>
<td>P→with</td>
</tr>
<tr>
<td>@VP→V→NP</td>
<td>@PP→P→NP</td>
<td>N→claws</td>
<td>P→claws</td>
<td>V→claws</td>
<td>NP→N</td>
<td>N→claws</td>
<td>P→claws</td>
<td>V→claws</td>
<td>NP→N</td>
</tr>
</tbody>
</table>

// handle unaries
For each A, only keep the "A->BC" with highest prob.
Call buildTree(score, back) to get the best parse.
Unary rules: alchemy in the land of treebanks
Same-Span Reachability

- ADJP
- ADVP
- FRAG
- INTJ
- NP
- PP
- PRN
- QP
- S
- SBAR
- UCP
- VP
- WHNP
- NX
- SQ
- X
- RRC
- SINV
- WHADJP
- SBARQ
- WHPP
- WHADVP
- LST
- CONJP
- NAC
- NoEmpties
Efficient CKY parsing

- CKY parsing can be made very fast (!), partly due to the simplicity of the structures used.
 - But that means a lot of the speed comes from engineering details
 - And a little from cleverer filtering

- Store chart as (ragged) 3 dimensional array of float (log probabilities)
 - score[start][end][category]
 - For treebank grammars the load is high enough that you don’t really gain from lists of things that were possible
 - 50 wds: (50x50)/2x(1000 to 20000)x4 bytes = 5–100MB for parse triangle. Large. (Can move to beam for span[i][j].)

- Use int to represent categories/words (Index)
Efficient CKY parsing

- Provide efficient grammar/lexicon accessors:
 - E.g., return list of rules with this left child category
 - Iterate over left child, check for zero (Neg. inf.) prob of X:[i,j] (abort loop), otherwise get rules with X on left

- Some X:[i,j] can be filtered based on the input string
 - Not enough space to complete a long flat rule?
 - No word in the string can be a CC?
 - Using a lexicon of possible POS for words gives a lot of constraint rather than allowing all POS for words
 - Cf. later discussion of figures-of-merit/A* heuristics
2. An alternative ... memoization

- A recursive (CNF) parser:

```python
bestParse(X, i, j, s)
    if (j == i + 1)
        return X -> s[i]
    (X->Y Z, k) = argmax score(X-> Y Z) * bestScore(Y, i, k, s) * bestScore(Z, k, j, s)
    parse.parent = X
    parse.leftChild = bestParse(Y, i, k, s)
    parse.rightChild = bestParse(Z, k, j, s)
    return parse
```
An alternative … memoization

bestScore(X, i, j, s)

if (j == i + 1)
 return tagScore(X, s[i])
else
 return max score(X -> Y Z) *
 bestScore(Y, i, k) * bestScore(Z, k, j)

• Call: bestParse(Start, 1, sent.length(), sent)
 • Will this parser work?
 • Memory/time requirements?
A memoized parser

• A simple change to record scores you know:

```java
bestScore(X, i, j, s)
    if (scores[X][i][j] == null)
        if (j == i+1)
            score = tagScore(X, s[i])
        else
            score = max score(X -> Y Z) * 
                   bestScore(Y, i, k) * bestScore(Z, k, j)
    scores[X][i][j] = score
    return scores[X][i][j]
```

• Memory and time complexity?
Runtime in practice: super-cubic!

Best Fit Exponent: 3.47
Rule State Reachability

• Worse in practice because longer sentences “unlock” more of the grammar
• Many states are more likely to match larger spans!
• And because of various “systems” issues … cache misses, etc.

Example: NP CC . NP

Example: NP CC NP . PP

n Alignments
3. Evaluating Parsing Accuracy

- Most sentences are not given a completely correct parse by any currently existing parsers.
- Standardly for Penn Treebank parsing, evaluation is done in terms of the percentage of correct constituents (labeled spans).
- A constituent is a triple, all of which must be in the true parse for the constituent to be marked correct.
Evaluation

(a)

ROOT

S

NP

NNS

Sales

NP

NNS

executives

VP

VBD

were

VP

VBG

examining

NP

DT

the

IN

figures

NP

JJ

great

PP

with

NP

NN

care

(b) Brackets in gold standard tree (a.):

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7,9), *NP-(9:10)

(c) Brackets in candidate parse:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6:10), NP-(7,10)

(d) Precision: 3/8 = 37.5% Crossing Brackets: 0
Recall: 3/8 = 37.5% Crossing Accuracy: 100%
Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%
Labeled Recall: 3/8 = 37.5%
Evaluating Constituent Accuracy: LP/LR measure

Let C be the number of correct constituents produced by the parser over the test set, M be the total number of constituents produced, and N be the total in the correct version [microaveraged]

- Precision = C/M
- Recall = C/N

It is possible to artificially inflate either one.

Thus people typically give the F-measure (harmonic mean) of the two. Not a big issue here; like average.

This isn’t necessarily a great measure … me and many other people think dependency accuracy would be better.
How good are PCFGs?

- Robust (usually admit everything, but with low probability)
- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence
- But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in a simple case it performs worse than a trigram model
- WSJ parsing accuracy: about 73% LP/LR F1
- The problem seems to be that PCFGs lack the lexicalization of a trigram model
A PCFG uses the actual words only to determine the probability of parts-of-speech (the preterminals).

In many cases we need to know about words to choose a parse.

The head word of a phrase gives a good representation of the phrase’s structure and meaning.

Attachment ambiguities:

The astronomer saw the moon with the telescope

Coordination:

the dogs in the house and the cats

Subcategorization frames:

put versus like
(Head) Lexicalization

- *put* takes both an NP and a VP
 - Sue put [the book]$_{NP}$ [on the table]$_{PP}$
 - * Sue put [the book]$_{NP}$
 - * Sue put [on the table]$_{PP}$

- *like* usually takes an NP and not a PP
 - Sue likes [the book]$_{NP}$
 - * Sue likes [on the table]$_{PP}$

- We can’t tell this if we just have a VP with a verb, but we can if we know what verb it is
4. Accurate Unlexicalized Parsing: PCFGs and Independence

- The symbols in a PCFG define independence assumptions:

 \[S \rightarrow NP \ VP \]

 \[NP \rightarrow DT \ NN \]

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.

- Any information that statistically connects behavior inside and outside a node must flow through that node.
Non-Independence I

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
Michael Collins (2003, COLT)

- **PCFGs**

```
S
  NP
    DT  N
    the lawyer
  VP
    V
    questioned
  NP
    DT  N
    the witness
```

- **Lexicalized PCFGs**

```
S(questioned)
  NP(lawyer)
    DT  N
    the lawyer
  VP(questioned)
    V
    questioned
  NP(witness)
    DT  N
    the witness
```
Non-Independence II

- Who cares?
 - NB, HMMs, all make false assumptions!
 - For generation/LMs, consequences would be obvious.
 - For parsing, does it impact accuracy?

- Symptoms of overly strong assumptions:
 - Rewrites get used where they don’t belong.
 - Rewrites get used too often or too rarely.

In the PTB, this construction is for possesives
Breaking Up the Symbols

- We can relax independence assumptions by encoding dependencies into the PCFG symbols:

 Parent annotation [Johnson 98]

 ![Tree diagram showing parent annotation]

 Marking possessive NPs

 ![Tree diagram showing marking]

- What are the most useful features to encode?
Annotations

- Annotations split the grammar categories into subcategories.

- Conditioning on history vs. annotating
 - $P(\text{NP}^S \rightarrow \text{PRP})$ is a lot like $P(\text{NP} \rightarrow \text{PRP} | \text{S})$
 - $P(\text{NP-POS} \rightarrow \text{NNP POS})$ isn’t history conditioning.

- Feature grammars vs. annotation
 - Can think of a symbol like NP^NP-POS as NP [parent:NP, +POS]

- After parsing with an annotated grammar, the annotations are then stripped for evaluation.
Experimental Setup

- Corpus: Penn Treebank, WSJ

 Training: sections 02-21
 Development: section 22 (first 20 files)
 Test: section 23

- **Accuracy** – F1: harmonic mean of per-node labeled precision and recall.
- **Size** – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC
Experimental Process

- We’ll take a highly conservative approach:
 - Annotate as sparingly as possible
 - Highest accuracy with fewest symbols
 - Error-driven, manual hill-climb, adding one annotation type at a time
Lexicalization

- Lexical heads are important for certain classes of ambiguities (e.g., PP attachment):
- Lexicalizing grammar creates a much larger grammar.
 - Sophisticated smoothing needed
 - Smarter parsing algorithms needed
 - More data needed
- How necessary is lexicalization?
 - Bilexical vs. monolexical selection
 - Closed vs. open class lexicalization
Unlexicalized PCFGs

- What do we mean by an “unlexicalized” PCFG?
 - Grammar rules are not systematically specified down to the level of lexical items
 - NP-stocks is not allowed
 - NP^S-CC is fine
 - Closed vs. open class words (NP^S-the)
 - Long tradition in linguistics of using function words as features or markers for selection
 - Contrary to the bilexical idea of semantic heads
 - Open-class selection really a proxy for semantics

- Honesty checks:
 - Number of symbols: keep the grammar very small
 - No smoothing: over-annotating is a real danger
Horizontal Markovization

- Horizontal Markovization: Merges States

Symbols

Horizontal Markov Order

Horizontal Markov Order

Symbols
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)

Order 1

Order 2

Symbols
Vertical and Horizontal

• Examples:
 • Raw treebank: \(v=1, h=\infty \)
 • Johnson 98: \(v=2, h=\infty \)
 • Collins 99: \(v=2, h=2 \)
 • Best F1: \(v=3, h=2v \)

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: (v=h=2v)</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

- Solution: Mark unary rewrite sites with -U

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
<tr>
<td>UNARY</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
</tbody>
</table>
Tag Splits

- Problem: Treebank tags are too coarse.

- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.

Annotation

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UNARY-DT</td>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>mark demonstratives as</td>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>DT^U (“the X” vs. “those”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNARY-RB</td>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>mark phrasal adverbs as</td>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>RB^U (“quickly” vs. “very”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAG-PA</td>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>mark tags with non-canonical</td>
<td>81.8</td>
<td>9.3K</td>
</tr>
<tr>
<td>parents (“not” is an RB^VP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treebank Splits

- The treebank comes with annotations (e.g., -LOC, -SUBJ, etc).
 - Whole set together hurt the baseline.
 - Some (-SUBJ) were less effective than our equivalents.
 - One in particular was very useful (NP-TMP) when pushed down to the head tag.
 - We marked gapped S nodes as well.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>81.8</td>
<td>9.3K</td>
</tr>
<tr>
<td>NP-TMP</td>
<td>82.2</td>
<td>9.6K</td>
</tr>
<tr>
<td>GAPPED-S</td>
<td>82.3</td>
<td>9.7K</td>
</tr>
</tbody>
</table>
Yield Splits

- **Problem:** sometimes the behavior of a category depends on something inside its future yield.

- **Examples:**
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!

- **Solution:** annotate future elements into nodes.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>82.3</td>
<td>9.7K</td>
</tr>
<tr>
<td>POSS-NP</td>
<td>83.1</td>
<td>9.8K</td>
</tr>
<tr>
<td>SPLIT-VP</td>
<td>85.7</td>
<td>10.5K</td>
</tr>
</tbody>
</table>
Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>85.7</td>
<td>10.5K</td>
</tr>
<tr>
<td>BASE-NP</td>
<td>86.0</td>
<td>11.7K</td>
</tr>
<tr>
<td>DOMINATES-V</td>
<td>86.9</td>
<td>14.1K</td>
</tr>
<tr>
<td>RIGHT-REC-NP</td>
<td>87.0</td>
<td>15.2K</td>
</tr>
</tbody>
</table>
A Fully Annotated Tree

```
ROOT
  /\  
S^ROOT-v
    /
   / \ 
  "S" NP^S-B
    |      |
    |      |
    DT-U^NP VBZ^BE^VP NP^VP-B
      |      |            |
      |      |            |
      "This" "is" "NN^NP" "NN^NP"
        |      |            |
        |      |            |
        panic  buying
```
Final Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
<th>CB</th>
<th>0 CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
<td>1.26</td>
<td>56.6</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
<td>1.14</td>
<td>59.9</td>
</tr>
<tr>
<td>Klein & M 03</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
<td>1.10</td>
<td>60.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
<td>1.00</td>
<td>62.1</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
<td>0.90</td>
<td>67.1</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.