Polynomial time parsing of PCFGs

Christopher Manning
(some slides from Pi-Chuan Chang)

0. Chomsky Normal Form

- All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$.
- A transformation to this form doesn't change the weak generative capacity of CFGs.
- With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- Unaries/empties are removed recursively
- n-ary rules introduce new nonterminals ($n>2$)
- VP \rightarrow V NP PP becomes VP \rightarrow V @VP-V and @VP-V \rightarrow NP PP
- In practice it's a pain
- Reconstructing n-aries is easy
- Reconstructing unaries can be trickier
- But it makes parsing easier/more efficient

Treebank: empties and unaries

Constituency Parsing

1. Cocke-Kasami-Younger (CKY) Constituency Parsing

Factory payrolls fell in September

Viterbi (Max) Scores

Extended CKY parsing

- Unaries can be incorporated into the algorithm
- Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
- Use fenceposts
- Doesn't increase complexity; essentially like unaries
- Binarization is vital
- Without binarization, you don't get parsing cubic in the length of the sentence
- Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it's always there.

The CKY algorithm (1960/1965) ... generalized

function CKY(words, grammar) returns most probable parse/prob score = new double[\#(words)+1][\#(words)+][\#(nonterms)] back = new Pair[\#(words)+1][\#(words)+1][\#nonterms]]
for $\mathrm{i}=0$; $\mathrm{i}<\#$ (words); $\mathrm{i}++$
for A in nonterms
if A -> words[i] in grammar score[i][i+1][A] = P(A -> words[i])
//handle unaries
boolean added = true while added
added = false
for A, B in nonterms
if score[i][i+1][B] > 0 \&\& $A->B$ in grammar
prob $=P(A->B) *$ score $[i][i+1][B]$
if(prob > score[i][i+1][A])
score[i][i+1][A] = prob
back[i][i+1] [A] = B
added $=$ true

The CKY algorithm (1960/1965) ... generalized

```
for span = 2 to #(words)
    for begin = 0 to #(words)- span
            end = begin + span
            for split = begin+1 to end-1
            for A,B,C in nonterms
                    prob=score[begin][sp1it][B]*score[split][end][C]*P(A->BC)
                    if(prob > score[begin][end][A])
                score[begin]end][A] = prob
                back[begin][end][A] = new Triple(sp1it,B,C)
                //handle unaries
                boolean added = true
            while added
            added = false
            for A, B in nonterms
                prob = P(A->B)*score[begin][end][B];
                if(prob > score[begin][end] [A])
                    score[begin][end] [A] = prob
                    back[begin][end] [A] = B
                        added = true
return buildTree(score, back)
```


-.........

Unary rules: alchemy in the land of treebanks

Same-Span Reachability

Efficient CKY parsing

- CKY parsing can be made very fast (!), partly due to the simplicity of the structures used.
- But that means a lot of the speed comes from engineering details
- And a little from cleverer filtering
- Store chart as (ragged) 3 dimensional array of float (log probabilities)
- score[start][end][category]
- For treebank grammars the load is high enough that you don't really gain from lists of things that were possible
- 50 wds: $(50 \times 50) / 2 \times(1000$ to 20000$) \times 4$ bytes $=5-100 \mathrm{MB}$ for parse triangle. Large. (Can move to beam for span[i][j].)
- Use int to represent categories/words (Index)

Efficient CKY parsing

- Provide efficient grammar/lexicon accessors:
- E.g., return list of rules with this left child category
- Iterate over left child, check for zero (Neg. inf.) prob of X:[i,j] (abort loop), otherwise get rules with X on left
- Some $\mathrm{X}:[\mathrm{i}, \mathrm{j}]$ can be filtered based on the input string
- Not enough space to complete a long flat rule?
- No word in the string can be a CC?
- Using a lexicon of possible POS for words gives a lot of constraint rather than allowing all POS for words
- Cf. later discussion of figures-of-merit/A* heuristics

2. An alternative ... memoization

- A recursive (CNF) parser:
bestParse(X,i,j,s)
if $(\mathrm{j}==\mathrm{i}+1$)
return X -> s[i]
$(X->Y Z, k)=\operatorname{argmax} \operatorname{score}(X->Y Z)$ *
bestScore(Y,i,k,s) * bestScore(Z,k,j,s)
parse. parent $=\mathrm{X}$
parse.leftChild = bestParse(Y,i,k,s)
parse.rightChild = bestParse(Z,k,j,s)
return parse

An alternative ... memoization

bestScore(X,i,j,s)
if $(j==i+1)$
return tagScore(X, s[i])
else
return max score(X -> Y Z) *
bestScore(Y, i, k) * bestScore(Z,k,j)

- Call: bestParse(Start, 1 , sent.length(), sent)
- Will this parser work?
- Memory/time requirements?

A memoized parser

- A simple change to record scores you know:

```
bestScore(X,i,j,s)
    if (scores[X][i][j] == null)
        if \((\mathrm{j}=\mathrm{=}+1\) )
            score \(=\) tagScore(X, s[i])
    else
        score \(=\) max score (X -> Y Z) *
                        bestScore(Y, i, k) * bestScore(Z,k,j)
    scores[X][i][j] = score
    return scores[X][i][j]
```

- Memory and time complexity?

Runtime in practice: super-cubic!

Rule State Reachability

- Worse in practice because longer sentences "unlock" more of the grammar
- Many states are more likely to match larger spans!
- And because of various "systems" issues ... cache misses, etc.

Example: NP CC . NP

Example: NP CC NP . PP

3. Evaluating Parsing Accuracy

- Most sentences are not given a completely correct parse by any currently existing parsers.
- Standardly for Penn Treebank parsing, evaluation is done in terms of the percentage of correct constituents (labeled spans).
-

[label, start, finish]

- A constituent is a triple, all of which must be in the true parse for the constituent to be marked correct.

Evaluation

(b) Brackets in gold standard tree (a.):

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)
(c) Brackets in candidate parse:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7, 10)
(d) Precision: $\quad 3 / 8=37.5 \%$ Crossing Brackets: 0

Recall:
$3 / 8=37.5 \% \quad$ Crossing Accuracy:
100\%
Labeled Precision:
$3 / 8=37.5 \% \quad$ Tagging Accuracy: $\quad 10 / 11=90.9 \%$
Labeled Recall:
$3 / 8=37.5 \%$

Evaluating Constituent Accuracy: LP/LR measure

- Let C be the number of correct constituents produced by the parser over the test set, M be the total number of constituents produced, and N be the total in the correct version [microaveraged]
- \quad Precision $=C / M$
- Recall $=\mathrm{C} / \mathrm{N}$
- It is possible to artificially inflate either one.
- Thus people typically give the F-measure (harmonic mean) of the two. Not a big issue here; like average.
- This isn't necessarily a great measure ... me and many other people think dependency accuracy would be better.

How good are PCFGs?

- Robust (usually admit everything, but with low probability)
- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence
- But not so good because the independence assumptions are too strong
- Give a probabilistic language model
- But in a simple case it performs worse than a trigram model
- WSJ parsing accuracy: about 73\% LP/LR F1
- The problem seems to be that PCFGs lack the lexicalization of a trigram model

Putting words into PCFGs

- A PCFG uses the actual words only to determine the probability of parts-of-speech (the preterminals)
- In many cases we need to know about words to choose a parse
- The head word of a phrase gives a good representation of the phrase's structure and meaning
- Attachment ambiguities

The astronomer saw the moon with the telescope

- Coordination
the dogs in the house and the cats
- Subcategorization frames put versus like

(Head) Lexicalization

- put takes both an NP and a VP
- Sue put [the book $]_{\mathrm{NP}}[\text { on the table }]_{\mathrm{PP}}$
- * Sue put [the book $]_{\mathrm{NP}}$
- * Sue put [on the table $]_{\text {pp }}$
- like usually takes an NP and not a PP
- Sue likes [the book] ${ }_{\mathrm{NP}}$
- * Sue likes [on the table $]_{\text {pp }}$
- We can't tell this if we just have a VP with a verb, but we can if we know what verb it is

4. Accurate Unlexicalized Parsing: PCFGs and Independence

- The symbols in a PCFG define independence assumptions:

$$
\begin{aligned}
& S \rightarrow N P V P \\
& N P \rightarrow \text { DT NN }
\end{aligned}
$$

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.
- Any information that statistically connects behavior inside and outside a node must flow through that node.

Non-Independence I

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).

Michael Collins (2003, COLT)

Independence Assumptions

- PCFGs

- Lexicalized PCFGs

Non-Independence II

- Who cares?
- NB, HMMs, all make false assumptions!
- For generation/LMs, consequences would be obvious.
- For parsing, does it impact accuracy?
- Symptoms of overly strong assumptions:
- Rewrites get used where they don't belong.
- Rewrites get used too often or too rarely.

Breaking Up the Symbols

- We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation [Johnson 98]

Marking possesive NPs

- What are the most useful features to encode?

Annotations

- Annotations split the grammar categories into subcategories.
- Conditioning on history vs. annotating
- P(NP^S \rightarrow PRP) is a lot like P(NP \rightarrow PRP \| S)
- P(NP-POS \rightarrow NNP POS) isn't history conditioning.
- Feature grammars vs. annotation
- Can think of a symbol like NP^NP-POS as NP [parent:NP, +POS]
- After parsing with an annotated grammar, the annotations are then stripped for evaluation.

Experimental Setup

- Corpus: Penn Treebank, WSJ

Training:	sections	$02-21$
Development:	section	22 (first 20 files)
Test:	section	23

- Accuracy - F1: harmonic mean of per-node labeled precision and recall.
- Size - number of symbols in grammar.
- Passive / complete symbols: NP, NP^S
- Active / incomplete symbols: NP \rightarrow NP CC•

Experimental Process

- We'll take a highly conservative approach:
- Annotate as sparingly as possible
- Highest accuracy with fewest symbols
- Error-driven, manual hill-climb, adding one annotation type at a time

Lexicalization

- Lexical heads are important for certain classes of ambiguities (e.g., PP attachment):

- Lexicalizing grammar creates a much larger grammar.
- Sophisticated smoothing needed
- Smarter parsing algorithms needed
- More data needed
- How necessary is lexicalization?
- Bilexical vs. monolexical selection
- Closed vs. open class lexicalization

Unlexicalized PCFGs

- What do we mean by an "unlexicalized" PCFG?
- Grammar rules are not systematically specified down to the level of lexical items
- NP-stocks is not allowed
- NP^S-CC is fine
- Closed vs. open class words (NP^S-the)
- Long tradition in linguistics of using function words as features or markers for selection
- Contrary to the bilexical idea of semantic heads
- Open-class selection really a proxy for semantics
- Honesty checks:
- Number of symbols: keep the grammar very small
- No smoothing: over-annotating is a real danger

Horizontal Markovization

- Horizontal Markovization: Merges States

Vertical Markovization

- Vertical Markov

Order 1

Order 2

Vertical and Horizontal

- Examples:
- Raw treebank: $\mathrm{v}=1, \mathrm{~h}=\infty$
- Johnson 98: $\quad \mathrm{v}=2, \mathrm{~h}=\infty$
- Collins 99: $\quad v=2, h=2$
- Best F1: $\quad v=3, h=2 v$

Model	F1	Size
Base: $\mathrm{v}=\mathrm{h}=2 \mathrm{v}$	77.8	7.5 K

Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.
- Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5 K
UNARY	78.3	8.0 K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:

- Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0 K
SPLIT-IN	80.3	8.1 K

Other Tag Splits

- UNARY-DT: mark demonstratives as DTAU ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "\&" from other conjunctions
- SPLIT-\%: "\%" gets its own tag.

F 1	Size
80.4	8.1 K
80.5	8.1 K
81.2	8.5 K
81.6	9.0 K
81.7	9.1 K
81.8	9.3 K

Treebank Splits

- The treebank comes with annotations (e.g., -LOC, SUBJ, etc).
- Whole set together hurt the baseline.
- Some (-SUBJ) were less effective than our equivalents.
- One in particular was very useful (NP-TMP) when pushed down to the head tag.
- We marked gapped S nodes as well.

Yield Splits

- Problem: sometimes the behavior of a category depends on something inside its future yield.
- Examples:
- Possessive NPs
- Finite vs. infinite VPs
- Lexical heads!
- Solution: annotate future elements into nodes.

Annotation	F1	Size
Previous	82.3	9.7 K
POSS-NP	83.1	9.8 K
SPLIT-VP	85.7	10.5 K

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
- Contains a verb.
- Is (non)-recursive.
- Base NPs [cf. Collins 99]
- Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5 K
BASE-NP	86.0	11.7 K
DOMINATES-V	86.9	14.1 K
RIGHT-REC-NP	87.0	15.2 K

A Fully Annotated Tree

Final Test Set Results

Parser	LP	LR	F1	CB	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Klein \& M 03	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	$\mathbf{8 7 . 4}$	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.

