Polynomial time parsing of PCFGs

Christopher Manning

(some slides from Pi-Chuan Chang)

0. Chomsky Normal Form

- All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$.
- A transformation to this form doesn't change the weak generative capacity of CFGs.
 - With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
 - Unaries/empties are removed recursively
 - n-ary rules introduce new nonterminals (n > 2)
 - VP → V NP PP becomes VP → V @VP-V and @VP-V → NP PP
- In practice it's a pain
 - Reconstructing *n*-aries is easy
 - Reconstructing unaries can be trickier
- But it makes parsing easier/more efficient

An example: before binarization...

ROOT After binarization...

Treebank: empties and unaries

Constituency Parsing

PCFG

Rule Probs θ_i

 θ_0 : S \rightarrow NP VP

 θ_1 : NP \rightarrow NN NNS

. . .

 θ_{42} : NN \rightarrow Factory

 θ_{43} : NNS \rightarrow payrolls

. . .

1. Cocke-Kasami-Younger (CKY) Constituency Parsing

Factory payrolls fell in

in September

Viterbi (Max) Scores

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn't increase complexity; essentially like unaries
- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it's always there.

The CKY algorithm (1960/1965) ... generalized

```
function CKY(words, grammar) returns most probable parse/prob
  score = new double[#(words)+1][#(words)+][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
    //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 \&\& A->B in grammar
          prob = P(A->B)*score[i][i+1][B]
          if(prob > score[i][i+1][A])
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```


The CKY algorithm (1960/1965) ... generalized

```
for span = 2 to \#(words)
  for begin = 0 to \#(words) - span
    end = begin + span
    for split = begin+1 to end-1
      for A,B,C in nonterms
        prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
        if(prob > score[begin][end][A])
          score[begin]end][A] = prob
          back[begin][end][A] = new Triple(split,B,C)
      //handle unaries
      boolean added = true
      while added
        added = false
        for A, B in nonterms
          prob = P(A->B)*score[begin][end][B];
          if(prob > score[begin][end] [A])
            score[begin][end] [A] = prob
            back[begin][end][A] = B
            added = true
return buildTree(score, back)
```

Separtord University	cats	scratch ₂	₂ walls ₃	with	4 claws 5
N L P	score[0][1]	score[0][2]	score[0][3]	score[0][4]	score[0][5]
2		score[1][2]	score[1][3]	score[1][4]	score[1][5]
3			score[2][3]	score[2][4]	score[2][5]
4				score[3][4]	score[3][5]
					score[4][5]
5					

N L P	Cats N→cats P→cats V→cats NP→N @VP->V→NP @PP->P→NP	PP→P @PP->_P VP→V @VP->_V @S->_NP→VP @NP->_NP→PP @VP->_V_NP→PP	2 walls 3	with	4 claws 5
2		N→scratch P→scratch V→scratch NP→N @VP->V→NP @PP->P→NP	PP→P @PP->_P VP→V @VP->_V @S->_NP→VP @NP->_NP→PP @VP->_V_NP→PP		
3			N→walls P→walls V→walls NP→N @VP->V→NP @PP->P→NP	PP→P @PP->_P VP→V @VP->_V @S->_NP→VP @NP->_NP→PP @VP->_V_NP→PP	
4	<u> </u>	/ handle unaries		N→with P→with V→with NP→N @VP->V→NP @PP->P→NP	PP→P @PP->_P VP→V @VP->_V @S->_NP→VP @NP->_NP→PP @VP->_V_NP→PP
5					N→c1aws P→c1aws V→c1aws NP→N @VP->V→NP @PP->P→NP

.

Unary rules: alchemy in the land of treebanks

Same-Span Reachability

Efficient CKY parsing

- CKY parsing can be made very fast (!), partly due to the simplicity of the structures used.
 - But that means a lot of the speed comes from engineering details
 - And a little from cleverer filtering
 - Store chart as (ragged) 3 dimensional array of float (log probabilities)
 - score[start][end][category]
 - For treebank grammars the load is high enough that you don't really gain from lists of things that were possible
 - 50 wds: (50x50)/2x(1000 to 20000)x4 bytes = 5-100MB for parse triangle. Large. (Can move to beam for span[i][j].)
 - Use int to represent categories/words (Index)

Efficient CKY parsing

- Provide efficient grammar/lexicon accessors:
 - E.g., return list of rules with this left child category
 - Iterate over left child, check for zero (Neg. inf.) prob of X:[i,j] (abort loop), otherwise get rules with X on left
 - Some X:[i,j] can be filtered based on the input string
 - Not enough space to complete a long flat rule?
 - No word in the string can be a CC?
 - Using a lexicon of possible POS for words gives a lot of constraint rather than allowing all POS for words
 - Cf. later discussion of figures-of-merit/A* heuristics

2. An alternative ... memoization

• A recursive (CNF) parser:

An alternative ... memoization

```
bestScore(X,i,j,s)
  if (j == i+1)
    return tagScore(X, s[i])
  else
    return max score(X -> Y Z) *
       bestScore(Y, i, k) * bestScore(Z,k,j)
```

- Call: bestParse(Start, 1, sent.length(), sent)
 - Will this parser work?
 - Memory/time requirements?

A memoized parser

A simple change to record scores you know:

Memory and time complexity?

Runtime in practice: super-cubic!

Rule State Reachability

- Worse in practice because longer sentences "unlock" more of the grammar
- Many states are more likely to match larger spans!
- And because of various "systems" issues ... cache misses, etc.

Example: NP CC . NP

Example: NP CC NP . PP

3. Evaluating Parsing Accuracy

- Most sentences are not given a completely correct parse by any currently existing parsers.
- Standardly for Penn Treebank parsing, evaluation is done in terms of the percentage of correct constituents (labeled spans).
- [label, start, finish]
- A constituent is a triple, all of which must be in the true parse for the constituent to be marked correct.

Evaluation

- (b) Brackets in gold standard tree (a.): S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)
- (c) Brackets in candidate parse:
 S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)
- (d) Precision: 3/8 = 37.5% Crossing Brackets: 0
 Recall: 3/8 = 37.5% Crossing Accuracy: 100%
 Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%

Labeled Recall: 3/8 = 37.5%

S N L P

Evaluating Constituent Accuracy: LP/LR measure

- Let C be the number of correct constituents produced by the parser over the test set, M be the total number of constituents produced, and N be the total in the correct version [microaveraged]
- Precision = C/M
- Recall = C/N
- It is possible to artificially inflate either one.
- Thus people typically give the F-measure (harmonic mean)
 of the two. Not a big issue here; like average.
- This isn't necessarily a great measure ... me and many other people think dependency accuracy would be better.

How good are PCFGs?

- Robust (usually admit everything, but with low probability)
- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence
- But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in a simple case it performs worse than a trigram model
- WSJ parsing accuracy: about 73% LP/LR F1
- The problem seems to be that PCFGs lack the lexicalization of a trigram model

Putting words into PCFGs

- A PCFG uses the actual words only to determine the probability of parts-of-speech (the preterminals)
- In many cases we need to know about words to choose a parse
- The head word of a phrase gives a good representation of the phrase's structure and meaning
 - Attachment ambiguities

 The astronomer saw the moon with the telescope
 - Coordination
 the dogs in the house and the cats
 - Subcategorization frames put versus like

(Head) Lexicalization

- put takes both an NP and a VP
 - Sue put [the book]_{NP} [on the table]_{PP}
 - * Sue put [the book]_{NP}
 - * Sue put [on the table]_{PP}
- like usually takes an NP and not a PP
 - Sue likes [the book]_{NP}
 - * Sue likes [on the table]_{PP}
- We can't tell this if we just have a VP with a verb, but we can if we know what verb it is

4. Accurate Unlexicalized Parsing: PCFGs and Independence

The symbols in a PCFG define independence assumptions:

 $S \rightarrow NP VP$

NP → DT NN

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.
- Any information that statistically connects behavior inside and outside a node must flow through that node.

Non-Independence I

Independence assumptions are often too strong.

 Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).

Michael Collins (2003, COLT)

Independence Assumptions • PCFGs S ŶΡ ΝP DΤ ÑΡ the lawyer questioned DT the witness • Lexicalized PCFGs S(questioned) NP(lawyer) VP(questioned) DΤ NP(witness) the lawyer questioned DΤ witness

Non-Independence II

- Who cares?
 - NB, HMMs, all make false assumptions!
 - For generation/LMs, consequences would be obvious.
 - For parsing, does it impact accuracy?
- Symptoms of overly strong assumptions:
 - Rewrites get used where they don't belong.
 - Rewrites get used too often or too rarely.

Breaking Up the Symbols

 We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation [Johnson 98]

Marking possesive NPs

What are the most useful features to encode?

- Annotations split the grammar categories into subcategories.
- Conditioning on history vs. annotating
 - $P(NP^S \rightarrow PRP)$ is a lot like $P(NP \rightarrow PRP \mid S)$
 - P(NP-POS → NNP POS) isn't history conditioning.
- Feature grammars vs. annotation
 - Can think of a symbol like NP^NP-POS as NP [parent:NP, +POS]
- After parsing with an annotated grammar, the annotations are then stripped for evaluation.

Experimental Setup

Corpus: Penn Treebank, WSJ

Training: sections 02-21

Development: section 22 (first 20 files)

Test: section 23

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •

Experimental Process

- We'll take a highly conservative approach:
 - Annotate as sparingly as possible
 - Highest accuracy with fewest symbols
 - Error-driven, manual hill-climb, adding one annotation type at a time

Lexicalization

 Lexical heads are important for certain classes of ambiguities (e.g., PP attachment):

- Sophisticated smoothing needed
- Smarter parsing algorithms needed
- More data needed
- How necessary is lexicalization?
 - Bilexical vs. monolexical selection
 - Closed vs. open class lexicalization

Unlexicalized PCFGs

- What do we mean by an "unlexicalized" PCFG?
 - Grammar rules are not systematically specified down to the level of lexical items
 - NP-stocks is not allowed
 - NP^S-CC is fine
 - Closed vs. open class words (NP^S-the)
 - Long tradition in linguistics of using function words as features or markers for selection
 - Contrary to the bilexical idea of semantic heads
 - Open-class selection really a proxy for semantics
- Honesty checks:
 - Number of symbols: keep the grammar very small
 - No smoothing: over-annotating is a real danger

Horizontal Markovization

Horizontal Markovization: Merges States

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)

Vertical and Horizontal

Examples:

• Raw treebank: v=1, $h=\infty$

• Johnson 98: v=2, h=∞

• Collins 99: v=2, h=2

• Best F1: v=3, h=2v

Model	F1	Size	
Base: v=h=2v	77.8	7.5K	

Unary Splits

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

 Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

Treebank Splits

- The treebank comes with annotations (e.g., -LOC, -SUBJ, etc).
 - Whole set together hurt the baseline.
 - Some (-SUBJ) were less effective than our equivalents.
 - One in particular was very useful (NP-TMP) when pushed down to the head tag.
 - We marked gapped S nodes as well.

Annotation	F1	Size
Previous	81.8	9.3K
NP-TMP	82.2	9.6K
GAPPED-S	82.3	9.7K

Yield Splits

 Problem: sometimes the behavior of a category depends on something inside its future yield.

• Examples:

- Possessive NPs
- Finite vs. infinite VPs
- Lexical heads!
- Solution: annotate future elements into nodes.

Annotation	F1	Size
Previous	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - · Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5K
BASE-NP	86.0	11.7K
DOMINATES-V	86.9	14.1K
RIGHT-REC-NP	87.0	15.2K

A Fully Annotated Tree

Final Test Set Results

Parser	LP	LR	F1	СВ	0 СВ
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Klein & M 03	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

• Beats "first generation" lexicalized parsers.