Polynomial time parsing of PCFGs
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wipy) 0. Chomsky Normal Form

All rules are of the form X =Y Zor X — w.

A transformation to this form doesn’t change
the weak generative capacity of CFGs.

« With some extra book-keeping in symbol names, you
can even reconstruct the same trees with a detransform

* Unaries/empties are removed recursively

e pn-ary rules introduce new nonterminals (n > 2)
« VP -V NPPP becomes VP -V @VP-V and @VP-V — NP PP

In practice it’s a pain
e Reconstructing n-aries is easy
e Reconstructing unaries can be trickier

But it makes parsing easier/more efficient



cats scratch people with claws
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Constituency Parsing
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1. Cocke-Kasami-Younger (CKY)
Constituency Parsing

N\

Factory payrolls fell in September



Viterbi (Max) Scores

NP—>NN NNS 0.
= (0.13)(0. 0023)

NP 1.87x 107
NP—NNP NNS 0.056
inp = (0.056)(0.001)

(0.0014)
=7.84x 108

NN 0.0023
NNP 0.001

NNS 0.0014

Factory payrolls



Extended CKY parsing

* Unaries can be incorporated into the algorithm
* Messy, but doesn’t increase algorithmic complexity

« Empties can be incorporated
e Use fenceposts
 Doesn’t increase complexity; essentially like unaries

e Binarization is vital

o Without binarization, you don’t get parsing cubic in the
length of the sentence
» Binarization may be an explicit transformation or implicit

in how the parser works (Early-style dotted rules), but it’s
always there.



The CKY algorithm (1960/1965)
... generalized

function CKY(words, grammar) returns most probable parse/prob
score = new double[#(words)+1] [#(words)+][#(nonterms) ]
back = new Pair[#(words)+1][#(words)+1] [#nonterms]]
for 1=0; i<#(words); i++
for A in nonterms
if A -> words[i] in grammar
score[1][1+1][A] P(A -> words[i])
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
if score[i][i+1][B] > 0 & & A->B in grammar
prob = P(A->B)*score[1][1+1][B]
if(prob > scorel[i][i+1][A])
score[1][1+1][A] prob
back[i][1+1] [A] B
added = true



The CKY algorithm (1960/1965)
... generalized

for span = 2 to #(words)
for begin = 0 to #(words)- span
end = begin + span
for split = begin+l to end-1
for A,B,C in nonterms
prob=score[begin] [split][B]*score[split][end] [C]*P(A->BC)
if(prob > score[begin][end][A])
score[begin]end] [A] = prob
back[begin] [end][A] = new Triple(split,B,C)
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
prob = P(A->B)*score[begin] [end] [B];
1if(prob > score[begin][end] [A])
score[begin] [end] [A] = prob
back[begin] [end] [A] = B
added = true
return buildTree(score, back)
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cats 1 scratch ) walls 3 with 4 claws
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cats 1 scratch 9 walls 3 with 4 claws
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cats scratch 2 walls with 4 claws
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Unary rules:
alchemy in the land of treebanks
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Efficient CKY parsing

e CKY parsing can be made very fast (1), partly due
to the simplicity of the structures used.
e But that means a lot of the speed comes from
engineering details
* And a little from cleverer filtering

» Store chart as (ragged) 3 dimensional array of float (log
probabilities)
» score[start][end][category]

* For treebank grammars the load is high enough that you don’t
really gain from lists of things that were possible

e 50 wds: (50x50)/2x(1000 to 20000)x4 bytes = 5-100MB for
parse triangle. Large. (Can move to beam for spanlil[j].)

* Use int to represent categories/words (Index)



Efficient CKY parsing

* Provide efficient grammar/lexicon accessors:
e E.g., return list of rules with this left child category

 Iterate over left child, check for zero (Neg. inf.) prob of
X:[i,j] (abort loop), otherwise get rules with X on left

« Some X:[i,j] can be filtered based on the input string
« Not enough space to complete a long flat rule?

» No word in the string can be a CC?

« Using a lexicon of possible POS for words gives a lot of
constraint rather than allowing all POS for words

« Cf. later discussion of figures-of-merit/A* heuristics



2. An alternative ... memoization

* A recursive (CNF) parser:
bestParse(X,i,j,s)
if (j==i+1)
return X -> sJi]
(X->Y Z, k) = argmax score(X->Y Z) *
bestScore(Y,i,k,s) * bestScore(Z,k,j,s)
parse.parent = X
parse.leftChild = bestParse(Y,i,k,s)
parse.rightChild = bestParse(Z,k,j,s)
return parse



An alternative ... memoization

bestScore(X,i,j,s)

return tagScore(X, sli])
else
return max score(X ->Y Z2) *
bestScore(Y, i, k) * bestScore(Z,k,j)

o Call: bestParse(Start, 1, sent.length(), sent)
o Will this parser work?
« Memory/time requirements?



A memoized parser

A simple change to record scores you know:

bestScore(X,i,j,s)
if (scores[X][il[j]1 == null)
if j ==i+1)
score = tagScore(X, sl[i])
else
score = max scoreX ->Y Z2) *
bestScore(Y, i, k) * bestScore(Z,k,j)
scores[X][il[j] = score
return scores[X][il[j]

« Memory and time complexity?



Runtime in practice: super-cubic!
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Worse in practice because longer sentences “unlock” more of the
grammar

Many states are more likely to match larger spans!
And because of various “systems” issues ... cache misses, etc.

Example: NP CC . NP

@ - NP . o C o 1Alignment

@~ m - o N Alignments



3. Evaluating Parsing Accuracy

 Most sentences are not given a completely
correct parse by any currently existing parsers.

« Standardly for Penn Treebank parsing,
evaluation is done in terms of the percentage of
correct constituents (labeled spans).

* A constituent is a triple, all of which must be in
the true parse for the constituent to be marked
correct.



(a) ROOT
[
S
—
NP VP NP .
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| | | 7 |
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(by Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)
() PBrackets in candidate parse:
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)
(d) Precision: 3/8 =37.5% Crossing Brackers: 0
Recall: 3/8 =37.5% Crossing Accuracy: 1 00%
Labeled Precision: 3/8 = 37.5% Tagaging Accuracy:  10/11 = 90.9%
Labeled Recall: 3/8 =37.5%



Evaluating Constituent Accuracy:
LP/LR measure

Let C be the number of correct constituents produced by
the parser over the test set, M be the total number of
constituents produced, and N be the total in the correct
version [microaveraged]

Precision = C/M
Recall = C/N

It is possible to artificially inflate either one.

Thus people typically give the F-measure (harmonic mean)
of the two. Not a big issue here; like average.

This isn’t necessarily a great measure ... me and many
other people think dependency accuracy would be better.



How good are PCFGs?

Robust (usually admit everything, but with low
probability)

Partial solution for grammar ambiguity: a PCFG
gives some idea of the plausibility of a sentence

But not so good because the independence
assumptions are too strong

Give a probabilistic language model

e Butin a simple case it performs worse than a trigram
model

WSJ parsing accuracy: about 73% LP/LR F1

The problem seems to be that PCFGs lack the
lexicalization of a trigram model



Putting words into PCFGs

A PCFG uses the actual words only to determine the
probability of parts-of-speech (the preterminals)

* In many cases we need to know about words to
choose a parse

« The head word of a phrase gives a good

representation of the phrase’s structure and
meaning

o Attachment ambiguities

The astronomer saw the moon with the telescope
e Coordination

the dogs in the house and the cats
» Subcategorization frames

put versus like



(Head) Lexicalization

 puttakes both an NP and a VP
o Sue put|[ the book J\p [ on the table ]pp
o * Sue put [ the book ]\p
o * Sue put [ on the table ]pp

* like usually takes an NP and not a PP

o Sue likes [ the book ]p
o * Sue likes [ on the table ]pp

 We can'’t tell this if we just have a VP with a verb,
but we can if we know what verb it is



4. Accurate Unlexicalized Parsing:
PCFGs and Independence

 The symbols in a PCFG define independence
assumptions:

S N
S — NP VP N

NP
NP — DT NN NI

AL L

* At any node, the material inside that node is
independent of the material outside that node, given
the label of that node.

 Any information that statistically connects behavior

inside and outside a node must flow through that
node.




Non-Independence |

* Independence assumptions are often too strong.

All NPs NPs under S NPs under VP

21% 23%
(1]

11%
° 9% 9%

l. 6%

NPPP DTNN PRP NPPP DTNN PRP NP PP DTNN PRP

4%

 Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).



Michael Collins (2003, COLT)

Independence Assumptions

e PCFGs
S
N /\
TN T Ty
the lawyer I
questioned DT N
tlle Witll‘leSS
e Lexicalized PCFGs
S(questioned)
NP(lawyer) VP(questioned)
N
DlT IT Vv NP(witness)
the  lawyer | N

questioned DT N
| |

the witness



Non-Independence I

 Who cares?
« NB, HMMs, all make false assumptions!
 For generation/LMs, consequences would be obvious.
» For parsing, does it impact accuracy?

* Symptoms of overly strong assumptions:
» Rewrites get used where they don’t belong.
» Rewrites get used too often or too rarely.

NP .
In the PTB, this
NP ,
N— NP/ H construction is
NNP NNP 1] NN PN | | for possesives

I | | I NNP NNP \ composite trading
Big  Board composite trading | |

Big Board



Breaking Up the Symbols

« We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

Parent annotation Marking
[Johnson 98] possesive NPs
STROOT NP
/\
NP’S VP’S . NP-POS J] NN
| N | N |
PRP VBD ADVP'VP . NNP POS new ad
A 0
He was right Fidelity 's

e What are the most useful features to encode?



Annotations

Annotations split the grammar categories into sub-
categories.

Conditioning on history vs. annotating
« P(NPAS — PRP) is a lot like P(NP — PRP | S)
o P(NP-POS — NNP POQOS) isn’t history conditioning.

Feature grammars vs. annotation
e Can think of a symbol like NPANP-POS as
NP [parent:NP, +POS]

After parsing with an annotated grammar, the
annotations are then stripped for evaluation.



Experimental Setup

e Corpus: Penn Treebank, WS}

Training: sections 02-21

Test: section 23
 Accuracy - F1: harmonic mean of per-node
labeled precision and recall.

e Size - number of symbols in grammar.
e Passive / complete symbols: NP, NPAS
e Active / incomplete symbols: NP — NP CC e



Experimental Process

« We'll take a highly conservative approach:
* Annotate as sparingly as possible
* Highest accuracy with fewest symbols

e Error-driven, manual hill-climb, adding one annotation
type at a time

NP NP"S NP'S
NP JTT NN NP"NP NP"NP-POS JJ] NN
N RN | | / ~N |
NNP POS new ad NNP POS new ad POS new ad

Fidelity s Fidelity s Fidelity s



Lexicalization

Lexical heads are important for certain classes

of ambiguities (e.g., PP attachment): VP-announce
/l\
] o announce NP-rates PP-in
Lexicalizing grammar creates a much larger | N
grammar. rates in January

» Sophisticated smoothing needed
 Smarter parsing algorithms needed
« More data needed

VP-announce
How necessary is lexicalization? announce gﬂs
e Bilexical vs. monolexical selection vates  PD-for
« Closed vs. open class lexicalization N

for January



Unlexicalized PCFGs

« What do we mean by an “unlexicalized” PCFG?

« Grammar rules are not systematically specified down to the
level of lexical items
» NP-stocks is not allowed
« NPAS-CC is fine
 Closed vs. open class words (NPAS-the)
* Long tradition in linguistics of using function words as features

or markers for selection
« Contrary to the bilexical idea of semantic heads

« Open-class selection really a proxy for semantics

« Honesty checks:
« Number of symbols: keep the grammar very small
« No smoothing: over-annotating is a real danger



* Horizontal Markovization: Merges States

NP NP
NP /\ /\ %/s
T~ NNP NP—NNPe NNP NP—... NNPe ‘9@0
NNP NNP NNP T N
NNP NP—>N1\|IP NNPe NNP NP—... NNPe
NNP Nll\TP
749, 12000

73%

9000
72% 6000
71% I I 3000 I I
70% - ‘ ‘ | —— o . . | ———
0 1 2v 2 inf 0 ov 2 inf

1

Horizontal Markov Order Horizontal Markov Order

Symbols




Vertical Markovization

« Vertical Markov Order 1 Order 2
order: rewrites SROOT
depend on past & /N NPS/’\
ancestor nodes. | /\ | N
Cf. arent annOtatiOn PRP VBD ADJP . PRP VBD ADVP'VP .
(ct. p A A
He  was right He was ri ght
79% 25000
78%
77% @ 20000
76% - _8 15000
75% - £ 10000 -
i ® 5000 |
72% ] O O
1 2v 2 3v 3 1 2v 2 3v 3

Vertical Markov Order Vertical Markov Order



2 Vertical 0

Order Order
012v2inf 012Vzinf’l
Horizontal Order Horizontal Order
 Examples:

* Raw treebank: v=1, h=w

« Johnson 98: v=2, h=c

« Collins 99: v=2, h=2

« BestFI: v=3, h=2v Model F1 Size

Base: v=h=2v 77.8 |7.5K




* Problem: unary

ROOT
rewrites used to S|
transmute S
categories so a NP VP -
high-probability NlN VBD/\NP I
rule can be used. | | _—7 T~
Revenue was NP , PP
| | TN
QP . VBG NP
T~ .
= SOlutlon Mal’k $ 444.9 million including  net interest
u.nary r.e;flvn[’je Annotation |F1 Size
sites with - Base 77.8 |7.5K
UNARY /8.3 |8.0K




Tag Splits

. VP
* Problem: Treebank tags ~
are too coarse. TO VP
| T T~
to VB SBAR
« Example: Sentential, PP, ! m«sm/\s
and other prepositions | P
are all marked IN. if Nlp VIP
NN VBZ
* Partial Solution: adverltising wolrks
e Subdivide the IN tag.
Annotation |FI Size
Previous /8.3 | 8.0K

SPLIT-IN 80.3 [8.1K




Other Tag Splits

UNARY-DT: mark demonstratives as
DTAU (“the X” vs. “those”)

UNARY-RB: mark phrasal adverbs as RBAU
(“quickly” vs. “very”)

TAG-PA: mark tags with non-canonical
parents (“not” is an RBAVP)

SPLIT-AUX: mark auxiliary verbs with -
AUX [cf. Charniak 97]

SPLIT-CC: separate “but” and “&” from
other conjunctions

SPLIT-%: “%" gets its own tag.

Fl Size
80.4 |8.1K
80.5 |8.1K
81.2 |8.5K
81.6 |9.0K
81.7 |9.1K
81.8 [9.3K




 The treebank comes with T

annotations (e.g., -LOC, - TIO VP
,./"7\
SUBJ, etc). . VA STMP
« Whole set together hurt | /\ /\
the baseline. appear NN-TMP
 Some (-SUBJ) were less % IN/\ ]|t .II
effe_ctive than our ree times | | ast night
equivalents. on  NNP
e One in particular was very |
useful (NP-TMP) when CNN
pushed down to the head - -
tag. Annotation |F1 Size
« We marked gapped S Previous 81.8 |9.3K

nodes as well. NP-TMP 82.2 |9.6K

GAPPED-S 82.3 |9.7K




Yield Splits

 Problem: sometimes the |

behavior of a category S
depends on something m\
inside its future yield. ] N | |
“ DT VBZ NP I
I N
o Examp|e5: This is NN NN
 Possessive NPs pn!'l.ic buyling
e Finite vs. infinite VPs
e Lexical heads!
Annotation |F1 Size
e Solution: annotate future Previous 823 |9.7K
elements into nodes. POSS-NP 331 198K
SPLIT-VP 85.7 |10.5K




Distance / Recursion Splits

N%—V
VP
2
‘ PP

\%
Annotation F1 Size
Previous 85.7 |10.5K
BASE-NP 86.0 [11.7K
DOMINATES-V 86.9 [14.1K
RIGHT-REC-NP 87.0 [15.2K

* Problem: vanilla PCFGs
cannot distinguish
attachment heights.

* Solution: mark a property
of higher or lower sites:
e Contains a verb.

e Is (non)-recursive.
e Base NPs [cf. Collins 99]
e Right-recursive NPs




A Fully Annotated Tree

ROOT
|
S"ROOT-v
“§  NP"S-B VP*S-VBE-v 5 g
| T~ |
“ DT-U'NP VBZBE'VP NP*VP-B ! "
I /\
This IS NN'NP NN'NP

panic ~ buying



Final Test Set Results

Parser LP LR F1 CB 0O CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Klein & M 03 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1

» Beats “first generation” lexicalized parsers.



