
1

Polynomial time parsing of PCFGs

Christopher Manning

(some slides from Pi-Chuan Chang)

0. Chomsky Normal Form

•  All rules are of the form X → Y Z or X → w.

•  A transformation to this form doesn’t change
the weak generative capacity of CFGs.
•  With some extra book-keeping in symbol names, you

can even reconstruct the same trees with a detransform

•  Unaries/empties are removed recursively

•  n-ary rules introduce new nonterminals (n > 2)
•  VP → V NP PP becomes VP → V @VP-V and @VP-V → NP PP

•  In practice it’s a pain
•  Reconstructing n-aries is easy

•  Reconstructing unaries can be trickier

•  But it makes parsing easier/more efficient

ROOT

S

NP VP

N

cats

V NP PP

P NP

claws with people scratch

N
N

An example: before binarization…

P

NP

claws

N

@PP->_P

with

NP

N

cats people scratch

N

VP

V NP PP

@VP->_V

@VP->_V_NP

ROOT

S

@S->_NP

After binarization…

Treebank: empties and unaries

TOP

S-HLN

NP-SUBJ VP

VB -NONE-

ε Atone

PTB Tree

TOP

S

NP VP

VB -NONE-

ε Atone

NoFuncTags

TOP

S

VP

VB

Atone

NoEmpties

TOP

S

Atone

NoUnaries

TOP

VB

Atone

High Low

Constituency Parsing

Rule Probs θi

θ0: S → NP VP

θ1: NP → NN NNS

…

θ42: NN→Factory

θ43: NNS→payrolls

…

PCFG

2

1. Cocke-Kasami-Younger (CKY)
Constituency Parsing

 Factory payrolls fell in September

Viterbi (Max) Scores

Factory payrolls

NN 0.0023
NNP 0.001

NNS 0.0014

NP→NN NNS 0.13
iNP = (0.13)(0.0023)

(0.0014)
 = 1.87 × 10-7

NP→NNP NNS 0.056
iNP = (0.056)(0.001)

(0.0014)
 = 7.84 × 10-8

NP 1.87 × 10-7

Extended CKY parsing

•  Unaries can be incorporated into the algorithm
•  Messy, but doesn’t increase algorithmic complexity

•  Empties can be incorporated
•  Use fenceposts

•  Doesn’t increase complexity; essentially like unaries

•  Binarization is vital
•  Without binarization, you don’t get parsing cubic in the

length of the sentence
•  Binarization may be an explicit transformation or implicit

in how the parser works (Early-style dotted rules), but it’s
always there.

function CKY(words, grammar) returns most probable parse/prob
 score = new double[#(words)+1][#(words)+][#(nonterms)]
 back = new Pair[#(words)+1][#(words)+1][#nonterms]]
 for i=0; i<#(words); i++
 for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i])
 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 if score[i][i+1][B] > 0 && A->B in grammar
 prob = P(A->B)*score[i][i+1][B]
 if(prob > score[i][i+1][A])
 score[i][i+1][A] = prob
 back[i][i+1] [A] = B
 added = true

The CKY algorithm (1960/1965)
 … generalized

for span = 2 to #(words)
 for begin = 0 to #(words)- span
 end = begin + span
 for split = begin+1 to end-1
 for A,B,C in nonterms

 prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
 if(prob > score[begin][end][A])
 score[begin]end][A] = prob
 back[begin][end][A] = new Triple(split,B,C)
 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 prob = P(A->B)*score[begin][end][B];
 if(prob > score[begin][end] [A])
 score[begin][end] [A] = prob
 back[begin][end] [A] = B
 added = true
return buildTree(score, back)

The CKY algorithm (1960/1965)
 … generalized

score[0][1]

score[1][2]

score[2][3]

score[3][4]

score[4][5]

score[0][2]

score[1][3]

score[2][4]

score[3][5]

score[0][3]

score[1][4]

score[2][5]

score[0][4]

score[1][5]

score[0][5]

0

1

2

3

4

5

1 2 3 4 5 cats scratch walls with claws

3

N→cats
P→cats
V→cats

N→scratch
P→scratch
V→scratch

N→walls
P→walls
V→walls

N→with
P→with
V→with

N→claws
P→claws
V→claws

0

1

2

3

4

5

1 2 3 4 5 cats scratch walls with claws

 for i=0; i<#(words); i++
 for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i]);

N→cats
P→cats
V→cats
NP→N
@VP->V→NP
@PP->P→NP

N→scratch
P→scratch
V→scratch
NP→N
@VP->V→NP
@PP->P→NP

N→walls
P→walls
V→walls
NP→N
@VP->V→NP
@PP->P→NP

N→with
P→with
V→with
NP→N
@VP->V→NP
@PP->P→NP

N→claws
P→claws
V→claws
NP→N
@VP->V→NP
@PP->P→NP

0

1

2

3

4

5

1 2 3 4 5

// handle unaries

cats scratch walls with claws

N→cats
P→cats
V→cats
NP→N
@VP->V→NP
@PP->P→NP

N→scratch
P→scratch
V→scratch
NP→N
@VP->V→NP
@PP->P→NP

N→walls
P→walls
V→walls
NP→N
@VP->V→NP
@PP->P→NP

N→with
P→with
V→with
NP→N
@VP->V→NP
@PP->P→NP

N→claws
P→claws
V→claws
NP→N
@VP->V→NP
@PP->P→NP

PP→P @PP->_P
VP→V @VP->_V

PP→P @PP->_P
VP→V @VP->_V

PP→P @PP->_P
VP→V @VP->_V

PP→P @PP->_P
VP→V @VP->_V

0

1

2

3

4

5

1 2 3 4 5

prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
prob=score[0][1][P]*score[1][2][@PP->_P]*P(PPP @PP-
>_P)

For each A, only keep the “A->BC” with highest prob.

cats scratch walls with claws

N→cats
P→cats
V→cats
NP→N
@VP->V→NP
@PP->P→NP

N→scratch 0.0967
P→scratch 0.0773
V→scratch 0.9285
NP→N 0.0859
@VP->V→NP 0.0573
@PP->P→NP 0.0859

N→walls 0.2829
P→walls 0.0870
V→walls 0.1160
NP→N 0.2514
@VP->V→NP 0.1676
@PP->P→NP 0.2514

N→with 0.0967
P→with 1.3154
V→with 0.1031
NP→N 0.0859
@VP->V→NP 0.0573
@PP->P→NP 0.0859

N→claws 0.4062
P→claws 0.0773
V→claws 0.1031
NP→N 0.3611
@VP->V→NP 0.2407
@PP->P→NP 0.3611

PP→P @PP->_P
VP→V @VP->_V
@S->_NP→VP
@NP->_NP→PP
@VP->_V_NP→PP

PP→P @PP->_P
VP→V @VP->_V
@S->_NP→VP
@NP->_NP→PP
@VP->_V_NP→PP

PP→P @PP->_P
VP→V @VP->_V
@S->_NP→VP
@NP->_NP→PP
@VP->_V_NP→PP

PP→P @PP->_P
VP→V @VP->_V
@S->_NP→VP
@NP->_NP→PP
@VP->_V_NP→PP

0

1

2

3

4

5

1 2 3 4 5

// handle unaries

cats scratch walls with claws

N→scratch
P→scratch
V→scratch
NP→N
@VP->V→NP
@PP->P→NP

N→walls
P→walls
V→walls
NP→N
@VP->V→NP
@PP->P→NP

N→with
P→with
V→with
NP→N
@VP->V→NP
@PP->P→NP

N→claws
P→claws
V→claws
NP→N
@VP->V→NP
@PP->P→NP

………

N→cats 0.5259
P→cats 0.0725
V→cats 0.0967
NP→N 0.4675
@VP->V→NP 0.3116
@PP->P→NP 0.4675

N→scratch 0.0967
P→scratch 0.0773
V→scratch 0.9285
NP→N 0.0859
@VP->V→NP 0.0573
@PP->P→NP 0.0859

N→walls 0.2829
P→walls 0.0870
V→walls 0.1160
NP→N 0.2514
@VP->V→NP 0.1676
@PP->P→NP 0.2514

N→with 0.0967
P→with 1.3154
V→with 0.1031
NP→N 0.0859
@VP->V→NP 0.0573
@PP->P→NP 0.0859

N→claws 0.4062
P→claws 0.0773
V→claws 0.1031
NP→N 0.3611
@VP->V→NP 0.2407
@PP->P→NP 0.3611

PP→P @PP->_P 0.0062
VP→V @VP->_V 0.0055
@S->_NP→VP 0.0055
@NP->_NP→PP 0.0062
@VP->_V_NP→PP 0.0062

PP→P @PP->_P 0.0194
VP→V @VP->_V 0.1556
@S->_NP→VP 0.1556
@NP->_NP→PP 0.0194
@VP->_V_NP→PP 0.0194

PP→P @PP->_P 0.0074
VP→V @VP->_V 0.0066
@S->_NP→VP 0.0066
@NP->_NP→PP 0.0074
@VP->_V_NP→PP 0.0074

PP→P @PP->_P 0.4750
VP→V @VP->_V 0.0248
@S->_NP→VP 0.0248
@NP->_NP→PP 0.4750
@VP->_V_NP→PP 0.4750

@VP->_V→NP @VP->_V_NP
 0.0030
NP→NP @NP->_NP
 0.0010
S→NP @S->_NP 0.0727

ROOT→S 0.0727
@PP->_P→NP 0.0010

@VP->_V→NP @VP->_V_NP
 2.145E-4
NP→NP @NP->_NP 7.150E-5
S→NP @S->_NP 5.720E-4
ROOT→S 5.720E-4
@PP->_P→NP 7.150E-5

@VP->_V→NP @VP->_V_NP
 0.0398
NP→NP @NP->_NP 0.0132
S→NP @S->_NP 0.0062
ROOT→S 0.0062
@PP->_P→NP 0.0132

PP→P @PP->_P 5.187E-6
VP→V @VP->_V 2.074E-5
@S->_NP→VP 2.074E-5
@NP->_NP→PP 5.187E-6
@VP->_V_NP→PP
 5.187E-6

PP→P @PP->_P 0.0010
VP→V @VP->_V 0.0369
@S->_NP→VP 0.0369
@NP->_NP→PP 0.0010
@VP->_V_NP→PP 0.0010

@VP->_V→NP @VP->_V_NP
 1.600E-4
NP→NP @NP->_NP 5.335E-5
S→NP @S->_NP 0.0172
ROOT→S 0.0172
@PP->_P→NP 5.335E-5

0

1

2

3

4

5

1 2 3 4 5

Call buildTree(score, back) to get the best parse

cats scratch walls with claws

4

Unary rules:
alchemy in the land of treebanks Same-Span Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NoEmpties

NAC

SBARQ

SINV

RRC SQ X

PRT

Efficient CKY parsing

•  CKY parsing can be made very fast (!), partly due
to the simplicity of the structures used.
•  But that means a lot of the speed comes from

engineering details

•  And a little from cleverer filtering

•  Store chart as (ragged) 3 dimensional array of float (log
probabilities)
•  score[start][end][category]

•  For treebank grammars the load is high enough that you don’t
really gain from lists of things that were possible

•  50 wds: (50x50)/2x(1000 to 20000)x4 bytes = 5–100MB for
parse triangle. Large. (Can move to beam for span[i][j].)

•  Use int to represent categories/words (Index)

Efficient CKY parsing

•  Provide efficient grammar/lexicon accessors:
•  E.g., return list of rules with this left child category

•  Iterate over left child, check for zero (Neg. inf.) prob of
X:[i,j] (abort loop), otherwise get rules with X on left

•  Some X:[i,j] can be filtered based on the input string
•  Not enough space to complete a long flat rule?

•  No word in the string can be a CC?
•  Using a lexicon of possible POS for words gives a lot of

constraint rather than allowing all POS for words

•  Cf. later discussion of figures-of-merit/A* heuristics

2. An alternative … memoization

•  A recursive (CNF) parser:

bestParse(X,i,j,s)
 if (j==i+1)

 return X -> s[i]
 (X->Y Z, k) = argmax score(X-> Y Z) *

 bestScore(Y,i,k,s) * bestScore(Z,k,j,s)

 parse.parent = X
 parse.leftChild = bestParse(Y,i,k,s)

 parse.rightChild = bestParse(Z,k,j,s)
 return parse

An alternative … memoization

bestScore(X,i,j,s)

 if (j == i+1)
 return tagScore(X, s[i])

 else
 return max score(X -> Y Z) *

 bestScore(Y, i, k) * bestScore(Z,k,j)

•  Call: bestParse(Start, 1, sent.length(), sent)
•  Will this parser work?

•  Memory/time requirements?

5

A memoized parser

•  A simple change to record scores you know:

bestScore(X,i,j,s)
 if (scores[X][i][j] == null)
 if (j == i+1)
 score = tagScore(X, s[i])
 else
 score = max score(X -> Y Z) *
 bestScore(Y, i, k) * bestScore(Z,k,j)
 scores[X][i][j] = score
 return scores[X][i][j]

•  Memory and time complexity?

Runtime in practice: super-cubic!

•  Super-cubic in practice! Why?

Best Fit
Exponent:

 3.47

0

60

120

180

240

300

360

0 10 20 30 40 50
Sentence Length

Ti
m

e
(s

ec
)

Rule State Reachability

•  Worse in practice because longer sentences “unlock” more of the
grammar

•  Many states are more likely to match larger spans!

•  And because of various “systems” issues … cache misses, etc.

Example: NP CC . NP

NP CC

0 n n-1

1 Alignment

Example: NP CC NP . PP

NP CC

0 n n-k-1
n Alignments NP

n-k

3. Evaluating Parsing Accuracy

•  Most sentences are not given a completely
correct parse by any currently existing parsers.

•  Standardly for Penn Treebank parsing,
evaluation is done in terms of the percentage of
correct constituents (labeled spans).

•  [label, start, finish]

•  A constituent is a triple, all of which must be in
the true parse for the constituent to be marked
correct.

Evaluating Constituent Accuracy:
LP/LR measure

•  Let C be the number of correct constituents produced by
the parser over the test set, M be the total number of
constituents produced, and N be the total in the correct
version [microaveraged]

•  Precision = C/M

•  Recall = C/N

•  It is possible to artificially inflate either one.

•  Thus people typically give the F-measure (harmonic mean)
of the two. Not a big issue here; like average.

•  This isn’t necessarily a great measure … me and many
other people think dependency accuracy would be better.

6

How good are PCFGs?

•  Robust (usually admit everything, but with low
probability)

•  Partial solution for grammar ambiguity: a PCFG
gives some idea of the plausibility of a sentence

•  But not so good because the independence
assumptions are too strong

•  Give a probabilistic language model
•  But in a simple case it performs worse than a trigram

model

•  WSJ parsing accuracy: about 73% LP/LR F1
•  The problem seems to be that PCFGs lack the

lexicalization of a trigram model

Putting words into PCFGs

•  A PCFG uses the actual words only to determine the
probability of parts-of-speech (the preterminals)

•  In many cases we need to know about words to
choose a parse

•  The head word of a phrase gives a good
representation of the phrase’s structure and
meaning
•  Attachment ambiguities

 The astronomer saw the moon with the telescope
•  Coordination
 the dogs in the house and the cats
•  Subcategorization frames

 put versus like

(Head) Lexicalization

•  put takes both an NP and a VP
•  Sue put [the book]NP [on the table]PP

•  * Sue put [the book]NP

•  * Sue put [on the table]PP

•  like usually takes an NP and not a PP
•  Sue likes [the book]NP

•  * Sue likes [on the table]PP

•  We can’t tell this if we just have a VP with a verb,
but we can if we know what verb it is

4. Accurate Unlexicalized Parsing:
PCFGs and Independence

•  The symbols in a PCFG define independence
assumptions:

•  At any node, the material inside that node is
independent of the material outside that node, given
the label of that node.

•  Any information that statistically connects behavior
inside and outside a node must flow through that
node.

NP

S

VP
S → NP VP

NP → DT NN

NP

Non-Independence I

•  Independence assumptions are often too strong.

•  Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Michael Collins (2003, COLT)

7

Non-Independence II

•  Who cares?
•  NB, HMMs, all make false assumptions!

•  For generation/LMs, consequences would be obvious.
•  For parsing, does it impact accuracy?

•  Symptoms of overly strong assumptions:
•  Rewrites get used where they don’t belong.

•  Rewrites get used too often or too rarely.

In the PTB, this
construction is
for possesives

Breaking Up the Symbols

•  We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

•  What are the most useful features to encode?

Parent annotation
[Johnson 98]

Marking
possesive NPs

Annotations

•  Annotations split the grammar categories into sub-
categories.

•  Conditioning on history vs. annotating
•  P(NP^S → PRP) is a lot like P(NP → PRP | S)

•  P(NP-POS → NNP POS) isn’t history conditioning.

•  Feature grammars vs. annotation
•  Can think of a symbol like NP^NP-POS as

 NP [parent:NP, +POS]

•  After parsing with an annotated grammar, the
annotations are then stripped for evaluation.

Experimental Setup

•  Corpus: Penn Treebank, WSJ

•  Accuracy – F1: harmonic mean of per-node
labeled precision and recall.

•  Size – number of symbols in grammar.
•  Passive / complete symbols: NP, NP^S

•  Active / incomplete symbols: NP → NP CC •

Training: sections 02-21
Development: section 22 (first 20 files)
Test: section 23

Experimental Process

•  We’ll take a highly conservative approach:
•  Annotate as sparingly as possible

•  Highest accuracy with fewest symbols
•  Error-driven, manual hill-climb, adding one annotation

type at a time

Lexicalization

•  Lexical heads are important for certain classes
of ambiguities (e.g., PP attachment):

•  Lexicalizing grammar creates a much larger
grammar.
•  Sophisticated smoothing needed

•  Smarter parsing algorithms needed
•  More data needed

•  How necessary is lexicalization?
•  Bilexical vs. monolexical selection

•  Closed vs. open class lexicalization

8

Unlexicalized PCFGs

•  What do we mean by an “unlexicalized” PCFG?
•  Grammar rules are not systematically specified down to the

level of lexical items
•  NP-stocks is not allowed
•  NP^S-CC is fine

•  Closed vs. open class words (NP^S-the)
•  Long tradition in linguistics of using function words as features

or markers for selection
•  Contrary to the bilexical idea of semantic heads
•  Open-class selection really a proxy for semantics

•  Honesty checks:
•  Number of symbols: keep the grammar very small
•  No smoothing: over-annotating is a real danger

Horizontal Markovization

•  Horizontal Markovization: Merges States

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

Vertical Markovization

•  Vertical Markov
order: rewrites
depend on past k
ancestor nodes.

 (cf. parent annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000

15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

Vertical and Horizontal

•  Examples:
•  Raw treebank: v=1, h=∞
•  Johnson 98: v=2, h=∞
•  Collins 99: v=2, h=2
•  Best F1: v=3, h=2v

0 1 2v 2 inf
1

2

3

66%
68%
70%
72%
74%
76%
78%
80%

Horizontal Order

Vertical
Order 0 1 2v 2 inf

1

2

3

0
5000

10000
15000
20000
25000

Sy
m

bo
ls

Horizontal Order

Vertical
Order

Model F1 Size

Base: v=h=2v 77.8 7.5K

Unary Splits

•  Problem: unary
rewrites used to
transmute
categories so a
high-probability
rule can be used.

Annotation F1 Size

Base 77.8 7.5K

UNARY 78.3 8.0K

  Solution: Mark
unary rewrite
sites with -U

Tag Splits

•  Problem: Treebank tags
are too coarse.

•  Example: Sentential, PP,
and other prepositions
are all marked IN.

•  Partial Solution:
•  Subdivide the IN tag.

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K

9

Other Tag Splits

•  UNARY-DT: mark demonstratives as
DT^U (“the X” vs. “those”)

•  UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

•  TAG-PA: mark tags with non-canonical
parents (“not” is an RB^VP)

•  SPLIT-AUX: mark auxiliary verbs with –
AUX [cf. Charniak 97]

•  SPLIT-CC: separate “but” and “&” from
other conjunctions

•  SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

Treebank Splits

•  The treebank comes with
annotations (e.g., -LOC, -
SUBJ, etc).
•  Whole set together hurt

the baseline.
•  Some (-SUBJ) were less

effective than our
equivalents.

•  One in particular was very
useful (NP-TMP) when
pushed down to the head
tag.

•  We marked gapped S
nodes as well.

Annotation F1 Size

Previous 81.8 9.3K

NP-TMP 82.2 9.6K

GAPPED-S 82.3 9.7K

Yield Splits

•  Problem: sometimes the
behavior of a category
depends on something
inside its future yield.

•  Examples:
•  Possessive NPs
•  Finite vs. infinite VPs
•  Lexical heads!

•  Solution: annotate future
elements into nodes.

Annotation F1 Size

Previous 82.3 9.7K

POSS-NP 83.1 9.8K

SPLIT-VP 85.7 10.5K

Distance / Recursion Splits

•  Problem: vanilla PCFGs
cannot distinguish
attachment heights.

•  Solution: mark a property
of higher or lower sites:
•  Contains a verb.

•  Is (non)-recursive.
•  Base NPs [cf. Collins 99]

•  Right-recursive NPs

Annotation F1 Size

Previous 85.7 10.5K

BASE-NP 86.0 11.7K

DOMINATES-V 86.9 14.1K

RIGHT-REC-NP 87.0 15.2K

NP

VP

PP

NP

v

-v

A Fully Annotated Tree Final Test Set Results

•  Beats “first generation” lexicalized parsers.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Klein & M 03 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1

