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Polynomial time parsing of PCFGs 

Christopher Manning 

(some slides from Pi-Chuan Chang) 

0. Chomsky Normal Form 

•  All rules are of the form X → Y Z or X → w. 

•  A transformation to this form doesn’t change 
the weak generative capacity of CFGs. 
•  With some extra book-keeping in symbol names, you 

can even reconstruct the same trees with a detransform 

•  Unaries/empties are removed recursively 

•  n-ary rules introduce new nonterminals (n > 2) 
•  VP → V NP PP  becomes  VP → V @VP-V  and  @VP-V → NP PP 

•  In practice it’s a pain 
•  Reconstructing n-aries is easy 

•  Reconstructing unaries can be trickier 

•  But it makes parsing easier/more efficient 
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After binarization… 

Treebank: empties and unaries 
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… 
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1. Cocke-Kasami-Younger (CKY) 
Constituency Parsing 

 Factory payrolls  fell       in   September 

Viterbi (Max) Scores 

Factory                      payrolls 

NN 0.0023 
NNP 0.001 

NNS 0.0014 

NP→NN NNS 0.13 
iNP = (0.13)(0.0023)

(0.0014) 
     = 1.87 × 10-7 

NP→NNP NNS 0.056 
iNP = (0.056)(0.001)

(0.0014) 
     = 7.84 × 10-8 

NP   1.87 × 10-7  

Extended CKY parsing 

•  Unaries can be incorporated into the algorithm 
•  Messy, but doesn’t increase algorithmic complexity 

•  Empties can be incorporated 
•  Use fenceposts 

•  Doesn’t increase complexity; essentially like unaries 

•  Binarization is vital 
•  Without binarization, you don’t get parsing cubic in the 

length of the sentence 
•  Binarization may be an explicit transformation or implicit 

in how the parser works (Early-style dotted rules), but it’s 
always there. 

function CKY(words, grammar) returns most probable parse/prob 
  score = new double[#(words)+1][#(words)+][#(nonterms)] 
  back = new Pair[#(words)+1][#(words)+1][#nonterms]] 
  for i=0; i<#(words); i++ 
    for A in nonterms 
      if A -> words[i] in grammar 
        score[i][i+1][A] = P(A -> words[i]) 
    //handle unaries 
    boolean added = true 
    while added  
      added = false 
      for A, B in nonterms 
        if score[i][i+1][B] > 0 && A->B in grammar 
          prob = P(A->B)*score[i][i+1][B] 
          if(prob > score[i][i+1][A]) 
            score[i][i+1][A] = prob 
            back[i][i+1] [A] = B 
            added = true 

The CKY algorithm (1960/1965) 
 … generalized 

for span = 2 to #(words) 
  for begin = 0 to #(words)- span 
    end = begin + span 
    for split = begin+1 to end-1 
      for A,B,C in nonterms 

            prob=score[begin][split][B]*score[split][end][C]*P(A->BC) 
        if(prob > score[begin][end][A]) 
          score[begin]end][A] = prob 
          back[begin][end][A] = new Triple(split,B,C) 
      //handle unaries 
      boolean added = true 
      while added 
        added = false 
        for A, B in nonterms 
          prob = P(A->B)*score[begin][end][B]; 
          if(prob > score[begin][end] [A]) 
            score[begin][end] [A] = prob 
            back[begin][end] [A] = B 
            added = true 
return buildTree(score, back) 

The CKY algorithm (1960/1965) 
 … generalized 
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N→cats 
P→cats 
V→cats 

N→scratch 
P→scratch 
V→scratch 

N→walls 
P→walls 
V→walls 

N→with 
P→with 
V→with 

N→claws 
P→claws 
V→claws 
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1 2 3 4 5 cats scratch walls with claws 

 for i=0; i<#(words); i++ 
    for A in nonterms 
      if A -> words[i] in grammar 
        score[i][i+1][A] = P(A -> words[i]); 

N→cats 
P→cats 
V→cats 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→scratch 
P→scratch 
V→scratch 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→walls 
P→walls 
V→walls 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→with 
P→with 
V→with 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→claws 
P→claws 
V→claws 
NP→N 
@VP->V→NP 
@PP->P→NP 
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// handle unaries 

cats scratch walls with claws 

N→cats 
P→cats 
V→cats 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→scratch 
P→scratch 
V→scratch 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→walls 
P→walls 
V→walls 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→with 
P→with 
V→with 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→claws 
P→claws 
V→claws 
NP→N 
@VP->V→NP 
@PP->P→NP 

PP→P @PP->_P 
VP→V @VP->_V 

PP→P @PP->_P 
VP→V @VP->_V 

PP→P @PP->_P 
VP→V @VP->_V 

PP→P @PP->_P 
VP→V @VP->_V 

0 

1 

2 

3 

4 

5 

1 2 3 4 5 

prob=score[begin][split][B]*score[split][end][C]*P(A->BC) 
prob=score[0][1][P]*score[1][2][@PP->_P]*P(PPP @PP-
>_P) 

For each A, only keep the “A->BC” with highest prob. 

cats scratch walls with claws 

N→cats 
P→cats 
V→cats 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→scratch 0.0967 
P→scratch 0.0773 
V→scratch 0.9285 
NP→N 0.0859 
@VP->V→NP 0.0573 
@PP->P→NP 0.0859 

N→walls 0.2829 
P→walls 0.0870 
V→walls 0.1160 
NP→N 0.2514 
@VP->V→NP 0.1676 
@PP->P→NP 0.2514 

N→with 0.0967 
P→with 1.3154 
V→with 0.1031 
NP→N 0.0859 
@VP->V→NP 0.0573 
@PP->P→NP 0.0859 

N→claws 0.4062 
P→claws 0.0773 
V→claws 0.1031 
NP→N 0.3611 
@VP->V→NP 0.2407 
@PP->P→NP 0.3611 

PP→P @PP->_P 
VP→V @VP->_V 
@S->_NP→VP 
@NP->_NP→PP 
@VP->_V_NP→PP 

PP→P @PP->_P 
VP→V @VP->_V 
@S->_NP→VP 
@NP->_NP→PP 
@VP->_V_NP→PP 

PP→P @PP->_P 
VP→V @VP->_V 
@S->_NP→VP 
@NP->_NP→PP 
@VP->_V_NP→PP 

PP→P @PP->_P 
VP→V @VP->_V 
@S->_NP→VP 
@NP->_NP→PP 
@VP->_V_NP→PP 
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// handle unaries 

cats scratch walls with claws 

N→scratch 
P→scratch 
V→scratch 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→walls 
P→walls 
V→walls 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→with 
P→with 
V→with 
NP→N 
@VP->V→NP 
@PP->P→NP 

N→claws 
P→claws 
V→claws 
NP→N 
@VP->V→NP 
@PP->P→NP 

……… 

N→cats 0.5259 
P→cats 0.0725 
V→cats 0.0967 
NP→N 0.4675 
@VP->V→NP 0.3116 
@PP->P→NP 0.4675 

N→scratch 0.0967 
P→scratch 0.0773 
V→scratch 0.9285 
NP→N 0.0859 
@VP->V→NP 0.0573 
@PP->P→NP 0.0859 

N→walls 0.2829 
P→walls 0.0870 
V→walls 0.1160 
NP→N 0.2514 
@VP->V→NP 0.1676 
@PP->P→NP 0.2514 

N→with 0.0967 
P→with 1.3154 
V→with 0.1031 
NP→N 0.0859 
@VP->V→NP 0.0573 
@PP->P→NP 0.0859 

N→claws 0.4062 
P→claws 0.0773 
V→claws 0.1031 
NP→N 0.3611 
@VP->V→NP 0.2407 
@PP->P→NP 0.3611 

PP→P @PP->_P      0.0062 
VP→V @VP->_V     0.0055 
@S->_NP→VP        0.0055 
@NP->_NP→PP      0.0062 
@VP->_V_NP→PP   0.0062 

PP→P @PP->_P      0.0194 
VP→V @VP->_V     0.1556  
@S->_NP→VP   0.1556 
@NP->_NP→PP   0.0194 
@VP->_V_NP→PP  0.0194 

PP→P @PP->_P      0.0074  
VP→V @VP->_V     0.0066 
@S->_NP→VP   0.0066 
@NP->_NP→PP   0.0074 
@VP->_V_NP→PP  0.0074 

PP→P @PP->_P      0.4750  
VP→V @VP->_V     0.0248  
@S->_NP→VP        0.0248 
@NP->_NP→PP      0.4750 
@VP->_V_NP→PP   0.4750 

@VP->_V→NP @VP->_V_NP 
                                  0.0030 
NP→NP @NP->_NP 
                                  0.0010 
S→NP @S->_NP          0.0727 

ROOT→S                     0.0727 
@PP->_P→NP              0.0010 

@VP->_V→NP @VP->_V_NP 
                                  2.145E-4 
NP→NP @NP->_NP 7.150E-5 
S→NP @S->_NP      5.720E-4 
ROOT→S                  5.720E-4 
@PP->_P→NP          7.150E-5 

@VP->_V→NP @VP->_V_NP 
                                  0.0398 
NP→NP @NP->_NP       0.0132 
S→NP @S->_NP          0.0062 
ROOT→S                     0.0062 
@PP->_P→NP              0.0132 

PP→P @PP->_P   5.187E-6 
VP→V @VP->_V  2.074E-5 
@S->_NP→VP     2.074E-5 
@NP->_NP→PP   5.187E-6 
@VP->_V_NP→PP 
                         5.187E-6 

PP→P @PP->_P      0.0010 
VP→V @VP->_V     0.0369 
@S->_NP→VP        0.0369 
@NP->_NP→PP      0.0010 
@VP->_V_NP→PP   0.0010 

@VP->_V→NP @VP->_V_NP 
                               1.600E-4 
NP→NP @NP->_NP    5.335E-5 
S→NP @S->_NP          0.0172 
ROOT→S                     0.0172 
@PP->_P→NP           5.335E-5 
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Call buildTree(score, back) to get the best parse 

cats scratch walls with claws 



4 

Unary rules:  
alchemy in the land of treebanks Same-Span Reachability 

ADJP ADVP 
FRAG INTJ NP 
PP PRN QP S 
SBAR UCP VP 

WHNP 

TOP 

LST 

CONJP 

WHADJP 

WHADVP 

WHPP 

NX 

NoEmpties 

NAC 

SBARQ 

SINV 

RRC SQ X 

PRT 

Efficient CKY parsing 

•  CKY parsing can be made very fast (!), partly due 
to the simplicity of the structures used. 
•  But that means a lot of the speed comes from 

engineering details 

•  And a little from cleverer filtering 

•  Store chart as (ragged) 3 dimensional array of float (log 
probabilities) 
•  score[start][end][category] 

•  For treebank grammars the load is high enough that you don’t 
really gain from lists of things that were possible 

•  50 wds: (50x50)/2x(1000 to 20000)x4 bytes = 5–100MB for 
parse triangle. Large. (Can move to beam for span[i][j].) 

•  Use int to represent categories/words (Index) 

Efficient CKY parsing 

•  Provide efficient grammar/lexicon accessors: 
•  E.g., return list of rules with this left child category 

•  Iterate over left child, check for zero (Neg. inf.) prob of 
X:[i,j] (abort loop), otherwise get rules with X on left 

•  Some X:[i,j] can be filtered based on the input string 
•  Not enough space to complete a long flat rule? 

•  No word in the string can be a CC? 
•  Using a lexicon of possible POS for words gives a lot of 

constraint rather than allowing all POS for words 

•  Cf. later discussion of figures-of-merit/A* heuristics 

2. An alternative … memoization 

•  A recursive (CNF) parser: 

bestParse(X,i,j,s) 
 if (j==i+1) 

  return X -> s[i] 
 (X->Y Z, k) = argmax score(X-> Y Z) * 

   bestScore(Y,i,k,s) * bestScore(Z,k,j,s) 

 parse.parent = X 
 parse.leftChild = bestParse(Y,i,k,s) 

 parse.rightChild = bestParse(Z,k,j,s) 
 return parse 

An alternative … memoization 

bestScore(X,i,j,s) 

 if (j == i+1) 
  return tagScore(X, s[i]) 

 else 
  return max score(X -> Y Z) * 

   bestScore(Y, i, k) * bestScore(Z,k,j) 

•  Call: bestParse(Start, 1, sent.length(), sent) 
•  Will this parser work? 

•  Memory/time requirements? 
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A memoized parser 

•  A simple change to record scores you know: 

bestScore(X,i,j,s) 
 if (scores[X][i][j] == null) 
  if (j == i+1) 
   score = tagScore(X, s[i]) 
  else 
   score = max score(X -> Y Z) * 
    bestScore(Y, i, k) * bestScore(Z,k,j) 
  scores[X][i][j] = score 
 return scores[X][i][j] 

•  Memory and time complexity? 

Runtime in practice: super-cubic! 

•  Super-cubic in practice!  Why? 

Best Fit 
Exponent: 

   3.47 
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Rule State Reachability 

•  Worse in practice because longer sentences “unlock” more of the 
grammar 

•  Many states are more likely to match larger spans! 

•  And because of various “systems” issues … cache misses, etc. 

Example: NP CC . NP 

NP CC 

0 n n-1 

1 Alignment 

Example: NP CC NP . PP 

NP CC 

0 n n-k-1 
n Alignments NP 

n-k 

3. Evaluating Parsing Accuracy 

•  Most sentences are not given a completely 
correct parse by any currently existing parsers.   

•  Standardly for Penn Treebank parsing, 
evaluation is done in terms of the percentage of 
correct constituents (labeled spans). 

•     [ label, start, finish ] 

•  A constituent is a triple, all of which must be in 
the true parse for the constituent to be marked 
correct. 

Evaluating Constituent Accuracy: 
LP/LR measure 

•  Let C be the number of correct constituents produced by 
the parser over the test set, M be the total number of 
constituents produced, and  N be the total in the correct 
version [microaveraged] 

•   Precision = C/M 

•   Recall = C/N 

•  It is possible to artificially inflate either one. 

•  Thus people typically give the F-measure (harmonic mean) 
of the two.  Not a big issue here; like average. 

•  This isn’t necessarily a great measure … me and many 
other people think dependency accuracy would be better. 



6 

How good are PCFGs? 

•  Robust (usually admit everything, but with low 
probability) 

•  Partial solution for grammar ambiguity: a PCFG 
gives some idea of the plausibility of a sentence 

•  But not so good because the independence 
assumptions are too strong 

•  Give a probabilistic language model  
•  But in a simple case it performs worse than a trigram 

model 

•  WSJ parsing accuracy: about 73% LP/LR F1 
•  The problem seems to be that PCFGs lack the 

lexicalization of a trigram model 

Putting words into PCFGs 

•  A PCFG uses the actual words only to determine the 
probability of parts-of-speech (the preterminals) 

•  In many cases we need to know about words to 
choose a parse 

•  The head word of a phrase gives a good 
representation of the phrase’s structure and 
meaning 
•  Attachment ambiguities 

      The astronomer saw the moon with the telescope 
•  Coordination 
  the dogs in the house and the cats 
•  Subcategorization frames 

  put versus like   

(Head) Lexicalization 

•  put takes both an NP and a VP 
•  Sue put [ the book ]NP [ on the table ]PP 

•  * Sue put [ the book ]NP 

•  * Sue put [ on the table ]PP 

•  like usually takes an NP and not a PP 
•  Sue likes [ the book ]NP 

•   * Sue likes [ on the table ]PP 

•  We can’t tell this if we just have a VP with a verb, 
but we can if we know what verb it is 

4. Accurate Unlexicalized Parsing: 
PCFGs and Independence 

•  The symbols in a PCFG define independence 
assumptions: 

•  At any node, the material inside that node is 
independent of the material outside that node, given 
the label of that node. 

•  Any information that statistically connects behavior 
inside and outside a node must flow through that 
node. 

NP 

S 

VP 
S → NP VP 

NP → DT NN 

NP 

Non-Independence I 

•  Independence assumptions are often too strong. 

•  Example: the expansion of an NP is highly dependent 
on the parent of the NP (i.e., subjects vs. objects). 

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP 

Michael Collins (2003, COLT) 
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Non-Independence II 

•  Who cares? 
•  NB, HMMs, all make false assumptions! 

•  For generation/LMs, consequences would be obvious. 
•  For parsing, does it impact accuracy? 

•  Symptoms of overly strong assumptions: 
•  Rewrites get used where they don’t belong. 

•  Rewrites get used too often or too rarely. 

In the PTB, this 
construction is 
for possesives 

Breaking Up the Symbols 

•  We can relax independence assumptions by 
encoding dependencies into the PCFG symbols: 

•  What are the most useful features to encode? 

Parent annotation 
[Johnson 98] 

Marking 
possesive NPs 

Annotations 

•  Annotations split the grammar categories into sub-
categories. 

•  Conditioning on history vs. annotating 
•  P(NP^S → PRP) is a lot like P(NP → PRP | S) 

•  P(NP-POS → NNP POS) isn’t history conditioning. 

•  Feature grammars vs. annotation 
•  Can think of a symbol like NP^NP-POS as  

 NP [parent:NP, +POS] 

•  After parsing with an annotated grammar, the 
annotations are then stripped for evaluation. 

Experimental Setup 

•  Corpus: Penn Treebank, WSJ 

•  Accuracy – F1: harmonic mean of per-node 
labeled precision and recall. 

•  Size – number of symbols in grammar. 
•  Passive / complete symbols: NP, NP^S 

•  Active / incomplete symbols: NP → NP CC • 

Training: sections 02-21 
Development: section 22 (first 20 files) 
Test: section 23 

Experimental Process 

•  We’ll take a highly conservative approach: 
•  Annotate as sparingly as possible 

•  Highest accuracy with fewest symbols 
•  Error-driven, manual hill-climb, adding one annotation 

type at a time 

Lexicalization 

•  Lexical heads are important for certain classes 
of ambiguities (e.g., PP attachment): 

•  Lexicalizing grammar creates a much larger 
grammar. 
•  Sophisticated smoothing needed 

•  Smarter parsing algorithms needed 
•  More data needed 

•  How necessary is lexicalization? 
•  Bilexical vs. monolexical selection 

•  Closed vs. open class lexicalization 
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Unlexicalized PCFGs 

•  What do we mean by an “unlexicalized” PCFG? 
•  Grammar rules are not systematically specified down to the 

level of lexical items 
•  NP-stocks is not allowed 
•  NP^S-CC is fine 

•  Closed vs. open class words (NP^S-the) 
•  Long tradition in linguistics of using function words as features 

or markers for selection 
•  Contrary to the bilexical idea of semantic heads 
•  Open-class selection really a proxy for semantics 

•  Honesty checks: 
•  Number of symbols: keep the grammar very small 
•  No smoothing: over-annotating is a real danger 

Horizontal Markovization 

•  Horizontal Markovization: Merges States 

70%
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Vertical Markovization 

•  Vertical Markov 
order: rewrites 
depend on past k 
ancestor nodes. 

 (cf. parent annotation) 

Order 1 Order 2 

72%
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Vertical and Horizontal 

•  Examples: 
•  Raw treebank:  v=1, h=∞ 
•  Johnson 98: v=2, h=∞ 
•  Collins 99:  v=2, h=2 
•  Best F1:   v=3, h=2v 

0 1 2v 2 inf
1

2

3

66%
68%
70%
72%
74%
76%
78%
80%

Horizontal Order

Vertical 
Order 0 1 2v 2 inf

1

2

3

0
5000

10000
15000
20000
25000

Sy
m

bo
ls

Horizontal Order

Vertical 
Order

Model F1 Size 

Base: v=h=2v 77.8 7.5K 

Unary Splits 

•  Problem: unary 
rewrites used to 
transmute 
categories so a 
high-probability 
rule can be used. 

Annotation F1 Size 

Base 77.8 7.5K 

UNARY 78.3 8.0K 

  Solution: Mark 
unary rewrite 
sites with -U  

Tag Splits 

•  Problem: Treebank tags 
are too coarse. 

•  Example: Sentential, PP, 
and other prepositions 
are all marked IN. 

•  Partial Solution: 
•  Subdivide the IN tag. 

Annotation F1 Size 

Previous 78.3 8.0K 

SPLIT-IN 80.3 8.1K 
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Other Tag Splits 

•  UNARY-DT: mark demonstratives as 
DT^U (“the X” vs. “those”) 

•  UNARY-RB: mark phrasal adverbs as RB^U 
(“quickly” vs. “very”) 

•  TAG-PA: mark tags with non-canonical 
parents (“not” is an RB^VP) 

•  SPLIT-AUX: mark auxiliary verbs with –
AUX [cf. Charniak 97] 

•  SPLIT-CC: separate “but” and “&” from 
other conjunctions 

•  SPLIT-%: “%” gets its own tag. 

F1 Size 

80.4 8.1K 

80.5 8.1K 

81.2 8.5K 

81.6 9.0K 

81.7 9.1K 

81.8 9.3K 

Treebank Splits 

•  The treebank comes with 
annotations (e.g., -LOC, -
SUBJ, etc). 
•  Whole set together hurt 

the baseline. 
•  Some (-SUBJ) were less 

effective than our 
equivalents. 

•  One in particular was very 
useful (NP-TMP) when 
pushed down to the head 
tag. 

•  We marked gapped S 
nodes as well. 

Annotation F1 Size 

Previous 81.8 9.3K 

NP-TMP 82.2 9.6K 

GAPPED-S 82.3 9.7K 

Yield Splits 

•  Problem: sometimes the 
behavior of a category 
depends on something 
inside its future yield. 

•  Examples: 
•  Possessive NPs 
•  Finite vs. infinite VPs 
•  Lexical heads! 

•  Solution: annotate future 
elements into nodes. 

Annotation F1 Size 

Previous 82.3 9.7K 

POSS-NP 83.1 9.8K 

SPLIT-VP 85.7 10.5K 

Distance / Recursion Splits 

•  Problem: vanilla PCFGs 
cannot distinguish 
attachment heights. 

•  Solution: mark a property 
of higher or lower sites: 
•  Contains a verb. 

•  Is (non)-recursive. 
•  Base NPs [cf. Collins 99] 

•  Right-recursive NPs 

Annotation F1 Size 

Previous 85.7 10.5K 

BASE-NP 86.0 11.7K 

DOMINATES-V 86.9 14.1K 

RIGHT-REC-NP 87.0 15.2K 

NP 

VP 

PP 

NP 

v

-v 

A Fully Annotated Tree Final Test Set Results 

•  Beats “first generation” lexicalized parsers. 

Parser LP LR F1 CB 0 CB 

Magerman 95 84.9 84.6 84.7 1.26 56.6 

Collins 96 86.3 85.8 86.0 1.14 59.9 

Klein & M 03 86.9 85.7 86.3 1.10 60.3 

Charniak 97 87.4 87.5 87.4 1.00 62.1 

Collins 99 88.7 88.6 88.6 0.90 67.1 


