
1

Statistical Parsing

Christopher Manning

CS224N

(Head) Lexicalization of PCFGs
[Magerman 1995, Collins 1997; Charniak 1997]

•  The head word of a phrase gives a good represen-
tation of the phraseʼs structure and meaning

•  Puts the properties of words back into a PCFG

(Head) Lexicalization of PCFGs
[Magerman 1995, Collins 1997; Charniak 1997]

•  Word-to-word affinities are useful for certain
ambiguities

• See how PP attachment is (partly) captured in a
local PCFG rule. What isnʼt captured?

announce RATES FOR January

PP
NP

VP

ANNOUNCE rates IN January

PP NP

VP

Lexicalized Parsing was seen as
the breakthrough of the late 90s

•  Eugene Charniak, 2000 JHU workshop: “To do
better, it is necessary to condition probabilities
on the actual words of the sentence. This
makes the probabilities much tighter:

•  p(VP → V NP NP) = 0.00151

•  p(VP → V NP NP | said) = 0.00001

•  p(VP → V NP NP | gave) = 0.01980 ”

•  Michael Collins, 2003 COLT tutorial: “Lexicalized
Probabilistic Context-Free Grammars … perform
vastly better than PCFGs (88% vs. 73% accuracy)”

Michael Collins (2003, COLT)

F1 (!)

Parsing via classification decisions:
Charniak (1997)

•  A very simple, conservative model of lexicalized
PCFG

•  Probabilistic conditioning is “top-down” like a regular
PCFG (but actual computation is bottom-up)

2

Charniak (1997) example
Lexicalization sharpens
probabilities: rule expansion

Local Tree come take think want

VP → V 9.5% 2.6% 4.6% 5.7%

VP → V NP 1.1% 32.1% 0.2% 13.9%

VP → V PP 34.5% 3.1% 7.1% 0.3%

VP → V SBAR 6.6% 0.3% 73.0% 0.2%

VP → V S 2.2% 1.3% 4.8% 70.8%

VP → V NP S 0.1% 5.7% 0.0% 0.3%

VP → V PRT NP 0.3% 5.8% 0.0% 0.0%

VP → V PRT PP 6.1% 1.5% 0.2% 0.0%

•  E.g., probability of different verbal complement
frames (often called “subcategorizations”)

Lexicalization sharpens
probabilities: Predicting heads

“Bilexical probabilities”

•  p(prices | n-plural) = .013

•  p(prices | n-plural, NP) = .013
•  p(prices | n-plural, NP, S) = .025

•  p(prices | n-plural, NP, S, v-past) = .052

•  p(prices | n-plural, NP, S, v-past, fell) = .146

Charniak (1997) linear interpolation/
shrinkage

Charniak (1997) shrinkage example Sparseness & the Penn Treebank

•  The Penn Treebank – 1 million words of parsed
English WSJ – has been a key resource (because of
the widespread reliance on supervised learning)

•  But 1 million words is like nothing:
•  965,000 constituents, but only 66 WHADJP, of which only 6

arenʼt how much or how many, but there is an infinite space
of these

•  How clever/original/incompetent (at risk assessment and
evaluation) …

•  Most of the probabilities that you would like to
compute, you canʼt compute

3

Sparseness & the Penn Treebank (2)

•  Many parse preferences depend on bilexical
statistics: likelihoods of relationships between pairs of
words (compound nouns, PP attachments, …)

•  Extremely sparse, even on topics central to the WSJ:
•  stocks plummeted 2 occurrences
•  stocks stabilized 1 occurrence
•  stocks skyrocketed 0 occurrences
•  #stocks discussed 0 occurrences

•  So far there has been very modest success in augmenting the
Penn Treebank with extra unannotated materials or using
semantic classes – once there is more than a little annotated
training data.
•  Cf. Charniak 1997, Charniak 2000; but see McClosky et al. 2006

[this recent self-training work is quite successful!]

Complexity of lexicalized PCFG
parsing

Running time is O (g 3 × n 5) !!

i k j

B[d1] C[d2]

A[d2]

d1 d2

Time charged :

•  i, k, j ⇒ n 3

•  A, B, C ⇒ g 3

•  Naively, g becomes huge

•  d1, d2 ⇒ n 2

y = c x 5.2019

1

10

100

1000

10000

100000

10 100
length

ti
m

e BU naive

Complexity of exhaustive lexicalized
PCFG parsing

Complexity of lexicalized PCFG
parsing

•  Work such as Collins (1997) and Charniak (1997)
is O(n5) – but uses heuristic search to be fast in
practice

•  Eisner and Satta (2000, etc.) have explored
various ways to parse more restricted classes of
bilexical grammars in O(n4) or O(n3) time
•  Neat algorithmic stuff!!!
•  See example later from dependency parsing

Refining the node expansion
probabilities

•  Charniak (1997) expands each phrase structure tree
in a single step.

•  This is good for capturing dependencies between
child nodes

•  But it is bad because of data sparseness.
•  A pure dependency, one child at a time, model is

worse.
•  But one can do better by in between models, such as

generating the children as a Markov process on both
sides of the head (Collins 1997; Charniak 2000)
•  Cf. the accurate unlexicalized parsing discussion

€

P→ L jL j−1L1HR1Rk−1Rk

Collins (1997, 1999); Bikel (2004)

•  Collins (1999): also a generative model

•  Underlying lexicalized PCFG has rules of form

•  A more elaborate set of grammar transforms
and factorizations to deal with data sparseness
and interesting linguistic properties

•  Each child is generated in turn: given P has been
generated, generate H, then generate modifying
nonterminals from head-adjacent outward with
some limited conditioning

4

Overview of Collins’ Model

P(th,wh)

H(th,wh)… L1Li–1Li

Δ

subcatLi generated
conditioning on

{subcatL}

Modifying nonterminals
generated in two steps

S(VBD–sat)

VP(VBD–sat)

€

PH
–John

€

PMw

NP(NNP

€

PM

)

€

PMw
(wM i

|…)

€

Mi,tM i
,coord,punc,P,H,wh,th ,ΔM ,subcatside

Mi,tM i
,coord,punc,P,H,th,ΔM ,subcatside

tM i

Back-off level

1
2
3

0
1
2

Smoothing for head words of
modifying nonterminals

•  Other parameter classes have similar or more
elaborate backoff schemes

Collins model … and linguistics

•  Collins had 3 generative models: Models 1 to 3

•  Especially as you work up from Model 1 to 3,
significant linguistic modeling is present:
•  Distance measure: favors close attachments

•  Model is sensitive to punctuation

•  Distinguish base NP from full NP with post-modifiers

•  Coordination feature
•  Mark gapped subjects

•  Model of subcategorization; arguments vs. adjuncts

•  Slash feature/gap threading treatment of displaced
constituents

•  Didn’t really get clear gains from this last one.

Bilexical statistics: Is use of
maximal context of PMw

useful?

•  Collins (1999): “Most importantly, the model has
parameters corresponding to dependencies
between pairs of headwords.”

•  Gildea (2001) reproduced Collins’ Model 1 (like
regular model, but no subcats)
•  Removing maximal back-off level from PMw

 resulted in
only 0.5% reduction in F-measure

•  Gildea’s experiment somewhat unconvincing to the
extent that his model’s performance was lower than
Collins’ reported results

Choice of heads

•  If not bilexical statistics, then surely choice of
heads is important to parser performance…

•  Chiang and Bikel (2002): parsers performed
decently even when all head rules were of form
“if parent is X, choose left/rightmost child”

•  Parsing engine in Collins Model 2–emulation
mode: LR 88.55% and LP 88.80% on §00
(sent. len. ≤40 words)
•  compared to LR 89.9%, LP 90.1%

5

Use of maximal context of PMw
[Bikel 2004]

LR LP CBs 0 CBs ≤2 CBs

Full
model

89.9 90.1 0.78 68.8 89.2

No
bigrams

89.5 90.0 0.80 68.0 88.8

Performance on §00 of Penn Treebank
on sentences of length ≤40 words

Use of maximal context of PMw

Back-off level
Number of
accesses

Percentage

0 3,257,309 1.49

1 24,294,084 11.0

2 191,527,387 87.4

Total 219,078,780 100.0

Number of times parsing engine was able to deliver a probability
for the various back-off levels of the mod-word generation model, PMw,

when testing on §00 having trained on §§02–21

Bilexical statistics are used often
 [Bikel 2004]

•  The 1.49% use of bilexical dependencies suggests they don’t
play much of a role in parsing

•  But the parser pursues many (very) incorrect theories
•  So, instead of asking how often the decoder can use bigram

probability on average, ask how often while pursuing its top-
scoring theory

•  Answering question by having parser constrain-parse its own output
•  train as normal on §§02–21
•  parse §00
•  feed parse trees as constraints

•  Percentage of time parser made use of bigram statistics shot up to
28.8%

•  So, used often, but use barely affect overall parsing accuracy
•  Exploratory Data Analysis suggests explanation

•  distributions that include head words are usually sufficiently similar to those
that do not as to make almost no difference in terms of accuracy

Charniak (2000) NAACL:
A Maximum-Entropy-Inspired Parser

•  There was nothing maximum entropy about it. It was a
cleverly smoothed generative model

•  Smoothes estimates by smoothing ratio of conditional
terms (which are a bit like maxent features):

•  Biggest improvement is actually that generative model
predicts head tag first and then does P(w|t,…)

•  Like Collins (1999)

•  Markovizes rules similarly to Collins (1999)
•  Gets 90.1% LP/LR F score on sentences ≤ 40 wds

),,|(
),,,|(

pp

gpp

tlltP
ltlltP

Outside

Petrov and Klein (2006):
Learning Latent Annotations

Can you automatically find good symbols?

X1

X2
X7 X4

X5 X6 X3

He was right

.

  Brackets are known
  Base categories are known
  Induce subcategories
  Clever split/merge category refinement

EM algorithm, like Forward-Backward for
HMMs, but constrained by tree. Inside

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP

S

A
D

JP

SB
AR Q

P

W
H

N
P

P
R

N

N
X

SI
N

V

P
R

T

W
H

P
P

SQ

C
O

N
JP

FR
A

G

N
A

C

U
C

P

W
H

A
D

V
P

IN
TJ

SB
AR

Q

R
R

C

W
H

A
D

JP X

R
O

O
T

LS
T

Number of phrasal subcategories

6

  Proper Nouns (NNP):

  Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James

NNP-2 J. E. L.

NNP-1 Bush Noriega Peters

NNP-15 New San Wall

NNP-3 York Francisco Street

PRP-0 It He I

PRP-1 it he they

PRP-2 it them him

POS tag splits, commonest words:
effectively a class-based model

F1

≤ 40 words

F1

all words
Parser

Klein & Manning unlexicalized
2003

86.3 85.7

Matsuzaki et al. simple EM
latent states 2005

86.7 86.1

Charniak generative (“maxent
inspired”) 2000

90.1 89.5

Petrov and Klein NAACL 2007 90.6 90.1

Charniak & Johnson
discriminative reranker 2005

92.0 91.4

The Latest Parsing Results…

Statistical parsing inference:
The General Problem

•  Someone gives you a PCFG G

•  For any given sentence, you might want to:
•  Find the best parse according to G

•  Find a bunch of reasonably good parses

•  Find the total probability of all parses licensed by G

•  Techniques:
•  CKY, for best parse; can extend it:

•  To k-best: naively done, at high space and time cost – k2
time/k space cost, but there are cleverer algorithms!
(Huang and Chiang 2005: http://www.cis.upenn.edu/~lhuang3/huang-iwpt.pdf)

•  To all parses, summed probability: the inside algorithm

•  Beam search

•  Agenda/chart-based search } Mainly useful if just
want the best parse

Parse as search definitions

•  Grammar symbols: S, NP, @S->NP_

•  Parse items/edges represent a grammar symbol
over a span:

•  Backtraces/traversals represent the combination of
adjacent edges into a larger edges:

NP:[0,2] the:[0,1]

S:[0,3]

NP:[0,2] VP:[2,3]

Parse trees and parse triangles

•  A parse tree can be
viewed as a collection of
edges and traversals.

S:[0,3]

NP:[0,2] VP:[2,3]

DT:[0,1] NN:[1,2] VBD:[2,3]

the:[0,1] cat:[1,2] ran:[2,3]

•  A parse triangle groups
edges over the same span

NN

DT

S→NP•VP

NP

Parsing as search: The parsing
directed B-hypergraph

X:h

i jh

X:h
[i,j]

NN:Factory
[0,1]

NP:payrolls
[0,2]

PP:in
[3,5]

VP:fell
[2,5]

S:fell
[0,5]

goal

NN:payrolls
[1,2]

VBD:fell
[2,3]

IN:in
[3,4]

NN:September
[4,5]

start

S:payrolls
[0,2]

VBP:payrolls
[1,2]

[Klein and Manning 2001]

7

Chart example: classic picture

the cat

DT NN

NP → . DT NN
NP → DT . NN

NP

NP → DT . NN
+
NN

Active
Edge

Passive
Edge

Traversal

Earley dotted rules

Space and Time Bounds

Space = O(Edges) Time = O(Traversals)

S many labels

C labels

N start N end

N start N end

C

N start N end

S

N split

≤ CN2 + SN2

= O(SN2)

≤ SCN3

= O(SCN3)

CKY Parsing

•  In CKY parsing, we visit edges tier by tier:

  Guarantees correctness
by working inside-out.

  Build all small bits before
any larger bits that could
possibly require them.

  Exhaustive: the goal is in
the last tier!

Beam Search

•  State space search

•  States are partial parses with an associated
probability
•  Keep only the top scoring elements at each stage of the

beam search

•  Find a way to ensure that all parses of a
sentence have the same number N steps

•  Or at least are roughly comparable

•  Leftmost top-down CFG derivations in true CNF

•  Shift-reduce derivations in true CNF

Beam Search

•  Time-synchronous beam search

Beam at
time i

Beam at
time i + 1

Successors of
beam elements

Kinds of beam search

•  Constant beam size k

•  Constant beam width relative to best item
•  Defined either additively or multiplicatively

•  Sometimes combination of the above two

•  Sometimes do fancier stuff like trying to keep
the beam elements diverse

•  Beam search can be made very fast

•  No measure of how often you find model
optimal answer
•  But can track correct answer to see how often/far gold

standard optimal answer remains in the beam

8

Beam search treebank parsers?

•  Most people do bottom up parsing (shift-reduce parsing
or a version of left-corner parsing)
•  For treebank grammars, not much grammar constraint, so

want to use data-driven constraint
•  Adwait Ratnaparkhi 1996 [maxent shift-reduce parser]
•  Manning and Carpenter 1998 and Henderson 2004 left-corner

parsers
•  But top-down with rich conditioning is possible

•  Cf. Brian Roark 2001

•  Don’t actually want to store states as partial parses
•  Store them as the last rule applied, with backpointers to the

previous states that built those constituents (and a
probability)

•  You get a linear time parser … but you may not find the best
parses according to your model (things “fall off the beam”)

Agenda-based parsing

•  For general grammars

•  Start with a table for recording δ(X,i,j)
•  Records the best score of a parse of X over [i,j]

•  If the scores are negative log probabilities, then entries
start at ∞ and small is good

•  This can be a sparse or a dense map

•  Again, you may want to record backtraces (traversals) as
well, like CKY

•  Step 1: Initialize with the sentence and lexicon:
•  For each word w and each tag t

•  Set δ(X,i,i) = lex.score(w,t)

Agenda-based parsing

•  Keep a list of edges called an agenda
•  Edges are triples [X,i,j]

•  The agenda is a priority queue

•  Every time the score of some δ(X,i,j) improves
(i.e. gets lower):
•  Stick the edge [X,i,j]-score into the agenda
•  (Update the backtrace for δ(X,i,j) if your storing them)

Agenda-Based Parsing

•  The agenda is a holding zone for edges.

•  Visit edges by some ordering policy.
•  Combine edge with already-visited edges.

•  Resulting new edges go wait in the agenda.

•  We might revisit parse items: A new way to form an edge
might be a better way.

Agenda Table/
Chart

new edges

new combinations

0.8 NP:[0,2] 0.5

0.5

VP:[2,3]

--- S:[0,3]

0.8 NP:[0,2] 0.5

0.5

VP:[2,3]

0.2 S:[0,3]

Agenda-based parsing

•  Step II: While agenda not empty
•  Get the “next” edge [X,i,j] from the agenda

•  Fetch all compatible neighbors [Y,j,k] or [Z,k,i]
•  Compatible means that there are rules A→X Y or B→ Z X

•  Build all parent edges [A,i,k] or [B,k,j] found
•  δ(A,i,k) ≤ δ(X,i,j) + δ(Y,j,k) + P(A→X Y)

•  If we’ve improved δ(A,i,k), then stick it on the agenda

•  Also project unary rules:
•  Fetch all unary rules A→X, score [A,i,j] built from this rule

on [X,i,j] and put on agenda if you’ve improved δ(A,i,k)

•  When do we know we have a parse for the root?

Agenda-based parsing

•  Open questions:
•  Agenda priority: What did “next” mean?

•  Efficiency: how do we do as little work as possible?
•  Optimality: how do we know when we find the best

parse of a sentence?

•  If we use δ(X,i,j) as the priority:
•  Each edge goes on the agenda at most once
•  When an edge pops off the agenda, its best parse is

known (why?)

•  This is basically uniform cost search (i.e., Dijkstra’s
algorithm). [Cormen, Leiserson, and Rivest 1990; Knuth 1970]

9

•  We want to work on good parses inside-out.
•  CKY does this synchronously, by tiers.
•  Uniform-cost does it asynchronously, ordering edges by their best

known parse score.
•  Why best parse is known:

•  Adding structure incurs probability cost.
•  Trees have lower probability than their sub-parts.
•  The best-scored edge in the agenda cannot be waiting on any of its

sub-edges.
•  We never have to propagate. We don’t explore truly useless edges.

Uniform-Cost Parsing

β ≤ β+ε

built before

Example of uniform cost search vs. CKY parsing:
The grammar, lexicon, and sentence

•  S → NP VP %% 0.9

•  S → VP %% 0.1

•  VP → V NP %% 0.6

•  VP → V %% 0.4
•  NP → NP NP %% 0.3

•  NP → N %% 0.7

•  people fish tanks

•  N → people %% 0.8

•  N → fish %% 0.1

•  N → tanks %% 0.1

•  V → people %% 0.1
•  V → fish %% 0.6

•  V → tanks %% 0.3

Example of uniform cost search vs. CKY parsing:
CKY vs. order of agenda pops in chart

N[0,1] -> people %% 0.8 %% [0,1]
V[0,1] -> people %% 0.1
NP[0,1] -> N[0,1] %% 0.56
VP[0,1] -> V[0,1] %% 0.04
S[0,1] -> VP[0,1] %% 0.004
N[1,2] -> fish %% 0.1 %% [1,2]
V[1,2] -> fish %% 0.6
NP[1,2] -> N[1,2] %% 0.07
VP[1,2] -> V[1,2] %% 0.24
S[1,2] -> VP[1,2] %% 0.024
N[2,3] -> tanks %% 0.1 %% [2,3]
V[2,3] -> fish %% 0.3
NP[2,3] -> N[2,3] %% 0.07
VP[2,3] -> V[2,3] %% 0.12
S[2,3] -> VP[2,3] %% 0.012
NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176 %% [0,2]
VP[0,2] -> V[0,1] NP[1,2] %% 0.0042
S[0,2] -> NP[0,1] VP[1,2] %% 0.12096
S[0,2] -> VP[0,2] %% 0.00042
NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147 %% [1,3]
VP[1,3] -> V[1,2] NP[2,3] %% 0.0252
S[1,3] -> NP[1,2] VP[2,3] %% 0.00756
S[1,3] -> VP[1,3] %% 0.00252
S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008 %% [0,3] Best
S[0,3] -> NP[0,2] VP[2,3] %% 0.0021168
VP[0,3] -> V[0,1] NP[1,3] %% 0.0000882
NP[0,3] -> NP[0,1] NP[1,3] %% 0.00024696
NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696
S[0,3] -> VP[0,3] %% 0.00000882

N[0,1] -> people %% 0.8
V[1,2] -> fish %% 0.6
NP[0,1] -> N[0,1] %% 0.56
V[2,3] -> fish %% 0.3
VP[1,2] -> V[1,2] %% 0.24
S[0,2] -> NP[0,1] VP[1,2] %% 0.12096
VP[2,3] -> V[2,3] %% 0.12
V[0,1] -> people %% 0.1
N[1,2] -> fish %% 0.1
N[2,3] -> tanks %% 0.1
NP[1,2] -> N[1,2] %% 0.07
NP[2,3] -> N[2,3] %% 0.07
VP[0,1] -> V[0,1] %% 0.04
VP[1,3] -> V[1,2] NP[2,3] %% 0.0252
S[1,2] -> VP[1,2] %% 0.024
S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008

S[2,3] -> VP[2,3] %% 0.012
NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176
S[1,3] -> NP[1,2] VP[2,3] %% 0.00756
VP[0,2] -> V[0,1] NP[1,2] %% 0.0042
S[0,1] -> VP[0,1] %% 0.004
S[1,3] -> VP[1,3] %% 0.00252
NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147
NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696

Best

What can go wrong?

•  We can build too many edges.
•  Most edges that can be built, shouldn’t.

•  CKY builds them all!

•  We can build in an bad order.
•  Might find bad parses for parse item before good

parses.

•  Will trigger best-first propagation.

Speed: build promising edges first.

Correctness: keep edges on the agenda until
you’re sure you’ve seen their best parse.

