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Statistical Parsing 

Christopher Manning 

CS224N 

(Head) Lexicalization of PCFGs 
[Magerman 1995, Collins 1997; Charniak 1997]

•  The head word of a phrase gives a good represen- 
tation of the phraseʼs structure and meaning

•  Puts the properties of words back into a PCFG

(Head) Lexicalization of PCFGs 
[Magerman 1995, Collins 1997; Charniak 1997]

•  Word-to-word affinities are useful for certain 
ambiguities 

• See how PP attachment is (partly) captured in a 
local PCFG rule. What isnʼt captured? 

announce  RATES   FOR    January 

PP 
NP 

VP 

ANNOUNCE  rates  IN   January 

PP NP 

VP 

Lexicalized Parsing was seen as 
the breakthrough of the late 90s 

•  Eugene Charniak, 2000 JHU workshop: “To do 
better, it is necessary to condition probabilities 
on the actual words of the sentence.  This 
makes the probabilities much tighter: 

•  p(VP  →  V NP NP)   = 0.00151 

•  p(VP → V NP NP | said)   = 0.00001 

•  p(VP → V NP NP | gave)   = 0.01980 ” 

•  Michael Collins, 2003 COLT tutorial: “Lexicalized 
Probabilistic Context-Free Grammars … perform 
vastly better than PCFGs (88% vs. 73% accuracy)” 

Michael Collins (2003, COLT) 

F1 (!) 

Parsing via classification decisions: 
Charniak (1997) 

•  A very simple, conservative model of lexicalized 
PCFG  

•  Probabilistic conditioning is “top-down” like a regular 
PCFG (but actual computation is bottom-up) 
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Charniak (1997) example
Lexicalization sharpens 
probabilities: rule expansion 

Local Tree come take think want 

VP → V 9.5% 2.6% 4.6% 5.7% 

VP → V NP 1.1% 32.1% 0.2% 13.9% 

VP → V PP 34.5% 3.1% 7.1% 0.3% 

VP → V SBAR 6.6% 0.3% 73.0% 0.2% 

VP → V S 2.2% 1.3% 4.8% 70.8% 

VP → V NP S 0.1% 5.7% 0.0% 0.3% 

VP → V PRT NP 0.3% 5.8% 0.0% 0.0% 

VP → V PRT PP 6.1% 1.5% 0.2% 0.0% 

•  E.g., probability of different verbal complement 
frames (often called “subcategorizations”) 

Lexicalization sharpens 
probabilities: Predicting heads 

“Bilexical probabilities” 

•  p(prices | n-plural) = .013 

•  p(prices | n-plural, NP) = .013 
•  p(prices | n-plural, NP, S) = .025 

•  p(prices | n-plural, NP, S, v-past) = .052 

•  p(prices | n-plural, NP, S, v-past, fell) = .146 

Charniak (1997) linear interpolation/
shrinkage

Charniak (1997) shrinkage example Sparseness & the Penn Treebank

•  The Penn Treebank – 1 million words of parsed 
English WSJ – has been a key resource (because of 
the widespread reliance on supervised learning)

•  But 1 million words is like nothing:
•  965,000 constituents, but only 66 WHADJP, of which only 6 

arenʼt how much or how many, but there is an infinite space 
of these

•  How clever/original/incompetent (at risk assessment and 
evaluation) …

•  Most of the probabilities that you would like to 
compute, you canʼt compute 
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Sparseness & the Penn Treebank (2) 

•  Many parse preferences depend on bilexical 
statistics: likelihoods of relationships between pairs of 
words (compound nouns, PP attachments, …)

•  Extremely sparse, even on topics central to the WSJ:
•  stocks plummeted 2 occurrences
•  stocks stabilized  1 occurrence
•  stocks skyrocketed  0 occurrences
•  #stocks discussed 0 occurrences

•  So far there has been very modest success in augmenting the 
Penn Treebank with extra unannotated materials or using 
semantic classes – once there is more than a little annotated 
training data. 
•  Cf. Charniak 1997, Charniak 2000; but see McClosky et al. 2006 

[this recent self-training work is quite successful!]

Complexity of lexicalized PCFG 
parsing 

Running time is O ( g 3 × n 5 ) !! 

i k j 

B[d1] C[d2] 

A[d2] 

d1 d2 

Time charged :  

•  i, k, j   ⇒ n 3 

•  A, B, C  ⇒  g 3  

•  Naively, g becomes huge 

•  d1, d2  ⇒  n 2  

y = c x 5.2019 
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Complexity of exhaustive lexicalized 
PCFG parsing 

Complexity of lexicalized PCFG 
parsing 

•  Work such as Collins (1997) and Charniak (1997) 
is O(n5) – but uses heuristic search to be fast in 
practice 

•  Eisner and Satta (2000, etc.) have explored 
various ways to parse more restricted classes of 
bilexical grammars in O(n4) or O(n3) time 
•  Neat algorithmic stuff!!! 
•  See example later from dependency parsing 

Refining the node expansion 
probabilities 

•  Charniak (1997) expands each phrase structure tree 
in a single step.

•  This is good for capturing dependencies between 
child nodes

•  But it is bad because of data sparseness.
•  A pure dependency, one child at a time, model is 

worse.
•  But one can do better by in between models, such as 

generating the children as a Markov process on both 
sides of the head (Collins 1997; Charniak 2000)
•  Cf. the accurate unlexicalized parsing discussion

  

€ 

P→ L jL j−1L1HR1Rk−1Rk

Collins (1997, 1999); Bikel (2004) 

•  Collins (1999): also a generative model  

•  Underlying lexicalized PCFG has rules of form 

•  A more elaborate set of grammar transforms 
and factorizations to deal with data sparseness 
and interesting linguistic properties 

•  Each child is generated in turn: given P has been 
generated, generate H, then generate modifying 
nonterminals from head-adjacent outward with 
some limited conditioning 
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Overview of Collins’ Model 

P(th,wh)

H(th,wh)… L1Li–1Li

Δ

subcatLi generated
conditioning on

{subcatL}

Modifying nonterminals 
generated in two steps 

S(VBD–sat)

VP(VBD–sat)
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Smoothing for head words of 
modifying nonterminals 

•  Other parameter classes have similar or more 
elaborate backoff schemes 

Collins model … and linguistics 

•  Collins had 3 generative models: Models 1 to 3 

•  Especially as you work up from Model 1 to 3, 
significant linguistic modeling is present: 
•  Distance measure: favors close attachments 

•  Model is sensitive to punctuation 

•  Distinguish base NP from full NP with post-modifiers 

•  Coordination feature 
•  Mark gapped subjects 

•  Model of subcategorization; arguments vs. adjuncts 

•  Slash feature/gap threading treatment of displaced 
constituents 

•  Didn’t really get clear gains from this last one. 

Bilexical statistics: Is use of 
maximal context of PMw 

useful? 

•  Collins (1999): “Most importantly, the model has 
parameters corresponding to dependencies 
between pairs of headwords.” 

•  Gildea (2001) reproduced Collins’ Model 1 (like 
regular model, but no subcats) 
•  Removing maximal back-off level from PMw

 resulted in 
only 0.5% reduction in F-measure 

•  Gildea’s experiment somewhat unconvincing to the 
extent that his model’s performance was lower than 
Collins’ reported results 

Choice of heads 

•  If not bilexical statistics, then surely choice of 
heads is important to parser performance… 

•  Chiang and Bikel (2002): parsers performed 
decently even when all head rules were of form 
“if parent is X, choose left/rightmost child” 

•  Parsing engine in Collins Model 2–emulation 
mode: LR 88.55% and LP 88.80% on §00 
(sent. len. ≤40 words) 
•  compared to LR 89.9%, LP 90.1% 
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Use of maximal context of PMw 
[Bikel 2004] 

LR LP CBs 0 CBs ≤2 CBs 

Full 
model 

89.9 90.1 0.78 68.8 89.2 

No 
bigrams 

89.5 90.0 0.80 68.0 88.8 

Performance on §00 of Penn Treebank
on sentences of length ≤40 words

Use of maximal context of PMw 

Back-off level 
Number of 
accesses 

Percentage 

0 3,257,309 1.49 

1 24,294,084 11.0   

2 191,527,387 87.4   

Total 219,078,780 100.0   

Number of times parsing engine was able to deliver a probability
for the various back-off levels of the mod-word generation model, PMw,

when testing on §00 having trained on §§02–21

Bilexical statistics are used often 
 [Bikel 2004] 

•  The 1.49% use of bilexical dependencies suggests they don’t 
play much of a role in parsing  

•  But the parser pursues many (very) incorrect theories 
•  So, instead of asking how often the decoder can use bigram 

probability on average, ask how often while pursuing its top-
scoring theory  

•  Answering question by having parser constrain-parse its own output 
•  train as normal on §§02–21 
•  parse §00 
•  feed parse trees as constraints 

•  Percentage of time parser made use of bigram statistics shot up to 
28.8% 

•  So, used often, but use barely affect overall parsing accuracy 
•  Exploratory Data Analysis suggests explanation 

•  distributions that include head words are usually sufficiently similar to those 
that do not as to make almost no difference in terms of accuracy 

Charniak (2000) NAACL:  
A Maximum-Entropy-Inspired Parser  

•  There was nothing maximum entropy about it. It was a 
cleverly smoothed generative model 

•  Smoothes estimates by smoothing ratio of conditional 
terms (which are a bit like maxent features): 

•  Biggest improvement is actually that generative model 
predicts head tag first and then does P(w|t,…) 

•  Like Collins (1999) 

•  Markovizes rules similarly to Collins (1999) 
•  Gets 90.1% LP/LR F score on sentences ≤ 40 wds 

),,|(
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Outside 

Petrov and Klein (2006): 
Learning Latent Annotations 

Can you automatically find good symbols? 
  

X1 

X2 
X7 X4 

X5 X6 X3 

He was right 

. 

  Brackets are known 
  Base categories are known 
  Induce subcategories 
  Clever split/merge category refinement 

EM algorithm, like Forward-Backward for 
HMMs, but constrained by tree. Inside 
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  Proper Nouns (NNP): 

  Personal pronouns (PRP): 

NNP-14 Oct. Nov. Sept. 

NNP-12 John Robert James 

NNP-2 J. E. L. 

NNP-1 Bush Noriega Peters 

NNP-15 New San Wall 

NNP-3 York Francisco Street 

PRP-0 It He I 

PRP-1 it he they 

PRP-2 it them him 

POS tag splits, commonest words: 
effectively a class-based model 

F1 

≤ 40 words 

F1 

all words 
Parser 

Klein & Manning unlexicalized 
2003 

86.3 85.7 

Matsuzaki et al. simple EM 
latent states 2005  

86.7 86.1 

Charniak generative (“maxent 
inspired”) 2000 

90.1 89.5 

Petrov and Klein NAACL 2007 90.6 90.1 

Charniak & Johnson 
discriminative reranker 2005 

92.0 91.4 

The Latest Parsing Results… 

Statistical parsing inference:  
The General Problem 

•  Someone gives you a PCFG G 

•  For any given sentence, you might want to: 
•  Find the best parse according to G 

•  Find a bunch of reasonably good parses 

•  Find the total probability of all parses licensed by G 

•  Techniques: 
•  CKY, for best parse; can extend it: 

•  To k-best: naively done, at high space and time cost – k2 
time/k space cost, but there are cleverer algorithms! 
(Huang and Chiang 2005: http://www.cis.upenn.edu/~lhuang3/huang-iwpt.pdf) 

•  To all parses, summed probability: the inside algorithm 

•  Beam search 

•  Agenda/chart-based search } Mainly useful if just 
want the best parse 

Parse as search definitions 

•  Grammar symbols: S, NP, @S->NP_ 

•  Parse items/edges represent a grammar symbol 
over a span: 

•  Backtraces/traversals represent the combination of 
adjacent edges into a larger edges: 

NP:[0,2] the:[0,1] 

S:[0,3] 

NP:[0,2] VP:[2,3] 

Parse trees and parse triangles 

•  A parse tree can be 
viewed as a collection of 
edges and traversals. 

S:[0,3] 

NP:[0,2] VP:[2,3] 

DT:[0,1] NN:[1,2] VBD:[2,3] 

the:[0,1] cat:[1,2] ran:[2,3] 

•  A parse triangle groups 
edges over the same span 

NN 

DT 

S→NP•VP 

NP 

Parsing as search: The parsing 
directed B-hypergraph 

X:h 

i jh

X:h 
[i,j] 

NN:Factory 
[0,1] 

NP:payrolls 
[0,2] 

PP:in 
[3,5] 

VP:fell 
[2,5] 

S:fell 
[0,5] 

goal 

NN:payrolls 
[1,2] 

VBD:fell 
[2,3] 

IN:in 
[3,4] 

NN:September 
[4,5] 

start 

S:payrolls 
[0,2] 

VBP:payrolls 
[1,2] 

[Klein and Manning 2001] 
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Chart example: classic picture 

the cat 

DT NN 

NP → . DT NN 
NP → DT . NN 

NP 

NP → DT . NN 
+ 
NN 

Active 
Edge 

Passive 
Edge 

Traversal 

Earley dotted rules 

Space and Time Bounds 

Space = O(Edges) Time = O(Traversals) 

S many labels 

C labels 

N start N end 

N start N end 

C 

N start N end 

S 

N split 

≤ CN2 + SN2 

= O(SN2) 

≤ SCN3 

= O(SCN3) 

CKY Parsing 

•  In CKY parsing, we visit edges tier by tier: 

  Guarantees correctness 
by working inside-out. 

  Build all small bits before 
any larger bits that could 
possibly require them. 

  Exhaustive: the goal is in 
the last tier! 

Beam Search 

•  State space search 

•  States are partial parses with an associated 
probability 
•  Keep only the top scoring elements at each stage of the 

beam search 

•  Find a way to ensure that all parses of a 
sentence have the same number N steps 

•  Or at least are roughly comparable 

•  Leftmost top-down CFG derivations in true CNF 

•  Shift-reduce derivations in true CNF 

Beam Search 

•  Time-synchronous beam search 

Beam at 
time i 

Beam at 
time i + 1 

Successors of 
beam elements 

Kinds of beam search 

•  Constant beam size k 

•  Constant beam width relative to best item 
•  Defined either additively or multiplicatively 

•  Sometimes combination of the above two 

•  Sometimes do fancier stuff like trying to keep 
the beam elements diverse 

•  Beam search can be made very fast 

•  No measure of how often you find model 
optimal answer 
•  But can track correct answer to see how often/far gold 

standard optimal answer remains in the beam 
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Beam search treebank parsers? 

•  Most people do bottom up parsing (shift-reduce parsing 
or a version of left-corner parsing) 
•  For treebank grammars, not much grammar constraint, so 

want to use data-driven constraint 
•  Adwait Ratnaparkhi 1996 [maxent shift-reduce parser] 
•  Manning and Carpenter 1998 and Henderson 2004 left-corner 

parsers 
•  But top-down with rich conditioning is possible 

•  Cf. Brian Roark 2001 

•  Don’t actually want to store states as partial parses 
•  Store them as the last rule applied, with backpointers to the 

previous states that built those constituents (and a 
probability) 

•  You get a linear time parser … but you may not find the best 
parses according to your model (things “fall off the beam”) 

Agenda-based parsing 

•  For general grammars 

•  Start with a table for recording δ(X,i,j) 
•  Records the best score of a parse of X over [i,j] 

•  If the scores are negative log probabilities, then entries 
start at ∞ and small is good 

•  This can be a sparse or a dense map 

•  Again, you may want to record backtraces (traversals) as 
well, like CKY 

•  Step 1: Initialize with the sentence and lexicon: 
•  For each word w and each tag t 

•  Set δ(X,i,i) = lex.score(w,t) 

Agenda-based parsing 

•  Keep a list of edges called an agenda 
•  Edges are triples [X,i,j] 

•  The agenda is a priority queue 

•  Every time the score of some δ(X,i,j) improves 
(i.e. gets lower): 
•  Stick the edge [X,i,j]-score into the agenda 
•  (Update the backtrace for δ(X,i,j) if your storing them) 

Agenda-Based Parsing 

•  The agenda is a holding zone for edges. 

•  Visit edges by some ordering policy. 
•  Combine edge with already-visited edges. 

•  Resulting new edges go wait in the agenda. 

•  We might revisit parse items: A new way to form an edge 
might be a better way. 

Agenda Table/ 
Chart 

new edges 

new combinations 

0.8 NP:[0,2] 0.5 

0.5 

VP:[2,3] 

--- S:[0,3] 

0.8 NP:[0,2] 0.5 

0.5 

VP:[2,3] 

0.2 S:[0,3] 

Agenda-based parsing 

•  Step II: While agenda not empty 
•  Get the “next” edge [X,i,j] from the agenda 

•  Fetch all compatible neighbors [Y,j,k] or [Z,k,i] 
•  Compatible means that there are rules A→X Y or B→ Z X 

•  Build all parent edges [A,i,k] or [B,k,j] found 
•  δ(A,i,k) ≤ δ(X,i,j) + δ(Y,j,k) + P(A→X Y) 

•  If we’ve improved δ(A,i,k), then stick it on the agenda 

•  Also project unary rules: 
•  Fetch all unary rules  A→X, score [A,i,j] built from this rule 

on [X,i,j] and put on agenda if you’ve improved δ(A,i,k) 

•  When do we know we have a parse for the root? 

Agenda-based parsing 

•  Open questions: 
•  Agenda priority: What did “next” mean? 

•  Efficiency: how do we do as little work as possible? 
•  Optimality: how do we know when we find the best 

parse of a sentence? 

•  If we use δ(X,i,j) as the priority: 
•  Each edge goes on the agenda at most once 
•  When an edge pops off the agenda, its best parse is 

known (why?) 

•  This is basically uniform cost search (i.e., Dijkstra’s 
algorithm).     [Cormen, Leiserson, and Rivest 1990; Knuth 1970]  
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•  We want to work on good parses inside-out. 
•  CKY does this synchronously, by tiers. 
•  Uniform-cost does it asynchronously, ordering edges by their best 

known parse score. 
•  Why best parse is known: 

•  Adding structure incurs probability cost. 
•  Trees have lower probability than their sub-parts. 
•  The best-scored edge in the agenda cannot be waiting on any of its 

sub-edges. 
•  We never have to propagate. We don’t explore truly useless edges.  

Uniform-Cost Parsing 

β ≤ β+ε 

built before 

Example of uniform cost search vs. CKY parsing: 
The grammar, lexicon, and sentence 

•  S → NP VP  %% 0.9 

•  S → VP  %% 0.1 

•  VP → V NP  %% 0.6 

•  VP → V  %% 0.4 
•  NP → NP NP  %% 0.3 

•  NP → N  %% 0.7 

•  people fish tanks 

•  N → people %% 0.8 

•  N → fish   %% 0.1 

•  N → tanks  %% 0.1 

•  V → people %% 0.1 
•  V → fish   %% 0.6 

•  V → tanks  %% 0.3 

Example of uniform cost search vs. CKY parsing: 
CKY vs. order of agenda pops in chart 

N[0,1] -> people  %% 0.8  %% [0,1] 
V[0,1] -> people  %% 0.1 
NP[0,1] -> N[0,1]  %% 0.56 
VP[0,1] -> V[0,1]  %% 0.04 
S[0,1] -> VP[0,1]  %% 0.004 
N[1,2] -> fish  %% 0.1  %% [1,2] 
V[1,2] -> fish  %% 0.6 
NP[1,2] -> N[1,2]  %% 0.07 
VP[1,2] -> V[1,2]  %% 0.24 
S[1,2] -> VP[1,2]  %% 0.024 
N[2,3] -> tanks  %% 0.1  %% [2,3] 
V[2,3] -> fish  %% 0.3 
NP[2,3] -> N[2,3]  %% 0.07 
VP[2,3] -> V[2,3]  %% 0.12 
S[2,3] -> VP[2,3]  %% 0.012 
NP[0,2] -> NP[0,1] NP[1,2]  %% 0.01176 %% [0,2] 
VP[0,2] -> V[0,1] NP[1,2]  %% 0.0042 
S[0,2] -> NP[0,1] VP[1,2]  %% 0.12096 
S[0,2] -> VP[0,2]  %% 0.00042 
NP[1,3] -> NP[1,2] NP[2,3]  %% 0.00147 %% [1,3] 
VP[1,3] -> V[1,2] NP[2,3]  %% 0.0252 
S[1,3] -> NP[1,2] VP[2,3]  %% 0.00756 
S[1,3] -> VP[1,3]  %% 0.00252 
S[0,3] -> NP[0,1] VP[1,3]  %% 0.0127008 %% [0,3] Best 
S[0,3] -> NP[0,2] VP[2,3]  %% 0.0021168 
VP[0,3] -> V[0,1] NP[1,3]  %% 0.0000882 
NP[0,3] -> NP[0,1] NP[1,3]  %% 0.00024696 
NP[0,3] -> NP[0,2] NP[2,3]  %% 0.00024696 
S[0,3] -> VP[0,3]  %% 0.00000882 

N[0,1] -> people  %% 0.8 
V[1,2] -> fish  %% 0.6 
NP[0,1] -> N[0,1]  %% 0.56 
V[2,3] -> fish  %% 0.3 
VP[1,2] -> V[1,2]  %% 0.24 
S[0,2] -> NP[0,1] VP[1,2]  %% 0.12096 
VP[2,3] -> V[2,3]  %% 0.12 
V[0,1] -> people  %% 0.1 
N[1,2] -> fish  %% 0.1 
N[2,3] -> tanks  %% 0.1 
NP[1,2] -> N[1,2]  %% 0.07 
NP[2,3] -> N[2,3]  %% 0.07 
VP[0,1] -> V[0,1]  %% 0.04 
VP[1,3] -> V[1,2] NP[2,3]  %% 0.0252 
S[1,2] -> VP[1,2]  %% 0.024 
S[0,3] -> NP[0,1] VP[1,3]  %% 0.0127008  
---- 
S[2,3] -> VP[2,3]  %% 0.012  
NP[0,2] -> NP[0,1] NP[1,2]  %% 0.01176 
S[1,3] -> NP[1,2] VP[2,3]  %% 0.00756 
VP[0,2] -> V[0,1] NP[1,2]  %% 0.0042 
S[0,1] -> VP[0,1]  %% 0.004 
S[1,3] -> VP[1,3]  %% 0.00252 
NP[1,3] -> NP[1,2] NP[2,3]  %% 0.00147 
NP[0,3] -> NP[0,2] NP[2,3]  %% 0.00024696 

Best 

What can go wrong? 

•  We can build too many edges. 
•  Most edges that can be built, shouldn’t. 

•  CKY builds them all! 

•  We can build in an bad order. 
•  Might find bad parses for parse item before good 

parses. 

•  Will trigger best-first propagation. 

Speed: build promising edges first. 

Correctness: keep edges on the agenda until 
you’re sure you’ve seen their best parse. 


