Statistical Parsing

Christopher Manning
CS224N

(Head) Lexicalization of PCFGs

Magerman 1995, Collins 1997; Charniak 1997

- The head word of a phrase gives a good representation of the phrase’s structure and meaning
- Puts the properties of words back into a PCFG

Lexicalized Parsing was seen as the breakthrough of the late 90s

- Eugene Charniak, 2000 JHU workshop: “To do better, it is necessary to condition probabilities on the actual words of the sentence. This makes the probabilities much tighter:
 - \(p(VP \rightarrow V NP NP) = 0.00151 \)
 - \(p(VP \rightarrow V NP NP | said) = 0.000001 \)
 - \(p(VP \rightarrow V NP NP | gave) = 0.01980 \)

- Michael Collins, 2003 COLT tutorial: “Lexicalized Probabilistic Context-Free Grammars … perform vastly better than PCFGs (88% vs. 73% accuracy)”

Michael Collins (2003, COLT)

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCFGs (Charniak 97)</td>
<td>73.0%</td>
<td></td>
</tr>
<tr>
<td>Conditional Models – Decision Trees (Magerman 95)</td>
<td>84.2%</td>
<td></td>
</tr>
<tr>
<td>Lexical Dependencies (Collins 96)</td>
<td>85.5%</td>
<td></td>
</tr>
<tr>
<td>Conditional Models – Logistic (Ratnaparkhi 97)</td>
<td>86.9%</td>
<td></td>
</tr>
<tr>
<td>Generative Lexicalized Model (Charniak 97)</td>
<td>86.7%</td>
<td></td>
</tr>
<tr>
<td>Generative Lexicalized Model (Collins 97)</td>
<td>88.2%</td>
<td></td>
</tr>
<tr>
<td>Logistic-inspired Model (Charniak 99)</td>
<td>89.6%</td>
<td></td>
</tr>
<tr>
<td>Boosting (Collins 2000)</td>
<td>89.8%</td>
<td></td>
</tr>
</tbody>
</table>

Parsing via classification decisions:

Charniak (1997)

- A very simple, conservative model of lexicalized PCFG
- Probabilistic conditioning is “top-down” like a regular PCFG (but actual computation is bottom-up)
Charniak (1997) example

Lexicalization sharpens probabilities: Predicting heads

Lexicalization sharpens probabilities: rule expansion

Charniak (1997) linear interpolation/shrinkage

Charniak (1997) shrinkage example

Sparserness & the Penn Treebank
Sparseness & the Penn Treebank (2)

- Many parse preferences depend on bilexical statistics: likelihoods of relationships between pairs of words (compound nouns, PP attachments, ...)
- Extremely sparse, even on topics central to the WSJ:
 - stocks plummeted: 2 occurrences
 - stocks stabilized: 1 occurrence
 - stocks skyrocketed: 0 occurrences
 - # stocks discussed: 0 occurrences
- So far there has been very modest success in augmenting the Penn Treebank with extra unannotated materials or using semantic classes – once there is more than a little annotated training data.
 - Cf. Charniak 1997, Charniak 2000; but see McClosky et al. 2006
 [this recent self-training work is quite successful!]

Complexity of lexicalized PCFG parsing

- Work such as Collins (1997) and Charniak (1997) is $O(n^5)$ – but uses heuristic search to be fast in practice
- Eisner and Satta (2000, etc.) have explored various ways to parse more restricted classes of bilexical grammars in $O(n^4)$ or $O(n^3)$ time
 - Neat algorithmic stuff!!!
 - See example later from dependency parsing

Complexity of exhaustive lexicalized PCFG parsing

- Running time is $O(g^3 \times n^5)$!!

Refining the node expansion probabilities

- Charniak (1997) expands each phrase structure tree in a single step.
 - This is good for capturing dependencies between child nodes
 - But it is bad because of data sparseness.
 - A pure dependency, one child at a time, model is worse.
 - But one can do better by in between models, such as generating the children as a Markov process on both sides of the head (Collins 1997; Charniak 2000)
 - Cf. the accurate unlexicalized parsing discussion

Collins (1997, 1999); Bikel (2004)

- Collins (1999): also a generative model
- Underlying lexicalized PCFG has rules of form
 $$ P \rightarrow L_1 L_{j-1} \cdots L_i H R_k \cdots R_{j-1} R_j $$
- A more elaborate set of grammar transforms and factorizations to deal with data sparseness and interesting linguistic properties
 - Each child is generated in turn: given P has been generated, generate H, then generate modifying nonterminals from head-adjacent outward with some limited conditioning
Overview of Collins’ Model

$P(t, w_i)$ generated
conditioning on

$L_t \rightarrow L_{t-1} \cdots L_1 (\text{subcat})(H(t, w_i))$

Smoothing for head words of modifying nonterminals

<table>
<thead>
<tr>
<th>Back-off level</th>
<th>P_{Mx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$M_x, \text{coord}, \text{punc}, P(H(t), \text{subcat}_w)$</td>
</tr>
<tr>
<td>1</td>
<td>$M_x, \text{coord}, \text{punc}, P(H(t), \text{subcat}_w)$</td>
</tr>
<tr>
<td>2</td>
<td>i_{tr}</td>
</tr>
</tbody>
</table>

- Other parameter classes have similar or more elaborate backoff schemes

Collins model … and linguistics

- Collins had 3 generative models: Models 1 to 3
- Especially as you work up from Model 1 to 3, significant linguistic modeling is present:
 - Distance measure: favors close attachments
 - Model is sensitive to punctuation
 - Distinguish base NP from full NP with post-modifiers
 - Coordination feature
 - Mark gapped subjects
 - Model of subcategorization; arguments vs. adjuncts
 - Slash feature/gap threading treatment of displaced constituents
 - Didn’t really get clear gains from this last one.

Bilexical statistics: Is use of maximal context of P_{Mx} useful?

- Collins (1999): “Most importantly, the model has parameters corresponding to dependencies between pairs of headwords.”
- Gildea (2001) reproduced Collins’ Model 1 (like regular model, but no subcats)
 - Removing maximal back-off level from P_{Mx} resulted in only 0.5% reduction in F-measure
 - Gildea’s experiment somewhat unconvincing to the extent that his model’s performance was lower than Collins’ reported results

Choice of heads

- If not bilexical statistics, then surely choice of heads is important to parser performance...
- Chiang and Bikel (2002): parsers performed decently even when all head rules were of form “if parent is X, choose left/rightmost child”
- Parsing engine in Collins Model 2-emulation mode: LR 88.55% and LP 88.80% on §00 (sent. len. ≤40 words)
 - compared to LR 89.9%, LP 90.1%
Use of maximal context of P_{Mw}

Back-off level	**Number of accesses**	**Percentage**
0 | 3,257,309 | 1.40%
1 | 24,294,084 | 11.0%
2 | 191,527,387 | 87.4%
Total | 219,078,780 | 100.0%

Number of times parsing engine was able to deliver a probability for the various back-off levels of the mod-word generation model, P_{Mw}, when testing on §00 having trained on §§02–21.

Bilexical statistics are used often

The 1.49% use of bilexical dependencies suggests they don’t play much of a role in parsing
But the parser pursues many (very) incorrect theories
So, instead of asking how often the decoder can use bigram probability on average, ask how often while pursuing its top-scoring theory
Answering question by having parser constrain-parse its own output
First: parse §00
Second: feed parse trees as constraints
Percentage of time parser made use of bigram statistics shot up to 28.8%
So, used often, but use barely affect overall parsing accuracy
Exploratory Data Analysis suggests explanation
That is, distributions that include head words are usually sufficiently similar to those that do not as to make almost no difference in terms of accuracy
POS tag splits, commonest words: effectively a class-based model

- Proper Nouns (NNP):
 - NNP-12: John, Robert, James
 - NNP-2: J., E., L.
 - NNP-1: Bush, Noriega, Peters
 - NNP-15: New, San, Wall
 - NNP-3: York, Francisco, Street

- Personal pronouns (PRP):
 - PRP-0: it, he, I
 - PRP-1: it, he, they
 - PRP-2: it, them, him

The Latest Parsing Results...

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 ≤ 40 words</th>
<th>F1 all words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning unlexicalized 2003</td>
<td>86.3</td>
<td>85.7</td>
</tr>
<tr>
<td>Matsuzaki et al. simple EM latent states 2005</td>
<td>86.7</td>
<td>86.1</td>
</tr>
<tr>
<td>Charniak generative (“maxent inspired”) 2000</td>
<td>90.1</td>
<td>89.5</td>
</tr>
<tr>
<td>Petrov and Klein NAACL 2007</td>
<td>90.6</td>
<td>90.1</td>
</tr>
<tr>
<td>Charniak & Johnson discriminative reranker 2005</td>
<td>92.0</td>
<td>91.4</td>
</tr>
</tbody>
</table>

Statistical parsing inference: The General Problem

- Someone gives you a PCFG G
- For any given sentence, you might want to:
 - Find the best parse according to G
 - Find a bunch of reasonably good parses
 - Find the total probability of all parses licensed by G
- Techniques:
 - CKY, for best parse: can extend it:
 - To k-best: naively done, at high space and time cost - k^2 time/k space cost, but there are cleverer algorithms!
 - To all parses, summed probability: the inside algorithm
 - Beam search
 - Agenda/chart-based search

Parse as search definitions

- Grammar symbols: S, NP, @S->NP,
- Parse items/edges represent a grammar symbol over a span:
 - the[0,1]
 - NP:[0,2]
- Backtraces/traversals represent the combination of adjacent edges into a larger edges:
 - S:[0,3]
 - NP:[0,2]
 - VP:[2,3]

Parse trees and parse triangles

- A parse tree can be viewed as a collection of edges and traversals.
- A parse triangle groups edges over the same span

Parsing as search: The parsing directed B-hypergraph

[Klein and Manning 2001]
Chart example: classic picture

Chart example: classic picture

Space and Time Bounds

Space = $O(\text{Edges})$

Time = $O(\text{Traversals})$

CKY Parsing

- In CKY parsing, we visit edges tier by tier:
 - Guarantees correctness by working inside-out.
 - Build all small bits before any larger bits that could possibly require them.
 - Exhaustive: the goal is in the last tier!

Beam Search

- State space search
- States are partial parses with an associated probability
 - Keep only the top scoring elements at each stage of the beam search
 - Find a way to ensure that all parses of a sentence have the same number of steps
 - Or at least are roughly comparable
 - Leftmost top-down CFG derivations in true CNF
 - Shift-reduce derivations in true CNF

Beam Search

- Time-synchronous beam search
- Beam at time i: successors of beam elements
- Beam at time $i + 1$: successors of beam elements

Kinds of beam search

- Constant beam size k
- Constant beam width relative to best item
 - Defined either additively or multiplicatively
 - Sometimes combination of the above two
 - Sometimes do fancier stuff like trying to keep the beam elements diverse
- Beam search can be made very fast
- No measure of how often you find model optimal answer
 - But can track correct answer to see how often/far gold standard optimal answer remains in the beam
Beam search treebank parsers?

- Most people do bottom up parsing (shift-reduce parsing or a version of left-corner parsing)
 - For treebank grammars, not much grammar constraint, so want to use data driven constraint
 - Adwait Ratnaparkhi 1996 [maxent shift-reduce parser]
 - Manning and Carpenter 1998 and Henderson 2004 left-corner parsers
- But top-down with rich conditioning is possible
 - Cf. Brian Roark 2001
- Don’t actually want to store states as partial parses
 - Store them as the last rule applied, with backpointers to the previous states that built those constituents (and a probability)
 - You get a linear time parser … but you may not find the best parses according to your model (things “fall off the beam”)

Agenda-based parsing

- Agenda-based parsing
 - Keep a list of edges called an agenda
 - Edges are triples \([X, i, j]\)
 - The agenda is a priority queue
 - Every time the score of some \(\delta(X, i, j)\) improves (i.e. gets lower):
 - Stick the edge \([X, i, j]\)-score into the agenda
 - (Update the backtrace for \(\delta(X, i, j)\) if yours storing them)

Agenda-based parsing

- Agenda-based parsing
 - Step II: While agenda not empty
 - Get the “next” edge \([X, i, j]\) from the agenda
 - Fetch all compatible neighbors \([Y, j, k]\) or \([Z, k, i]\)
 - Compatible means that there are rules \(A \rightarrow X Y\) or \(B \rightarrow Z X\)
 - Build all parent edges \([A, i, k]\) or \([B, k, j]\) found
 - \(\delta(A, i, k) = \delta(X, i, j) + \delta(Y, j, k) + \text{P}(A \rightarrow X Y)\)
 - If we’ve improved \(\delta(A, i, k)\), then stick it on the agenda
 - Also project unary rules:
 - Fetch all unary rules \(A \rightarrow X\), score \([A, i, j]\) built from this rule on \([X, i, j]\) and put on agenda if you’ve improved \(\delta(A, i, j)\)
 - When do we know we have a parse for the root?

Agenda-based parsing

- Agenda-based parsing
 - Open questions:
 - Agenda priority: What did “next” mean?
 - Efficiency: how do we do as little work as possible?
 - Optimality: how do we know when we find the best parse of a sentence?
 - If we use \(\delta(X, i, j)\) as the priority:
 - Each edge goes on the agenda at most once
 - When an edge pops off the agenda, its best parse is known (why?)
 - This is basically uniform cost search (i.e., Dijkstra’s algorithm).
 - [Cormen, Leiserson, and Rivest 1990; Knuth 1970]
We want to work on good parses inside-out.

- CKY does this synchronously, by tiers.
- Uniform-cost does it asynchronously, ordering edges by their best known parse score.
- Why best parse is known:
 - Adding structure incurs probability cost.
 - Trees have lower probability than their sub-parts.
 - The best-scored edge in the agenda cannot be waiting on any of its sub-edges.
 - We never have to propagate. We don’t explore truly useless edges.

\[\beta \leq \beta + \epsilon \]

Example of uniform cost search vs. CKY parsing:
The grammar, lexicon, and sentence

- \(S \rightarrow NP\ VP \ % 0.9 \)
- \(S \rightarrow VP \ % 0.1 \)
- \(VP \rightarrow V\ NP \ % 0.6 \)
- \(VP \rightarrow V \ % 0.4 \)
- \(NP \rightarrow NP\ NP \ % 0.3 \)
- \(NP \rightarrow N \ % 0.7 \)
- \(N \rightarrow people \ % 0.8 \)
- \(N \rightarrow fish \ % 0.1 \)
- \(V \rightarrow people \ % 0.1 \)
- \(V \rightarrow fish \ % 0.6 \)
- \(V \rightarrow tanks \ % 0.3 \)
- \(people \ fish \ tanks \)

What can go wrong?

- We can build too many edges.
 - Most edges that can be built, shouldn’t.
 - CKY builds them all!

 Speed: build promising edges first.

- We can build in a bad order.
 - Might find bad parses for parse item before good parses.
 - Will trigger best-first propagation.

Correctness: keep edges on the agenda until you’re sure you’ve seen their best parse.