Statistical Parsing

Christopher Manning
CS224N

Statistical parsing inference:
The General Problem

« Someone gives you a PCFG G

* For any given sentence, you might want to:
* Find the best parse according to G
e Find a bunch of reasonably good parses
* Find the total probability of all parses licensed by G

 Techniques:

o CKY, for best parse; can extend it:

* To k-best: naively done, at high space and time cost - k?
time/k space cost, but there are cleverer algorithms!
(Huang and Chlang 2005: http://www.cis.upenn.edu/~|huangB/huang-iwpt.pdf)

» To all parses, summed probability: the inside algorithm

 Agenda/chart-based search want the best parse

Parse as search definitions

Grammar symbols: S, NP, @S->NP_

Parse items/edges represent a grammar symbol
over a span:

the:[0,1] NP:[0,2]

Backtraces/traversals represent the combination of
adjacent edges into a larger edges:

S:[0,3]

/\

NP:[0,2] VP:[2,3]

Parse trees and parse triangles

A parse tree can be * A parse triangle groups
viewed as a collection of edges over the same span
edges and traversals.

S:[0,3] NN
/\ DT
S—=NPeVP
NP:[0,2] VP:[2,3]
/\ ‘ NP
DT:[0,1] NN:[1,2] VBD:[2,3]

the:[0,1] cat[1,2] ran:[2,3]

Parsing as search: The parsing
directed B-hypergraph

X:h Ah
[1,]] /\

(goal
S:payrolls ' o
10,2]

NP:payrolls VBP:payrolls
10,2] [1,2]
NN:Factory NN:payrolls Y/ VBD:fell NN:September
10,1] [1,2] ' 2,3] [4,5]

[Klein and Manning 2001]

CKY Parsing

* In CKY parsing, we visit edges tier by tier:

s Guarantees correctness
by working inside-out.
= Build all small bits before

any larger bits that could
possibly require them.

= Exhaustive: the goal is in
the last tier!

vy Agenda-based parsing

« For general grammars

« Start with a table for recording d(X,i,j)

« Records the best score of a parse of X over [i,j]

» If the scores are negative log probabilities, then entries
start at oo and small is good

* This can be a sparse or a dense map
e Again, you may want to record backtraces (traversals) as
well, like CKY

e Step 1: Initialize with the sentence and lexicon:

e For each word w and each tag t
e Set 0(X,i,i) = lex.score(w,t)

Agenda-based parsing

* Keep a list of edges called an agenda
» Edges are triples [X,i,j]
« The agenda is a priority queue

* Every time the score of some 0(X,i,j) improves
(i.e. gets lower):
» Stick the edge [X,i,j]-score into the agenda
* (Update the backtrace for 0(X,i,j) if your storing them)

Agenda-Based Parsing

« The agenda is a holding zone for edges.

* Visit edges by some ordering policy.
« Combine edge with already-visited edges.
e Resulting new edges go wait in the agenda

new ed es
@w combinations|

« We might revisit parse items: A new way to form an edge
might be a better way.

S:[0,3] [S:[0,3] 0.2
NP:|0,2 VP:|2 NP:|0,2 VP:|2
0,21 5] IVP:12,31) [0,2]5 g IVP:I2,3]5 <

Agenda-based parsing

« Step Il: While agenda not empty

* Get the “next” edge [X,i,j] from the agenda

» Fetch all compatible neighbors [Y,j,k] or [Z,k,i]
 Compatible means that there are rules A=XY or B— Z X

« Build all parent edges [A,i,k] or [B,k,j] found
* O(A,i,k) < 0(X,i,j) + o(Y,j,k) + P(A—XY)
« If we’ve improved d(A,i k), then stick it on the agenda

» Also project unary rules:

« Fetch all unary rules A—X, score [A,i,j] built from this rule
on [X,i,j] and put on agenda if you’ve improved d(A,i,k)

« When do we know we have a parse for the root?

Agenda-based parsing

 Open questions:
 Agenda priority: What did “next” mean?
» Efficiency: how do we do as little work as possible?

e Optimality: how do we know when we find the best
parse of a sentence?

o |f we use 0(X,i,j) as the priority:
 Each edge goes on the agenda at most once
« When an edge pops off the agenda, its best parse is
known (why?)

e This is basically uniform cost search (i.e., Dijkstra’s
algorithm). [Cormen, Leiserson, and Rivest 1990; Knuth 1970]

Uniform-Cost Parsing

« We want to work on good parses inside-out.
o CKY does this synchronously, by tiers.

 Uniform-cost does it asynchronously, ordering edges by their best
known parse score.

 Why best parse is known:B < B

—

built before

 Adding structure incurs probability cost.
 Trees have lower probability than their sub-parts.

 The best-scored edge in the agenda cannot be waiting on any of its
sub-edges.

 We never have to propagate. We don’t explore truly useless edges.

Example of uniform cost search vs. CKY parsing:
The grammar, lexicon, and sentence

e« S—=NPVP %% 0.9
e S—=VP %% 0.1

e VP =V NP %% 0.6
VP —=V %% 0.4

e NP — NP NP %% 0.3
* NP—=N %%0.7

N — people %% 0.8
N — fish %% 0.1

N — tanks %% 0.1
V — people %% 0.1
V — fish %% 0.6
V — tanks %% 0.3

o people fish tanks

Example of uniform cost search vs. CKY parsing:
CKY vs. order of agenda pops in chart

N[O,1] -> people %% 0.8 %% [0,11] N[O,1] -> people %% 0.8

V[0,1] -> people %% 0.1 V[1,2] -> fish %% 0.6

NP[O,1] -> N[0,1] %% 0.56 NP[O,1] -> N[0,1] %% 0.56

VP[0O,1] -> V[O,1] %% 0.04 V[2,3] -> fish %% 0.3

S[0,1] -> VP[O,1] %% 0.004 VP[1,2] -> V[1,2] %% 0.24

N[1,2] -> fish %% 0.1 %% [1,2] S[0,2] -> NP[0,1] VP[1,2] %% 0.12096
V[1,2] -> fish %% 0.6 VP[2,3] -> V[2,3] %% 0.12

NP[1,2] -> N[1,2] %% 0.07 V[0,1] -> people %% 0.1

VP[1,2] -> V[1,2] %% 0.24 N[1,2] -> fish %% 0.1

S[1,2] -> VP[1,2] %% 0.024 N[2,3] -> tanks %% 0.1

N[2,3] -> tanks %% 0.1 %% [2,31] NP[1,2] -> N[1,2] %% 0.07

V[2,3] -> fish %% 0.3 NP[2,3] -> N[2,3] %% 0.07

NP[2,3] -> N[2,3] %% 0.07 VP[0,1] -> V[0,1] %% 0.04

VP[2,3] -> V[2,3] %% 0.12 VP[1,3] -> V[1,2] NP[2,3] %% 0.0252
S[2,3] -> VP[2,3] %% 0.012 S[1,2] -> VP[1,2] %% 0.024 Best
NP[0,2] -> NP[O,1] NP[1,2] %% 0.01176 %% [0,2] S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008
VP[0,2] -> V[0,1] NP[1,2] %% 0.0042

S[0,2] -> NP[0,1] VP[1,2] %% 0.12096 S[2,3] -> VP[2,3] %% 0.012

S[0,2] -> VP[0,2] %% 0.00042 NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176
NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147 %% [1,3] S[1,3] -> NP[1,2] VP[2,3] %% 0.00756
VP[1,3] -> V[1,2] NP[2,3] %% 0.0252 VP[0,2] -> V[0,1] NP[1,2] %% 0.0042
S[1,3] -> NP[1,2] VP[2,3] %% 0.00756 S[0,1] -> VP[0,1] %% 0.004

S[1,3] -> VP[1,3] %% 0.00252 S[1,3] -> VP[1,3] %% 0.00252

S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008 %% [0,3] Best NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147
S[0,3] -> NP[0,2] VP[2,3] %% 0.0021168 NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696

VP[0,3] -> V[0,1] NP[1,3] %% 0.0000882
NP[O,3] -> NP[O,1] NP[1,3] %% 0.00024696
NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696
S[0,3] -> VP[0,3] %% 0.00000882

What can go wrong?

We can build too many edges.

 Most edges that can be built, shouldn’t.
e CKY builds them all!

Speed: build promising edges first.

We can build in an bad order.

 Might find bad parses for parse item before good
parses.

« Will trigger best-first propagation.

Correctness: keep edges on the agenda until
you’'re sure you’'ve seen their best parse.

Speeding up agenda-based parsers

 Two options for doing less work

 The optimal way: A* parsing
» Klein and Manning (2003)

e The ugly but much more practical way: “best-first”
parsing
« Caraballo and Charniak (1998)
* Charniak, Johnson, and Goldwater (1998)

A* Context Summary Sharpness

Average A* Estimate

2 4 o6 8 10 12 14 16 18
Outside Span

Adding local information changes
the intercept, but not the slope!

Best-First Parsing

* |n best-first, parsing, we visit edges according a

figure-of-merit (FOM).

S

/

~

VP

X

NP

AN
VP PP

VBD

NP

/\

ate

cake

with

Icing

= A good FOM focuses work
on “quality” edges.

« The good: leads to full
parses quickly.

- The (potential) bad: leads
to non-MAP parses.

« The ugly: propagation

« If we find a better way to build
a parse item, we need to
rebuild everything above it

« In practice, works well!

Search in modern lexicalized
statistical parsers

e Klein and Manning (2003b) do optimal A* search

 Done in a restricted space of lexicalized PCFGs that
“factors”, allowing very efficient A* search

Collins (1999) exploits both the ideas of beams

and agenda based parsing

 He places a separate beam over each span, and then,
roughly, does uniform cost search

Charniak (2000) uses inadmissible heuristics to

guide search

 He uses very good (but inadmissible) heuristics - “best
first search” - to find good parses quickly

e Perhaps unsurprisingly this is the fastest of the 3.

Coarse-to-fine parsing

« Uses grammar projections to guide search
e VP-VBF, VP-VBG, VP-U-VBN, ... = VP
- VP[buys/VBZ], VP[drive/VB], VPdrive/VBP], ... — VP

* You can parse much more quickly with a simple
grammar because the grammar constant is way smaller

* You restrict the search of the expensive refined model
to explore only spans and/or spans with compatible
labels that the simple grammar liked

* Very successfully used in several recent parsers

e Charniak and Johnson (2005)

e Petrov and Klein (2007)

Coarse-to-fine parsing: A visualization of the span
posterior probabilities from Petrov and Klein 2007

b
(SRR
0305030305058
020202 %%%%
902070202202 %%
020%0%%%%% % % %%, %
0302022622202 % % %%, %
02020%%0%%6% % % %% %%, %
0000000202020%020203020202020, 208
0020%0%6%6%6% %%, %%:%%% %% %%
RUL0Lere00tere0te. 99%0000 *Setete ¢
SHRRRIIRRKS 8

%02 % %%
Eeo0NAbeootatete Weetoty (00o0teteootites o
00202007020 2020206202020, %6%6%6%%0% %6 %:%:%% %% %
0,0702020 0030303020 2020302030, 20%0%0%2 %2222 2% %
0202 9426967007020 %0%6%6%6%6 %0, 0% %:%%, %%%% .6%%.
05050 10%0%0%0%%6%0 %% %6% %6%%%%%2%% %% %2 ¢
0%° 0%0%%%° %0%%%%° %%%% %% "%

of

the
House
to

the

and
government

Means

Committee
how

the

new

s&l

Influential
members
Ways
introduced
legislation
that
would
restrict
bailout
agency
can

raise
capital
creating
another
potential
obstacle

Dependency parsing

Dependency Grammar/Parsing

A sentence is parsed by relating each word to other words in the
sentence which depend on it.
The idea of dependency structure goes back a long way
 To Panini’s grammar (c. 5th century BCE)
Constituency is a new-fangled invention
o 20th century invention
Modern work often linked to work of L. Tesniere (1959)
« Dominant approach in “East” (Russia, China, ...)
e Basic approach of 15t millenium Arabic grammarians
Among the earliest kinds of parsers in NLP, even in US:

« David Hays, one of the founders of computational linguistics, built
early (first?) dependency parser (Hays 1962)

Dependency structure

[iul_\l_\l | il_\ l

Shaw Publishing acquired 30 % of American City in March $$%

« Words are linked from head (regent) to dependent

 Warning! Some people do the arrows one way; some the other
way (Tesniere has them point from head to dependent...).

e Usually add a fake ROOT so every word is a dependent

Relation between CFG to
dependency parse

* A dependency grammar has a notion of a head
« Officially, CFGs don’t

* But modern linguistic theory and all modern

statistical parsers (Charniak, Collins, Stanford, ...)
do, via hand-written phrasal “head rules”:

« The head of a Noun Phrase is a noun/number/adj/...
 The head of a Verb Phrase is a verb/modal/....

e The head rules can be used to extract a

dependency parse from a CFG parse (follow the
heads).

* A phrase structure tree can be got from a
dependency tree, but dependents are flat (no VP!)

Propagating head words

S(announced)
NP(Smith) VP(announced)
NP(Smith) NP(president) V1|3D NP(resignation) NP
Nl|\IP N1|\IP /NP\ /PP\(Of) announced PR|P$ N|N N|N
John Smith DT NN IN NP his resignation yesterday

the president of NNP

IBM

 Small set of rules propagate heads

Extracted structure

NB. Not all dependencies shown here

« Dependencies are inherently untyped,
though some work like Collins (1996)
types them using the phrasal categories

NP S VP

VBD VP NP

VBD VP NP
NP NP NP
| v

[Jth\ Smith] [the president] of [IBM] announced [his Resignation] [yesterday]

Dependency Conditioning Preferences

Sources of information:

o bilexical dependencies
o distance of dependencies
o valency of heads (number of dependents)

N ™ N

A word’s depe dents (adjuncts, arguments)

R NZRNI'AN
tend to fall hear it

T~ e

These next 6 slides are
based on slides by Jason
Eisner and Noah Smith

in the string.

Probabilistic dependency grammar:
generative model

‘“ A, || || Py

1. Start with left wall $
2. Generate root w,

3. Generate left children w,,
W, ..., W., from the FSA Aw,

4. Generate right children w;,,
W, ..., W, from the FSA pw,

5. Recurse on each w;for iin {-
2, .. -1,1,.. r} sampling o
(steps 2-4)

6. Return o,...0;WyQ;...0,

Naive Recognition/Parsing

D

O(n°N?) if N O(n°) A

J

. 03 O -
nonterminals combinations /f>\//>\
1

goal

A~

k

takes

Dependency Grammar Cubic Recognition/
Parsing (Eisner & Satta, 1999)

‘ » Triangles: span over words, where

tall side of triangle is the head, other
| side is dependent, and no non-head
words expecting more dependents

dependent, and smaller side is still
looking for dependents on its side of

the trapezoid

/\ Trapezoids: span over words, where
} larger side is head, smaller side is

& Dependency Grammar Cubic Recognition/
Parsing (Eisner & Satta, 1999)

A triangle is 2Réld
— left (or —
right) subtrees.

|
One trapezoid | | o

per |
dependency. | 1

\/'/

' \ - I

e

I~ % ~

ZIN /

O(n)
combinations

o() Pam——
combinations | /\ ,\I
] k1]

1

00r) i R W—

combinations | | |
i 7 ki]k

Gives O(n®) dependency grammar
parsing

“s\ Evaluation of Dependency Parsing:
Simply use (labeled) dependency accuracy

Accuracy =q1numbepngf correct degegdencies

3 tot@l ngber of degendencies
4 5 the DET
= 2/ =4).4@heese = MOD

40‘76 2 sandwich SUBJ
(0]

McDonald et al. (2005 ACL):

Online Large-Margin Training of Dependency Parsers

e Builds a discriminative dependency parser
e Can condition on rich features in that context

» Best-known recent dependency parser
* Lots of recent dependency parsing activity connected with
CoNLL 2006/2007 shared task
« Doesn’t/can’t report constituent LP/LR, but
evaluating dependencies correct:

e Accuracy is similar to but a fraction below dependencies
extracted from Collins:

* 90.9% vs. 91.4% ... combining them gives 92.2% [all
lengths]

« Stanford parser on length up to 40:
* Pure generative dependency model: 85.0%
« Lexicalized factored parser: 91.0%

McDonald et al. (2005 ACL):

Online Large-Margin Training of Dependency Parsers

Score of a parse is the sum of the scores of its
dependencies

Each dependency is a linear function of features
times weights

Feature weights are learned by MIRA, an online
large-margin algorithm
« But you could think of it as using a perceptron or maxent classifier

Features cover:

« Head and dependent word and POS separately
 Head and dependent word and POS bigram features
 Words between head and dependent

* Length and direction of dependency

Extracting grammatical relations from
statistical constituency parsers

[de Marneffe et al. LREC 2006]

* Exploit the high-quality syntactic analysis done by
statistical constituency parsers to get the grammatical
relations [typed dependencies]

 Dependencies are generated by pattern-matching rules
P——""————S‘-§““*-VP

N T
- VBD VP
- VBN PP
— T IN NP
| NP NNP
Bills on ports and immigration were submitted by Senator Brownback submitted
nsubijV lauxpaswfnt
Bills were Brownback
prep_on nn
ports

\\{f;a”d Senator

immigration

Discriminative Parsing

Discriminative Parsing as a
classification problem

» Classification problem

* Given a training set of iid samples T={(X;,Y;) ... (X,,,Y)}
of input and class variables from an unknown
distribution D(X,Y), estimate a function ﬁ()() that
predicts the class from the input variables

« The observed X’s are the sentences.
« The class Y of a sentence is its parse tree

« The model has a large (infinite!) space of classes, but
we can still assign them probabilities

« The way we can do this is by breaking whole parse
trees into component parts

1. Distribution-free methods
2. Probabilistic model methods

== Motivating discriminative
{aip) estimation (1)

VP VP VP

e — e

Vv VP PP V NP

| o ——— - —
eat \Y% NP P NP eat NP PP

| | | | | T
eat vice with chopsticks rice P NP
| |
with chopsticks

100 6 2

A training corpus of 108 (imperative) sentences.

Based on an example by Mark Johnson

Motivating discriminative
estimation (2)

e In discriminative models, it is easy to
incorporate different kinds of features

« Often just about anything that seems linguistically
interesting

* In generative models, it’s often difficult, and the
model suffers because of false independence
assumptions

» This ability to add informative features is the
real power of discriminative models for NLP.
» Can still do it for parsing, though it’s trickier.

Discriminative Parsers

Discriminative Dependency Parsing

* Not as computationally hard (tiny grammar constant)
 Explored considerably recently. E.g. McDonald et al. 2005
Make parser action decisions discriminatively

e E.g. with a shift-reduce parser

Dynamic-programmed Phrase Structure Parsing

» Resource intensive! Most work on sentences of length
<=15

 The need to be able to dynamic program limits the feature
types you can use

Post-Processing: Parse reranking
* Just work with output of k-best generative parser

Discriminative models

Shift-reduce parser Ratnaparkhi (98)

Learns a distribution P(T|S) of parse trees given sentences
using the sequence of actions of a shift-reduce parser

P(T|S) = HP(al. |a,...a._,S)

Uses a maximum entropy model to learn conditional
distribution of parse action given history

Suffers from independence assumptions that actions are
independent of future observations as with CMM/MEMM

Higher parameter estimation cost to learn local maximum
entropy models

Lower but still good accuracy: 86% - 87% labeled
precision/recall

Discriminative dynamic-programmed
parsers

 Taskar et al. (2004 EMNLP) show how to do joint
discriminative SVM-style ("max margin) parsing
building a phrase structure tree also conditioned
on words in O(n3) time

* In practice, totally impractically slow. Results were
never demonstrated on sentences longer than 15 words

e Turian et al. (2006 NIPS) do a decision-tree
based discriminative parser

e Research continues....

e Finkel, Kleeman, and Manning (2008 ACL) feature-
based parser is just about practical.

 We do parse long sentences

&= Discriminative Models - Distribution
Free Re-ranking (Collins 2000)

« Represent sentence-parse tree pairs by a feature

vector F(X,Y)

« Learn a linear ranking model with parameters o

using the boosting loss

Model LP LR
Collins 99 88.3% 88.1%
(Generative)

Collins 00 89.9% 89.6%
(BoostLoss)

139%b6 error
reduction

Still very close
In accuracy to
generative

model [Charniak
2000]

Charniak and Johnson (2005 ACL):

Coarse-to-fine n-best parsing and MaxEnt discriminative reranking

e Builds a maxent discriminative reranker over parses
produced by (a slightly bugfixed and improved
version of) Charniak (2000).

 Gets 50 best parses from Charniak (2000) parser

* Doing this exploits the “coarse-to-fine” idea to heuristically
find good candidates

 Maxent model for reranking uses heads, etc. as
generative model, but also nice linguistic features:
e Conjunct parallelism
* Right branching preference
» Heaviness (length) of constituents factored in

e Gets 91% LP/LR F1 (on all sentences! - up to 80 wd)

