
Statistical Parsing

Christopher Manning

CS224N

Statistical parsing inference:
The General Problem

•  Someone gives you a PCFG G

•  For any given sentence, you might want to:
•  Find the best parse according to G

•  Find a bunch of reasonably good parses

•  Find the total probability of all parses licensed by G

•  Techniques:
•  CKY, for best parse; can extend it:

•  To k-best: naively done, at high space and time cost – k2
time/k space cost, but there are cleverer algorithms!
(Huang and Chiang 2005: http://www.cis.upenn.edu/~lhuang3/huang-iwpt.pdf)

•  To all parses, summed probability: the inside algorithm

•  Beam search (like in MT)

•  Agenda/chart-based search } Mainly useful if just
want the best parse

Parse as search definitions

•  Grammar symbols: S, NP, @S->NP_

•  Parse items/edges represent a grammar symbol
over a span:

•  Backtraces/traversals represent the combination of
adjacent edges into a larger edges:

NP:[0,2] the:[0,1]

S:[0,3]

NP:[0,2] VP:[2,3]

Parse trees and parse triangles

•  A parse tree can be
viewed as a collection of
edges and traversals.

S:[0,3]

NP:[0,2] VP:[2,3]

DT:[0,1] NN:[1,2] VBD:[2,3]

the:[0,1] cat:[1,2] ran:[2,3]

•  A parse triangle groups
edges over the same span

NN

DT

S→NP•VP

NP

Parsing as search: The parsing
directed B-hypergraph

X:h

i jh

X:h
[i,j]

NN:Factory
[0,1]

NP:payrolls
[0,2]

PP:in
[3,5]

VP:fell
[2,5]

S:fell
[0,5]

goal

NN:payrolls
[1,2]

VBD:fell
[2,3]

IN:in
[3,4]

NN:September
[4,5]

start

S:payrolls
[0,2]

VBP:payrolls
[1,2]

[Klein and Manning 2001]

CKY Parsing

•  In CKY parsing, we visit edges tier by tier:

  Guarantees correctness
by working inside-out.

  Build all small bits before
any larger bits that could
possibly require them.

  Exhaustive: the goal is in
the last tier!

Agenda-based parsing

•  For general grammars

•  Start with a table for recording δ(X,i,j)
•  Records the best score of a parse of X over [i,j]

•  If the scores are negative log probabilities, then entries
start at ∞ and small is good

•  This can be a sparse or a dense map

•  Again, you may want to record backtraces (traversals) as
well, like CKY

•  Step 1: Initialize with the sentence and lexicon:
•  For each word w and each tag t

•  Set δ(X,i,i) = lex.score(w,t)

Agenda-based parsing

•  Keep a list of edges called an agenda
•  Edges are triples [X,i,j]

•  The agenda is a priority queue

•  Every time the score of some δ(X,i,j) improves
(i.e. gets lower):
•  Stick the edge [X,i,j]-score into the agenda
•  (Update the backtrace for δ(X,i,j) if your storing them)

Agenda-Based Parsing

•  The agenda is a holding zone for edges.

•  Visit edges by some ordering policy.
•  Combine edge with already-visited edges.

•  Resulting new edges go wait in the agenda.

•  We might revisit parse items: A new way to form an edge
might be a better way.

Agenda Table/
Chart

new edges

new combinations

0.8 NP:[0,2] 0.5

0.5

VP:[2,3]

--- S:[0,3]

0.8 NP:[0,2] 0.5

0.5

VP:[2,3]

0.2 S:[0,3]

Agenda-based parsing

•  Step II: While agenda not empty
•  Get the “next” edge [X,i,j] from the agenda

•  Fetch all compatible neighbors [Y,j,k] or [Z,k,i]
•  Compatible means that there are rules A→X Y or B→ Z X

•  Build all parent edges [A,i,k] or [B,k,j] found
•  δ(A,i,k) ≤ δ(X,i,j) + δ(Y,j,k) + P(A→X Y)

•  If we’ve improved δ(A,i,k), then stick it on the agenda

•  Also project unary rules:
•  Fetch all unary rules A→X, score [A,i,j] built from this rule

on [X,i,j] and put on agenda if you’ve improved δ(A,i,k)

•  When do we know we have a parse for the root?

Agenda-based parsing

•  Open questions:
•  Agenda priority: What did “next” mean?

•  Efficiency: how do we do as little work as possible?
•  Optimality: how do we know when we find the best

parse of a sentence?

•  If we use δ(X,i,j) as the priority:
•  Each edge goes on the agenda at most once
•  When an edge pops off the agenda, its best parse is

known (why?)

•  This is basically uniform cost search (i.e., Dijkstra’s
algorithm). [Cormen, Leiserson, and Rivest 1990; Knuth 1970]

•  We want to work on good parses inside-out.
•  CKY does this synchronously, by tiers.
•  Uniform-cost does it asynchronously, ordering edges by their best

known parse score.
•  Why best parse is known:

•  Adding structure incurs probability cost.
•  Trees have lower probability than their sub-parts.
•  The best-scored edge in the agenda cannot be waiting on any of its

sub-edges.
•  We never have to propagate. We don’t explore truly useless edges.

Uniform-Cost Parsing

β ≤ β+ε

built before

Example of uniform cost search vs. CKY parsing:
The grammar, lexicon, and sentence

•  S → NP VP %% 0.9

•  S → VP %% 0.1

•  VP → V NP %% 0.6

•  VP → V %% 0.4
•  NP → NP NP %% 0.3

•  NP → N %% 0.7

•  people fish tanks

•  N → people %% 0.8

•  N → fish %% 0.1

•  N → tanks %% 0.1

•  V → people %% 0.1
•  V → fish %% 0.6

•  V → tanks %% 0.3

Example of uniform cost search vs. CKY parsing:
CKY vs. order of agenda pops in chart

N[0,1] -> people %% 0.8 %% [0,1]
V[0,1] -> people %% 0.1
NP[0,1] -> N[0,1] %% 0.56
VP[0,1] -> V[0,1] %% 0.04
S[0,1] -> VP[0,1] %% 0.004
N[1,2] -> fish %% 0.1 %% [1,2]
V[1,2] -> fish %% 0.6
NP[1,2] -> N[1,2] %% 0.07
VP[1,2] -> V[1,2] %% 0.24
S[1,2] -> VP[1,2] %% 0.024
N[2,3] -> tanks %% 0.1 %% [2,3]
V[2,3] -> fish %% 0.3
NP[2,3] -> N[2,3] %% 0.07
VP[2,3] -> V[2,3] %% 0.12
S[2,3] -> VP[2,3] %% 0.012
NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176 %% [0,2]
VP[0,2] -> V[0,1] NP[1,2] %% 0.0042
S[0,2] -> NP[0,1] VP[1,2] %% 0.12096
S[0,2] -> VP[0,2] %% 0.00042
NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147 %% [1,3]
VP[1,3] -> V[1,2] NP[2,3] %% 0.0252
S[1,3] -> NP[1,2] VP[2,3] %% 0.00756
S[1,3] -> VP[1,3] %% 0.00252
S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008 %% [0,3] Best
S[0,3] -> NP[0,2] VP[2,3] %% 0.0021168
VP[0,3] -> V[0,1] NP[1,3] %% 0.0000882
NP[0,3] -> NP[0,1] NP[1,3] %% 0.00024696
NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696
S[0,3] -> VP[0,3] %% 0.00000882

N[0,1] -> people %% 0.8
V[1,2] -> fish %% 0.6
NP[0,1] -> N[0,1] %% 0.56
V[2,3] -> fish %% 0.3
VP[1,2] -> V[1,2] %% 0.24
S[0,2] -> NP[0,1] VP[1,2] %% 0.12096
VP[2,3] -> V[2,3] %% 0.12
V[0,1] -> people %% 0.1
N[1,2] -> fish %% 0.1
N[2,3] -> tanks %% 0.1
NP[1,2] -> N[1,2] %% 0.07
NP[2,3] -> N[2,3] %% 0.07
VP[0,1] -> V[0,1] %% 0.04
VP[1,3] -> V[1,2] NP[2,3] %% 0.0252
S[1,2] -> VP[1,2] %% 0.024
S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008

S[2,3] -> VP[2,3] %% 0.012
NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176
S[1,3] -> NP[1,2] VP[2,3] %% 0.00756
VP[0,2] -> V[0,1] NP[1,2] %% 0.0042
S[0,1] -> VP[0,1] %% 0.004
S[1,3] -> VP[1,3] %% 0.00252
NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147
NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696

Best

What can go wrong?

•  We can build too many edges.
•  Most edges that can be built, shouldn’t.

•  CKY builds them all!

•  We can build in an bad order.
•  Might find bad parses for parse item before good

parses.

•  Will trigger best-first propagation.

Speed: build promising edges first.

Correctness: keep edges on the agenda until
you’re sure you’ve seen their best parse.

Speeding up agenda-based parsers

•  Two options for doing less work

•  The optimal way: A* parsing
•  Klein and Manning (2003)

•  The ugly but much more practical way: “best-first”
parsing
•  Caraballo and Charniak (1998)

•  Charniak, Johnson, and Goldwater (1998)

A* Context Summary Sharpness

-40

-30

-20

-10

0

2 4 6 8 10 12 14 16 18

Outside Span

A
ve

ra
ge

 A
*

E
st

im
at

e

S
SX
SXR
B
TRUE

Adding local information changes
the intercept, but not the slope!

Best-First Parsing

•  In best-first, parsing, we visit edges according a
figure-of-merit (FOM).

  A good FOM focuses work
on “quality” edges.

  The good: leads to full
parses quickly.

  The (potential) bad: leads
to non-MAP parses.

  The ugly: propagation
  If we find a better way to build

a parse item, we need to
rebuild everything above it

  In practice, works well!

PP

ate cake with icing

VBD NP

VP

VP

S

NP

S

VP

NP

VP

S

Search in modern lexicalized
statistical parsers

•  Klein and Manning (2003b) do optimal A* search
•  Done in a restricted space of lexicalized PCFGs that

“factors”, allowing very efficient A* search

•  Collins (1999) exploits both the ideas of beams
and agenda based parsing
•  He places a separate beam over each span, and then,

roughly, does uniform cost search

•  Charniak (2000) uses inadmissible heuristics to
guide search
•  He uses very good (but inadmissible) heuristics – “best

first search” – to find good parses quickly

•  Perhaps unsurprisingly this is the fastest of the 3.

Coarse-to-fine parsing

•  Uses grammar projections to guide search
•  VP-VBF, VP-VBG, VP-U-VBN, … → VP

•  VP[buys/VBZ], VP[drive/VB], VP[drive/VBP], … → VP

•  You can parse much more quickly with a simple
grammar because the grammar constant is way smaller

•  You restrict the search of the expensive refined model
to explore only spans and/or spans with compatible
labels that the simple grammar liked

•  Very successfully used in several recent parsers
•  Charniak and Johnson (2005)

•  Petrov and Klein (2007)

Coarse-to-fine parsing: A visualization of the span
posterior probabilities from Petrov and Klein 2007

Dependency parsing

Dependency Grammar/Parsing

•  A sentence is parsed by relating each word to other words in the
sentence which depend on it.

•  The idea of dependency structure goes back a long way
•  To Pāṇini’s grammar (c. 5th century BCE)

•  Constituency is a new-fangled invention
•  20th century invention

•  Modern work often linked to work of L. Tesniere (1959)
•  Dominant approach in “East” (Russia, China, …)

•  Basic approach of 1st millenium Arabic grammarians

•  Among the earliest kinds of parsers in NLP, even in US:
•  David Hays, one of the founders of computational linguistics, built

early (first?) dependency parser (Hays 1962)

Dependency structure

•  Words are linked from head (regent) to dependent

•  Warning! Some people do the arrows one way; some the other
way (Tesniere has them point from head to dependent…).

•  Usually add a fake ROOT so every word is a dependent

Shaw Publishing acquired 30 % of American City in March $$

Relation between CFG to
dependency parse

•  A dependency grammar has a notion of a head
•  Officially, CFGs don’t
•  But modern linguistic theory and all modern

statistical parsers (Charniak, Collins, Stanford, …)
do, via hand-written phrasal “head rules”:
•  The head of a Noun Phrase is a noun/number/adj/…
•  The head of a Verb Phrase is a verb/modal/….

•  The head rules can be used to extract a
dependency parse from a CFG parse (follow the
heads).

•  A phrase structure tree can be got from a
dependency tree, but dependents are flat (no VP!)

Propagating head words

•  Small set of rules propagate heads

S(announced)

NP(Smith)

NP(Smith)

NNP

John

NNP

Smith

NP(president)

NP

DT

the

NN

president

PP(of)

IN

of

NP

NNP

IBM

VP(announced)

VBD

announced

NP(resignation)

PRP$

his

NN

resignation

NP

NN

yesterday

Extracted structure

NB. Not all dependencies shown here

•  Dependencies are inherently untyped,
though some work like Collins (1996)
types them using the phrasal categories

NP

[John
 Smith]

NP
NP

[the
 president]
 of
 [IBM]

S
NP
 VP

announced
 [his
Resignation]
[yesterday]

VP
VBD
 NP

NP
VP
VBD

Sources of information:

•  bilexical dependencies
•  distance of dependencies

•  valency of heads (number of dependents)

A word’s dependents (adjuncts, arguments)

tend to fall near it

in the string.

Dependency Conditioning Preferences

These next 6 slides are
based on slides by Jason
Eisner and Noah Smith

Probabilistic dependency grammar:
generative model

1.  Start with left wall $

2.  Generate root w0

3.  Generate left children w-1,
w-2, ..., w-ℓ from the FSA λw0

4.  Generate right children w1,
w2, ..., wr from the FSA ρw0

5.  Recurse on each wi for i in {-
ℓ, ..., -1, 1, ..., r}, sampling αi

(steps 2-4)

6.  Return αℓ...α-1w0α1...αr

w0

w-1

w-2

w-ℓ wr

w2

w1

... ...

w-ℓ.-1

$

λw-ℓ

λw0 ρw0

Naïve Recognition/Parsing

It takes two to tango

I
t takes two to tango

to takes

takes

takes

O(n5)
combinations

I
t

p

p c
i j k

O(n5N3) if N
nonterminals r

0 n

goal

goal

Dependency Grammar Cubic Recognition/
Parsing (Eisner & Satta, 1999)

•  Triangles: span over words, where
tall side of triangle is the head, other
side is dependent, and no non-head
words expecting more dependents

•  Trapezoids: span over words, where
larger side is head, smaller side is
dependent, and smaller side is still
looking for dependents on its side of
the trapezoid

}

}

Dependency Grammar Cubic Recognition/
Parsing (Eisner & Satta, 1999)

It takes two to tango

goal

One trapezoid
per

dependency.

A triangle is a head
with some left (or

right) subtrees.

Cubic Recognition/Parsing (Eisner & Satta, 1999)

i j k i j k

i j k i j k

O(n3)
combinations

O(n3)
combinations

0 i n

goal

Gives O(n3) dependency grammar
parsing

O(n)
combinations

Evaluation of Dependency Parsing:
Simply use (labeled) dependency accuracy

 1 2 3 4 5

1  2 We SUBJ
3  0 eat ROOT
4  5 the DET
5  5 cheese MOD
6  2 sandwich SUBJ

1  2 We SUBJ
3  0 eat ROOT
4  4 the DET
5  2 cheese OBJ
6  2 sandwich PRED

Accuracy = number of correct dependencies
 total number of dependencies

 = 2 / 5 = 0.40

 40%

GOLD PARSED

McDonald et al. (2005 ACL):
Online Large-Margin Training of Dependency Parsers

•  Builds a discriminative dependency parser

•  Can condition on rich features in that context
•  Best-known recent dependency parser

•  Lots of recent dependency parsing activity connected with
CoNLL 2006/2007 shared task

•  Doesn’t/can’t report constituent LP/LR, but
evaluating dependencies correct:
•  Accuracy is similar to but a fraction below dependencies

extracted from Collins:

•  90.9% vs. 91.4% … combining them gives 92.2% [all
lengths]

•  Stanford parser on length up to 40:
•  Pure generative dependency model: 85.0%

•  Lexicalized factored parser: 91.0%

McDonald et al. (2005 ACL):
Online Large-Margin Training of Dependency Parsers

•  Score of a parse is the sum of the scores of its
dependencies

•  Each dependency is a linear function of features
times weights

•  Feature weights are learned by MIRA, an online
large-margin algorithm
•  But you could think of it as using a perceptron or maxent classifier

•  Features cover:
•  Head and dependent word and POS separately

•  Head and dependent word and POS bigram features

•  Words between head and dependent
•  Length and direction of dependency

Extracting grammatical relations from
statistical constituency parsers

[de Marneffe et al. LREC 2006]
•  Exploit the high-quality syntactic analysis done by

statistical constituency parsers to get the grammatical
relations [typed dependencies]

•  Dependencies are generated by pattern-matching rules

Bills on ports and immigration were submitted by Senator Brownback

NP

S

NP

NNP NNP

PP

IN

VP

VP

VBN

VBD

NN CC NNS

NP IN

NP PP

NNS

submitted

Bills were Brownback

Senator

nsubjpass auxpass agent

nn prep_on

ports

immigration

cc_and

Discriminative Parsing

Discriminative Parsing as a
classification problem

•  Classification problem
•  Given a training set of iid samples T={(X1,Y1) … (Xn,Yn)}

of input and class variables from an unknown
distribution D(X,Y), estimate a function that
predicts the class from the input variables

•  The observed X’s are the sentences.

•  The class Y of a sentence is its parse tree

•  The model has a large (infinite!) space of classes, but
we can still assign them probabilities
•  The way we can do this is by breaking whole parse

trees into component parts

)(ˆ Xh

1.  Distribution-free methods
2.  Probabilistic model methods

Motivating discriminative
estimation (1)

100 6 2

A training corpus of 108 (imperative) sentences.

Based on an example by Mark Johnson

Motivating discriminative
estimation (2)

•  In discriminative models, it is easy to
incorporate different kinds of features
•  Often just about anything that seems linguistically

interesting

•  In generative models, it’s often difficult, and the
model suffers because of false independence
assumptions

•  This ability to add informative features is the
real power of discriminative models for NLP.
•  Can still do it for parsing, though it’s trickier.

Discriminative Parsers

•  Discriminative Dependency Parsing
•  Not as computationally hard (tiny grammar constant)
•  Explored considerably recently. E.g. McDonald et al. 2005

•  Make parser action decisions discriminatively
•  E.g. with a shift-reduce parser

•  Dynamic-programmed Phrase Structure Parsing
•  Resource intensive! Most work on sentences of length

<=15
•  The need to be able to dynamic program limits the feature

types you can use

•  Post-Processing: Parse reranking
•  Just work with output of k-best generative parser

Discriminative models

Shift-reduce parser Ratnaparkhi (98)

•  Learns a distribution P(T|S) of parse trees given sentences
using the sequence of actions of a shift-reduce parser

•  Uses a maximum entropy model to learn conditional
distribution of parse action given history

•  Suffers from independence assumptions that actions are
independent of future observations as with CMM/MEMM

•  Higher parameter estimation cost to learn local maximum
entropy models

•  Lower but still good accuracy: 86% - 87% labeled
precision/recall

)...|()|(11
1

SaaaPSTP i

n

i
i −

=
∏=

Discriminative dynamic-programmed
parsers

•  Taskar et al. (2004 EMNLP) show how to do joint
discriminative SVM-style (“max margin) parsing
building a phrase structure tree also conditioned
on words in O(n3) time
•  In practice, totally impractically slow. Results were

never demonstrated on sentences longer than 15 words

•  Turian et al. (2006 NIPS) do a decision-tree
based discriminative parser

•  Research continues….
•  Finkel, Kleeman, and Manning (2008 ACL) feature-

based parser is just about practical.
•  We do parse long sentences

Discriminative Models – Distribution
Free Re-ranking (Collins 2000)

•  Represent sentence-parse tree pairs by a feature
vector F(X,Y)

•  Learn a linear ranking model with parameters
using the boosting loss

Model LP LR

Collins 99

(Generative)

88.3% 88.1%

Collins 00

(BoostLoss)

89.9% 89.6%

13% error
reduction

Still very close
in accuracy to
generative
model [Charniak
2000]

α

Charniak and Johnson (2005 ACL):
Coarse-to-fine n-best parsing and MaxEnt discriminative reranking

•  Builds a maxent discriminative reranker over parses
produced by (a slightly bugfixed and improved
version of) Charniak (2000).

•  Gets 50 best parses from Charniak (2000) parser
•  Doing this exploits the “coarse-to-fine” idea to heuristically

find good candidates

•  Maxent model for reranking uses heads, etc. as
generative model, but also nice linguistic features:
•  Conjunct parallelism

•  Right branching preference

•  Heaviness (length) of constituents factored in

•  Gets 91% LP/LR F1 (on all sentences! – up to 80 wd)

