Statistical Parsing

Christopher Manning CS224N

Statistical parsing inference: The General Problem

- Someone gives you a PCFG G
- For any given sentence, you might want to:
 - Find the best parse according to G
 - Find a bunch of reasonably good parses
 - Find the total probability of all parses licensed by G
- Techniques:
 - CKY, for best parse; can extend it:
 - To k-best: naively done, at high space and time cost k² time/k space cost, but there are cleverer algorithms! (Huang and Chiang 2005: http://www.cis.upenn.edu/~lhuang3/huang-iwpt.pdf)
 - To all parses, summed probability: the inside algorithm
 - Beam search (like in MT)
 - Agenda/chart-based search

Aainly useful if just want the best parse

- Grammar symbols: S, NP, @S->NP_
- Parse items/edges represent a grammar symbol over a span:

Parse trees and parse triangles

 A parse tree can be viewed as a collection of edges and traversals.

 A parse triangle groups edges over the same span

Parsing as search: The parsing directed B-hypergraph

• In CKY parsing, we visit edges tier by tier:

- Guarantees correctness by working inside-out.
- Build all small bits before any larger bits that could possibly require them.
- Exhaustive: the goal is in the last tier!

Agenda-based parsing

- For general grammars
- Start with a table for recording δ(X,i,j)
 - Records the best score of a parse of X over [i,j]
 - If the scores are negative log probabilities, then entries start at ∞ and small is good
 - This can be a sparse or a dense map
 - Again, you may want to record backtraces (traversals) as well, like CKY
- Step 1: Initialize with the sentence and lexicon:
 - For each word w and each tag t
 - Set δ(X,i,i) = lex.score(w,t)

Agenda-based parsing

- Keep a list of edges called an agenda
 - Edges are triples [X,i,j]
 - The agenda is a priority queue
- Every time the score of some δ(X,i,j) improves (i.e. gets lower):
 - Stick the edge [X,i,j]-score into the agenda
 - (Update the backtrace for $\delta(X,i,j)$ if your storing them)

Agenda-Based Parsing

- The agenda is a holding zone for edges.
- Visit edges by some ordering policy.
 - Combine edge with already-visited edges.
 - Resulting new edges go wait in the agenda.

• We might revisit parse items: A new way to form an edge might be a better way.

Agenda-based parsing

- Step II: While agenda not empty
 - Get the "next" edge [X,i,j] from the agenda
 - Fetch all compatible neighbors [Y,j,k] or [Z,k,i]
 - Compatible means that there are rules $A \rightarrow X Y$ or $B \rightarrow Z X$
 - Build all parent edges [A,i,k] or [B,k,j] found
 - $\delta(A,i,k) \le \delta(X,i,j) + \delta(Y,j,k) + P(A \rightarrow X Y)$
 - If we've improved $\delta(A,i,k),$ then stick it on the agenda
 - Also project unary rules:
 - Fetch all unary rules $A \rightarrow X$, score [A,i,j] built from this rule on [X,i,j] and put on agenda if you've improved $\delta(A,i,k)$
- When do we know we have a parse for the root?

Agenda-based parsing

- Open questions:
 - Agenda priority: What did "next" mean?
 - Efficiency: how do we do as little work as possible?
 - Optimality: how do we know when we find the best parse of a sentence?
- If we use $\delta(X,i,j)$ as the priority:
 - Each edge goes on the agenda at most once
 - When an edge pops off the agenda, its best parse is known (why?)
 - This is basically uniform cost search (i.e., Dijkstra's algorithm). [Cormen, Leiserson, and Rivest 1990; Knuth 1970]

- We want to work on good parses inside-out.
 - CKY does this synchronously, by tiers.
 - Uniform-cost does it asynchronously, ordering edges by their best known parse score.
- Why best parse is known:

- Adding structure incurs probability cost.
- Trees have lower probability than their sub-parts.
- The best-scored edge in the agenda cannot be waiting on any of its sub-edges.
- We never have to propagate. We don't explore truly useless edges.

Example of uniform cost search vs. CKY parsing: The grammar, lexicon, and sentence

- $S \rightarrow NP VP \%\% 0.9$
- S → VP %% 0.1
- $VP \rightarrow V NP \% 0.6$
- $VP \rightarrow V \% 0.4$
- NP \rightarrow NP NP %% 0.3
- NP \rightarrow N %% 0.7

- $N \rightarrow people \%\% 0.8$
- $N \rightarrow fish \% 0.1$
- $N \rightarrow tanks \% 0.1$
- V → people %% 0.1
- V → fish %% 0.6
- V → tanks %% 0.3

• people fish tanks

Example of uniform cost search vs. CKY parsing: CKY vs. order of agenda pops in chart

N[0,1] -> people %% 0.8	%% [0,1]	N[0,1] -> people %% 0.8	
V[0,1] -> people %% 0.1		V[1,2] -> fish %% 0.6	
NP[0,1] -> N[0,1] %% 0.56		NP[0,1] -> N[0,1] %% 0.56	
VP[0,1] -> V[0,1] %% 0.04		V[2,3] -> fish %% 0.3	
S[0,1] -> VP[0,1] %% 0.004		VP[1,2] -> V[1,2] %% 0.24	
N[1,2] -> fish %% 0.1	%% [1,2]	S[0,2] -> NP[0,1] VP[1,2] %% 0.12096	
V[1,2] -> fish %% 0.6		VP[2,3] -> V[2,3] %% 0.12	
NP[1,2] -> N[1,2] %% 0.07		V[0,1] -> people %% 0.1	
VP[1,2] -> V[1,2] %% 0.24		N[1,2] -> fish %% 0.1	
S[1,2] -> VP[1,2] %% 0.024		N[2,3] -> tanks %% 0.1	
N[2,3] -> tanks %% 0.1	%% [2,3]	NP[1,2] -> N[1,2] %% 0.07	
V[2,3] -> fish %% 0.3		NP[2,3] -> N[2,3] %% 0.07	
NP[2,3] -> N[2,3] %% 0.07		VP[0,1] -> V[0,1] %% 0.04	
VP[2,3] -> V[2,3] %% 0.12		VP[1,3] -> V[1,2] NP[2,3] %% 0.0252	
S[2,3] -> VP[2,3] %% 0.012		S[1,2] -> VP[1,2] %% 0.024	Best
NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176	%% [0,2]	S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008	DESI
VP[0,2] -> V[0,1] NP[1,2] %% 0.0042			
S[0,2] -> NP[0,1] VP[1,2] %% 0.12096		S[2,3] -> VP[2,3] %% 0.012	
S[0,2] -> VP[0,2] %% 0.00042		NP[0,2] -> NP[0,1] NP[1,2] %% 0.01176	
NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147	%% [1,3]	S[1,3] -> NP[1,2] VP[2,3] %% 0.00756	
VP[1,3] -> V[1,2] NP[2,3] %% 0.0252		VP[0,2] -> V[0,1] NP[1,2] %% 0.0042	
S[1,3] -> NP[1,2] VP[2,3] %% 0.00756		S[0,1] -> VP[0,1] %% 0.004	
S[1,3] -> VP[1,3] %% 0.00252		S[1,3] -> VP[1,3] %% 0.00252	
S[0,3] -> NP[0,1] VP[1,3] %% 0.0127008	%% [0,3] Best	NP[1,3] -> NP[1,2] NP[2,3] %% 0.00147	
S[0,3] -> NP[0,2] VP[2,3] %% 0.0021168	i	NP[0,3] -> NP[0,2] NP[2,3] %% 0.00024696	
VP[0,3] -> V[0,1] NP[1,3] %% 0.0000882)		
NP[0,3] -> NP[0,1] NP[1,3] %% 0.000246	596		
NP[0,3] -> NP[0,2] NP[2,3] %% 0.000246	596		
S[0,3] -> VP[0,3] %% 0.00000882			

- We can build too many edges.
 - Most edges that can be built, shouldn't.
 - CKY builds them all!

Speed: build promising edges first.

- We can build in an bad order.
 - Might find bad parses for parse item before good parses.
 - Will trigger best-first propagation.

Correctness: keep edges on the agenda until you're sure you've seen their best parse.

Speeding up agenda-based parsers

- Two options for doing less work
 - The optimal way: A* parsing
 - Klein and Manning (2003)
 - The ugly but much more practical way: "best-first" parsing
 - Caraballo and Charniak (1998)
 - Charniak, Johnson, and Goldwater (1998)

Adding local information changes the intercept, but not the slope!

• In best-first, parsing, we visit edges according a figure-of-merit (FOM).

- A good FOM focuses work on "quality" edges.
- The good: leads to full parses quickly.
- The (potential) bad: leads to non-MAP parses.
- The ugly: propagation
 - If we find a better way to build a parse item, we need to rebuild everything above it
- In practice, works well!

Search in modern lexicalized statistical parsers

- Klein and Manning (2003b) do optimal A* search
 - Done in a restricted space of lexicalized PCFGs that "factors", allowing very efficient A* search
- Collins (1999) exploits both the ideas of beams and agenda based parsing
 - He places a separate beam over each span, and then, roughly, does uniform cost search
- Charniak (2000) uses inadmissible heuristics to guide search
 - He uses very good (but inadmissible) heuristics "best first search" – to find good parses quickly
 - Perhaps unsurprisingly this is the fastest of the 3.

Coarse-to-fine parsing

- Uses grammar projections to guide search
 - VP-VBF, VP-VBG, VP-U-VBN, $\dots \rightarrow VP$
 - VP[*buys*/VBZ], VP[*drive*/VB], VP[*drive*/VBP], ... \rightarrow VP
 - You can parse much more quickly with a simple grammar because the grammar constant is way smaller
 - You restrict the search of the expensive refined model to explore only spans and/or spans with compatible labels that the simple grammar liked
- Very successfully used in several recent parsers
 - Charniak and Johnson (2005)
 - Petrov and Klein (2007)

Coarse-to-fine parsing: A visualization of the span posterior probabilities from Petrov and Klein 2007

Dependency parsing

Dependency Grammar/Parsing

- A sentence is parsed by relating each word to other words in the sentence which depend on it.
- The idea of dependency structure goes back a long way
 - To Pāṇini's grammar (c. 5th century BCE)
- Constituency is a new-fangled invention
 - 20th century invention
- Modern work often linked to work of L. Tesniere (1959)
 - Dominant approach in "East" (Russia, China, ...)
 - Basic approach of 1st millenium Arabic grammarians
- Among the earliest kinds of parsers in NLP, even in US:
 - David Hays, one of the founders of computational linguistics, built early (first?) dependency parser (Hays 1962)

Shaw Publishing acquired 30 % of American City in March \$\$

- Words are linked from head (regent) to dependent
- Warning! Some people do the arrows one way; some the other way (Tesniere has them point from head to dependent...).
- Usually add a fake ROOT so every word is a dependent

Relation between CFG to dependency parse

- A dependency grammar has a notion of a head
- Officially, CFGs don't
- But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, ...) do, via hand-written phrasal "head rules":
 - The head of a Noun Phrase is a noun/number/adj/...
 - The head of a Verb Phrase is a verb/modal/....
- The head rules can be used to extract a dependency parse from a CFG parse (follow the heads).
- A phrase structure tree can be got from a dependency tree, but dependents are flat (no VP!)

Propagating head words

• Small set of rules propagate heads

NB. Not all dependencies shown here

 Dependencies are inherently untyped, though some work like Collins (1996) types them using the phrasal categories

Dependency Conditioning Preferences

Sources of information:

- bilexical dependencies
- distance of dependencies
- valency of heads (number of dependents)

A word's **dependents** (adjuncts, arguments)

tend to fall **near** it

These next 6 slides are based on slides by Jason Eisner and Noah Smith

Probabilistic dependency grammar: generative model

 W_{-l} .-1

 $\mathbf{\rho}_{w_0}$

 \mathcal{W}_1

 w_2

 \mathcal{W}_r

 Λw_0

 w_{-1}

 w_{-2}

 w_0

- 1. Start with left wall \$
- 2. Generate root w_0
- 3. Generate left children w_{-1} , w_{-2} , ..., $w_{-\ell}$ from the FSA λw_0
- 4. Generate right children w_1 , w_2 , ..., w_r from the FSA ρw_0
- 5. Recurse on each w_i for i in {- ℓ , ..., -1, 1, ..., r}, sampling o $\lambda_{w_{-\ell}}$ (steps 2-4)
- 6. Return $\alpha_{\ell} \dots \alpha_{-1} W_0 \alpha_1 \dots \alpha_r$

It

goal r 0 п

n

k

Dependency Grammar Cubic Recognition/ Parsing (Eisner & Satta, 1999)

}

Triangles: span over words, where tall side of triangle is the head, other side is dependent, and no non-head words expecting more dependents

Trapezoids: span over words, where larger side is head, smaller side is dependent, and smaller side is still looking for dependents on its side of the trapezoid

Dependency Grammar Cubic Recognition/

Parsing (Eisner & Satta, 1999)

Cubic Recognition/Parsing (Eisner & Satta, 1999)

Evaluation of Dependency Parsing: Simply use (labeled) dependency accuracy

Accuracy = number of domender of domender

3 total number of dependencies

McDonald et al. (2005 ACL):

Online Large-Margin Training of Dependency Parsers

- Builds a discriminative dependency parser
- Can condition on rich features in that context
 - Best-known recent dependency parser
 - Lots of recent dependency parsing activity connected with CoNLL 2006/2007 shared task
- Doesn't/can't report constituent LP/LR, but evaluating dependencies correct:
 - Accuracy is similar to but a fraction below dependencies extracted from Collins:
 - 90.9% vs. 91.4% ... combining them gives 92.2% [all lengths]
 - Stanford parser on length up to 40:
 - Pure generative dependency model: 85.0%
 - Lexicalized factored parser: 91.0%

McDonald et al. (2005 ACL):

Online Large-Margin Training of Dependency Parsers

- Score of a parse is the sum of the scores of its dependencies
- Each dependency is a linear function of features times weights
- Feature weights are learned by MIRA, an online large-margin algorithm
 - But you could think of it as using a perceptron or maxent classifier
- Features cover:
 - Head and dependent word and POS separately
 - Head and dependent word and POS bigram features
 - Words between head and dependent
 - Length and direction of dependency

Extracting grammatical relations from statistical constituency parsers

[de Marneffe et al. LREC 2006]

- Exploit the high-quality syntactic analysis done by statistical constituency parsers to get the grammatical relations [typed dependencies]
- Dependencies are generated by pattern-matching rules

Discriminative Parsing

Discriminative Parsing as a classification problem

- Classification problem
 - Given a training set of iid samples $T=\{(X_1,Y_1) \dots (X_n,Y_n)\}$ of input and class variables from an unknown distribution D(X,Y), estimate a function $\hat{h}(X)$ that predicts the class from the input variables
- The observed X's are the sentences.
- The class Y of a sentence is its parse tree
- The model has a large (infinite!) space of classes, but we can still assign them probabilities
 - The way we can do this is by breaking whole parse trees into component parts

1. Distribution-free methods

2. Probabilistic model methods

A Language Procession

Motivating discriminative estimation (1)

A training corpus of 108 (imperative) sentences.

Motivating discriminative estimation (2)

- In discriminative models, it is easy to incorporate different kinds of features
 - Often just about anything that seems linguistically interesting
- In generative models, it's often difficult, and the model suffers because of false independence assumptions
- This ability to add informative features is the real power of discriminative models for NLP.
 - Can still do it for parsing, though it's trickier.

Discriminative Parsers

- Discriminative Dependency Parsing
 - Not as computationally hard (tiny grammar constant)
 - Explored considerably recently. E.g. McDonald et al. 2005
- Make parser action decisions discriminatively
 - E.g. with a shift-reduce parser
- Dynamic-programmed Phrase Structure Parsing
 - Resource intensive! Most work on sentences of length <=15
 - The need to be able to dynamic program limits the feature types you can use
- Post-Processing: Parse reranking
 - Just work with output of k-best generative parser

Shift-reduce parser Ratnaparkhi (98)

 Learns a distribution P(T|S) of parse trees given sentences using the sequence of actions of a shift-reduce parser

$$P(T \mid S) = \prod_{i=1}^{n} P(a_i \mid a_1 \dots a_{i-1}S)$$

- Uses a maximum entropy model to learn conditional distribution of parse action given history
- Suffers from independence assumptions that actions are independent of future observations as with CMM/MEMM
- Higher parameter estimation cost to learn local maximum entropy models
- Lower but still good accuracy: 86% 87% labeled precision/recall

Discriminative dynamic-programmed parsers

- Taskar et al. (2004 EMNLP) show how to do joint discriminative SVM-style ("max margin) parsing building a phrase structure tree also conditioned on words in O(*n*³) time
 - In practice, totally impractically slow. Results were never demonstrated on sentences longer than 15 words
- Turian et al. (2006 NIPS) do a decision-tree based discriminative parser
- Research continues....
 - Finkel, Kleeman, and Manning (2008 ACL) featurebased parser is just about practical.
 - We do parse long sentences

Discriminative Models – Distribution Free Re-ranking (Collins 2000)

- Represent sentence-parse tree pairs by a feature vector F(X,Y)
- Learn a linear ranking model with parameters $\overline{\alpha}$ using the boosting loss

Model	LP	LR
Collins 99 (Generative)	88.3%	88.1%
Collins 00 (BoostLoss)	89.9%	89.6%

13% error reduction Still very close in accuracy to generative model [Charniak 2000]

Charniak and Johnson (2005 ACL):

Coarse-to-fine *n*-best parsing and MaxEnt discriminative reranking

- Builds a maxent discriminative reranker over parses produced by (a slightly bugfixed and improved version of) Charniak (2000).
- Gets 50 best parses from Charniak (2000) parser
 - Doing this exploits the "coarse-to-fine" idea to heuristically find good candidates
- Maxent model for reranking uses heads, etc. as generative model, but also nice linguistic features:
 - Conjunct parallelism
 - Right branching preference
 - Heaviness (length) of constituents factored in
- Gets 91% LP/LR F1 (on *all* sentences! up to 80 wd)