Statistical Parsing

Christopher Manning
CS224N

Statistical parsing inference: The General Problem

- Someone gives you a PCFG \(G \)
- For any given sentence, you might want to:
 - Find the best parse according to \(G \)
 - Find a bunch of reasonably good parses
 - Find the total probability of all parses licensed by \(G \)

Techniques:
- CKY, for best parse: can extend it:
 - To \(k \)-best: naively done, at high space and time cost – \(k^2 \) time/\(k \) space cost, but there are cleverer algorithms!
 - To all parses, summed probability: the inside algorithm
- Beam search (like in MT)
- Agenda/chart-based search

Mainly useful if just want the best parse

Parse as search definitions

- Grammar symbols: \(S, \ NP, @S\rightarrow NP \)
- Parse items/edges represent a grammar symbol over a span:

 - `the:[0,1]`
 - `NP:[0,2]`

- Backtraces/traversals represent the combination of adjacent edges into a larger edges:

 - `S:[0,3]`
 - `NP:[0,2]`
 - `VP:[2,3]`

Parse trees and parse triangles

- A parse tree can be viewed as a collection of edges and traversals.

 - `S: [0,3]`
 - `NP: [0,2]`
 - `VP: [2,3]`
 - `DT: [0,1]`
 - `NN: [1,2]`
 - `VBD: [2,3]`
 - `the: [0,1]`
 - `cat: [1,2]`
 - `ran: [2,3]`

- A parse triangle groups edges over the same span

 - `NN`
 - `DT`
 - `S \rightarrow NP`
 - `VP`

Parsing as search: The parsing directed B-hypergraph

- In CKY parsing, we visit edges tier by tier:
 - Guarantees correctness by working inside-out.
 - Build all small bits before any larger bits that could possibly require them.
 - Exhaustive: the goal is in the last tier!
Agenda-based parsing

- For general grammars
- Start with a table for recording $\delta(X, i, j)$
 - Records the best score of a parse of X over $[i, j]$
 - If the scores are negative log probabilities, then entries start at $-\infty$ and small is good
 - This can be a sparse or a dense map
 - Again, you may want to record backtraces (traversals) as well, like CKY
- Step 1: Initialize with the sentence and lexicon:
 - For each word w and each tag t
 - Set $\delta(X, i, i) = \text{lex.score}(w, t)$

Agenda-based parsing

- Keep a list of edges called an agenda
 - Edges are triples $[X, i, j]$
 - The agenda is a priority queue
- Every time the score of some $\delta(X, i, j)$ improves (i.e. gets lower):
 - Stick the edge $[X, i, j]$-score into the agenda
 - (Update the backtrace for $\delta(X, i, j)$ if your storing them)

Agenda-Based Parsing

- The agenda is a holding zone for edges.
- Visit edges by some ordering policy.
- Combine edge with already-visited edges.
- Resulting new edges go wait in the agenda.
- We might revisit parse items: A new way to form an edge might be a better way.

Agenda-based parsing

- Open questions:
 - Agenda priority: What did "next" mean?
 - Efficiency: how do we do as little work as possible?
 - Optimality: how do we know when we find the best parse of a sentence?
 - If we use $\delta(X, i, j)$ as the priority:
 - Each edge goes on the agenda at most once
 - When an edge pops off the agenda, its best parse is known (why?)
 - This is basically uniform cost search (i.e., Dijkstra's algorithm).
 - [Cormen, Leiserson, and Rivest 1990; Knuth 1970]

Agenda-based parsing

- Step II: While agenda not empty
 - Get the ‘next’ edge $[X, i, j]$ from the agenda
 - Fetch all compatible neighbors $[Y, j, k]$ or $[Z, k, i]$
 - Compatible means that there are rules $A \rightarrow X Y$ or $B \rightarrow Z X$
 - Build all parent edges $[A, i, k]$ or $[B, k, j]$ found
 - $\delta(A, i, k) \leq \delta(X, i, j) + \delta(Y, j, k) + P(A \rightarrow X)$
 - If we’ve improved $\delta(A, i, k)$, then stick it on the agenda
 - Also project unary rules:
 - Fetch all unary rules $A \rightarrow X$, score $[A, i, j]$ built from this rule on $[X, i, j]$ and put on agenda if you’ve improved $\delta(A, i, k)$
 - When do we know we have a parse for the root?

Uniform-Cost Parsing

- We want to work on good parses inside-out.
 - CKY does this synchronously, by tiers.
 - Uniform-cost does it asynchronously, ordering edges by their best known parse score.
- Why best parse is known:
 - Adding structure incurs probability cost.
 - Trees have lower probability than their sub-parts.
 - The best scored edge in the agenda cannot be waiting on any of its sub-edges.
 - We never have to propagate. We don’t explore truly useless edges.
Example of uniform cost search vs. CKY parsing:
The grammar, lexicon, and sentence

- $S \rightarrow NP \ VP \ %0.9$
- $S \rightarrow VP \ %0.1$
- $VP \rightarrow V \ NP \ %0.6$
- $VP \rightarrow V \ %0.4$
- $NP \rightarrow NP \ %0.3$
- $V \rightarrow tanks \ %0.3$
- $V \rightarrow fish \ %0.6$
- $NP \rightarrow N \ %0.7$
- $N \rightarrow people \ %0.8$
- $N \rightarrow fish \ %0.1$
- $N \rightarrow tanks \ %0.1$
- $V \rightarrow people \ %0.1$
- $V \rightarrow fish \ %0.6$
- $V \rightarrow tanks \ %0.3$

Example of uniform cost search vs. CKY parsing:
CKY vs. order of agenda pops in chart

<table>
<thead>
<tr>
<th>Bracket</th>
<th>Probability</th>
<th>Validity</th>
<th>Avg. Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S[0,1]$</td>
<td>$N[0,1] \rightarrow people \ %0.8$</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>$S[0,1]$</td>
<td>$V[0,1] \rightarrow people \ %0.1$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$NP[0,1]$</td>
<td>$NP[0,1] \rightarrow N[0,1] \ %0.56$</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>$VP[0,1]$</td>
<td>$VP[0,1] \rightarrow V[0,1] \ %0.04$</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$S[0,1]$</td>
<td>$VP[0,1] \rightarrow V[0,1] \ %0.004$</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>$NP[1,2]$</td>
<td>$N[1,2] \rightarrow fish \ %0.1$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$VP[1,2]$</td>
<td>$VP[1,2] \rightarrow V[1,2] \ %0.6$</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>$NP[1,2]$</td>
<td>$NP[1,2] \rightarrow N[1,2] \ %0.07$</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>$VP[1,2]$</td>
<td>$VP[1,2] \rightarrow V[1,2] \ %0.24$</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>$S[1,2]$</td>
<td>$VP[1,2] \rightarrow V[1,2] \ %0.024$</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>$NP[2,3]$</td>
<td>$N[2,3] \rightarrow tanks \ %0.1$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$VP[2,3]$</td>
<td>$VP[2,3] \rightarrow V[2,3] \ %0.3$</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$NP[2,3]$</td>
<td>$NP[2,3] \rightarrow N[2,3] \ %0.07$</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>$VP[2,3]$</td>
<td>$VP[2,3] \rightarrow V[2,3] \ %0.12$</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>$S[2,3]$</td>
<td>$VP[2,3] \rightarrow V[2,3] \ %0.012$</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>$NP[0,2]$</td>
<td>$NP[0,2] \rightarrow NP[0,1] \ NP[1,2] \ %0.01176$</td>
<td>0.01176</td>
<td>0.01176</td>
</tr>
<tr>
<td>$VP[0,2]$</td>
<td>$VP[0,2] \rightarrow VP[0,1] \ NP[1,2] \ %0.0042$</td>
<td>0.0042</td>
<td>0.0042</td>
</tr>
<tr>
<td>$S[0,2]$</td>
<td>$NP[0,1] \ VP[1,2] \ %0.12096$</td>
<td>0.12096</td>
<td>0.12096</td>
</tr>
<tr>
<td>$S[0,2]$</td>
<td>$VP[0,2] \ %0.00042$</td>
<td>0.00042</td>
<td>0.00042</td>
</tr>
<tr>
<td>$NP[1,3]$</td>
<td>$NP[1,2] \ NP[2,3] \ %0.00147$</td>
<td>0.00147</td>
<td>0.00147</td>
</tr>
<tr>
<td>$VP[1,3]$</td>
<td>$VP[1,3] \rightarrow V[1,2] \ NP[2,3] \ %0.0252$</td>
<td>0.0252</td>
<td>0.0252</td>
</tr>
<tr>
<td>$S[1,3]$</td>
<td>$NP[1,2] \ VP[2,3] \ %0.00756$</td>
<td>0.00756</td>
<td>0.00756</td>
</tr>
<tr>
<td>$S[1,3]$</td>
<td>$VP[1,3] \ %0.00252$</td>
<td>0.00252</td>
<td>0.00252</td>
</tr>
<tr>
<td>$S[0,3]$</td>
<td>$NP[0,1] \ VP[1,3] \ %0.0127008$</td>
<td>0.0127008</td>
<td>0.0127008</td>
</tr>
<tr>
<td>$S[0,3]$</td>
<td>$NP[0,2] \ VP[2,3] \ %0.0021168$</td>
<td>0.0021168</td>
<td>0.0021168</td>
</tr>
<tr>
<td>$VP[0,3]$</td>
<td>$VP[0,3] \rightarrow VP[0,1] \ NP[1,3] \ %0.0000882$</td>
<td>0.0000882</td>
<td>0.0000882</td>
</tr>
<tr>
<td>$NP[0,3]$</td>
<td>$NP[0,2] \ NP[2,3] \ %0.00024696$</td>
<td>0.00024696</td>
<td>0.00024696</td>
</tr>
<tr>
<td>$NP[0,3]$</td>
<td>$NP[0,1] \ NP[1,3] \ %0.00024696$</td>
<td>0.00024696</td>
<td>0.00024696</td>
</tr>
<tr>
<td>$S[0,3]$</td>
<td>$VP[0,3] \ %0.00000882$</td>
<td>0.00000882</td>
<td>0.00000882</td>
</tr>
</tbody>
</table>

What can go wrong?

- We can build too many edges.
 - Most edges that can be built, shouldn’t.
 - CKY builds them all!

 Speed: build promising edges first.

- We can build in an bad order.
 - Might find bad parses for parse item before good parses.
 - Will trigger best-first propagation.

Correctness: keep edges on the agenda until you’re sure you’ve seen their best parse.

Speeding up agenda-based parsers

- Two options for doing less work
 - The optimal way: A* parsing
 - Klein and Manning (2003)
 - The ugly but much more practical way: “best-first” parsing
 - Caraballo and Charniak (1998)
 - Charniak, Johnson, and Goldwater (1998)

A* Context Summary Sharpness

![Graph showing A* Context Summary Sharpness]

Adding local information changes the intercept, but not the slope!

Best-First Parsing

- In best-first, parsing, we visit edges according a figure-of-merit (FOM).
 - A good FOM focuses work on “quality” edges.
 - The good: leads to full parses quickly.
 - The (potential) bad: leads to non-MAP parses.
 - The ugly: propagation
 - If we find a better way to build a parse item, we need to rebuild everything above it
 - In practice, works well!
Search in modern lexicalized statistical parsers

- Klein and Manning (2003b) do optimal A* search
 - Done in a restricted space of lexicalized PCFGs that "factors", allowing very efficient A* search
- Collins (1999) exploits both the ideas of beams and agenda based parsing
 - He places a separate beam over each span, and then, roughly, does uniform cost search
- Charniak (2000) uses inadmissible heuristics to guide search
 - He uses very good (but inadmissible) heuristics - "best first search" - to find good parses quickly
 - Perhaps unsurprisingly this is the fastest of the 3.

Coarse-to-fine parsing

- Uses grammar projections to guide search
 - VP\text{-}VBF, VP\text{-}VBG, VP\text{-}U\text{-}VBN, ... → VP
 - VP\text{-}buys/VBZ, VP\text{-}drive/VB, VP\text{-}drive/VBP, ... → VP
 - You can parse much more quickly with a simple grammar because the grammar constant is way smaller
 - You restrict the search of the expensive refined model to explore only spans and/or spans with compatible labels that the simple grammar liked
 - Very successfully used in several recent parsers
 - Charniak and Johnson (2005)
 - Petrov and Klein (2007)

Coarse-to-fine parsing: A visualization of the span posterior probabilities from Petrov and Klein 2007

Dependency parsing

- A sentence is parsed by relating each word to other words in the sentence which depend on it.
- The idea of dependency structure goes back a long way
 - To Paisi's grammar (c. 5th century BCE)
- Constituency is a new-fangled invention
 - 20th century invention
- Modern work often linked to work of L. Tesniere (1959)
 - Dominant approach in "East" (Russia, China, …)
 - Basic approach of 1st millennium Arabic grammarians
- Among the earliest kinds of parsers in NLP, even in US:
 - David Hays, one of the founders of computational linguistics, built early (first?) dependency parser (Hays 1962)

Dependency Grammar/Parsing

- Words are linked from head (regent) to dependent
- Warning! Some people do the arrows one way; some the other way (Tesniere has them point from head to dependent…).3.
- Usually add a fake ROOT so every word is a dependent

Dependency structure

Shaw Publishing acquired 30% of American City in March 5
Relation between CFG to dependency parse

- A dependency grammar has a notion of a head
- Officially, CFGs don’t
- But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, …) do, via hand-written phrasal "head rules":
 - The head of a Noun Phrase is a noun/number/adj/…
 - The head of a Verb Phrase is a verb/modal/….
- The head rules can be used to extract a dependency parse from a CFG parse (follow the heads).
- A phrase structure tree can be got from a dependency tree, but dependents are flat (no VP!)

Propagating head words

- Small set of rules propagate heads

Extracted structure

NB. Not all dependencies shown here

- Dependencies are inherently untyped, though some work like Collins (1996) types them using the phrasal categories

Dependency Conditioning Preferences

Sources of information:
- bilexical dependencies
- distance of dependencies
- valency of heads (number of dependents)

A word’s dependents (adjuncts, arguments) tend to fall near it in the string.

Probabilistic dependency grammar: generative model

1. Start with left wall S
2. Generate root w_0
3. Generate left children w_{-1}, w_{-2}, ..., w_{-j} from the FSA λ_{w_0}
4. Generate right children w_1, w_2, ..., w_1 from the FSA ρ_{w_0}
5. Recurse on each w_i for $i \in \{ \ldots, -1, 1, -j, \ldots \}$, sampling α_i (steps 2-4)
6. Return $\alpha_j \ldots \alpha_0 w_1 \alpha_2 \ldots \alpha_r$

Naive Recognition/Parsing

$O(n^N)$ if N nonterminals $O(d^r)$ combinations

These next 6 slides are based on slides by Jason Eisner and Noah Smith.
Dependency Grammar Cubic Recognition/Parsing (Eisner & Satta, 1999)

• Triangles: span over words, where tall side of triangle is the head, other side is dependent, and no non-head words expecting more dependents

• Trapezoids: span over words, where larger side is head, smaller side is dependent, and smaller side is still looking for dependents on its side of the trapezoid

Evaluation of Dependency Parsing: Simply use (labeled) dependency accuracy

Accuracy = \frac{\text{number of correct dependencies}}{\text{total number of dependencies}}

\begin{align*}
\text{Accuracy} &= \frac{2}{5} = 0.40 \\
&= 40%
\end{align*}

McDonald et al. (2005 ACL): Online Large-Margin Training of Dependency Parsers

• Builds a discriminative dependency parser
• Can condition on rich features in that context
 • Best-known recent dependency parser
 • Lots of recent dependency parsing activity connected with CoNLL 2006/2007 shared task
• Doesn’t/can’t report constituent LP/LR, but evaluating dependencies correct:
 • Accuracy is similar but a fraction below dependencies extracted from Collins:
 • 90.9% vs. 91.4% … combining them gives 92.2% [all lengths]
 • Stanford parser on length up to 40:
 • Pure generative dependency model: 85.0%
 • Lexicalized factored parser: 91.0%

McDonald et al. (2005 ACL): Online Large-Margin Training of Dependency Parsers

• Score of a parse is the sum of the scores of its dependencies
• Each dependency is a linear function of features times weights
• Feature weights are learned by MIRA, an online large-margin algorithm
 • But you could think of it as using a perceptron or maxent classifier
• Features cover:
 • Head and dependent word and POS separately
 • Head and dependent word and POS bigram features
 • Words between head and dependent
 • Length and direction of dependency
Extracting grammatical relations from statistical constituency parsers

[de Marneffe et al. LREC 2006]

- Exploit the high-quality syntactic analysis done by statistical constituency parsers to get the grammatical relations (typed dependencies)
- Dependencies are generated by pattern-matching rules

Discriminative Parsing

Motivating discriminative estimation (1)

A training corpus of 108 (imperative) sentences.

Based on an example by Mark Johnson

Motivating discriminative estimation (2)

- In discriminative models, it is easy to incorporate different kinds of features
 - Often just about anything that seems linguistically interesting
- In generative models, it's often difficult, and the model suffers because of false independence assumptions
- This ability to add informative features is the real power of discriminative models for NLP.
 - Can still do it for parsing, though it's trickier.

Discriminative Parsers

- Discriminative Dependency Parsing
 - Not as computationally hard (tiny grammar constant)
 - Explored considerably recently. E.g. McDonald et al. 2005
- Make parser action decisions discriminatively
 - E.g. with a shift-reduce parser
- Dynamic-programmed Phrase Structure Parsing
 - Resource intensive! Most work on sentences of length <=15
 - The need to be able to dynamic program limits the feature types you can use
- Post-Processing: Parse reranking
 - Just work with output of k-best generative parser
Discriminative models

- Shift-reduce parser Ratnaparkhi (98)
 - learns a distribution $P(T|S)$ of parse trees given sentences using the sequence of actions of a shift-reduce parser
 $$P(T|S) = \prod\limits_{i} P(\alpha_{i} | \alpha_{1}, \ldots, \alpha_{i})$$
 - uses a maximum entropy model to learn conditional distribution of parse action given history
 - suffers from independence assumptions that actions are independent of future observations as with CMM/MEMM
 - higher parameter estimation cost to learn local maximum entropy models
 - lower but still good accuracy: 86% - 87% labeled precision/recall

Discriminative dynamic-programmed parsers

- Taskar et al. (2004 EMNLP) show how to do joint discriminative SVM-style ("max margin") parsing building a phrase structure tree also conditioned on words in $O(n^3)$ time
 - in practice, totally impractically slow. Results were never demonstrated on sentences longer than 15 words
- Turian et al. (2006 NIPS) do a decision-tree based discriminative parser
- Research continues….
 - Finkel, Kleeman, and Manning (2008 ACL) feature-based parser is just about practical.
 - we do parse long sentences

Discriminative Models – Distribution Free Re-ranking (Collins 2000)

- represent sentence-parse tree pairs by a feature vector $F(X,Y)$
- learn a linear ranking model with parameters γ using the boosting loss

<table>
<thead>
<tr>
<th>Model</th>
<th>LP</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins 99 (Generative)</td>
<td>88.3%</td>
<td>88.1%</td>
</tr>
<tr>
<td>Collins 00 (BoostLoss)</td>
<td>89.9%</td>
<td>89.6%</td>
</tr>
</tbody>
</table>

13% error reduction
Still very close in accuracy to generative model [Collins 2000]

Charniak and Johnson (2005 ACL): Coarse-to-fine n-best parsing and MaxEnt discriminative reranking

- builds a maxent discriminative reranker over parses produced by (a slightly bugfixed and improved version of) Charniak (2000).
- gets 50 best parses from Charniak (2000) parser
 - Doing this exploits the "coarse-to-fine" idea to heuristically find good candidates
- Maxent model for reranking uses heads, etc. as generative model, but also nice linguistic features:
 - Conjunct parallelism
 - Right branching preference
 - Heaviness (length) of constituents factored in
- gets 91% LP/LR F1 (on all sentences! - up to 80 wd)