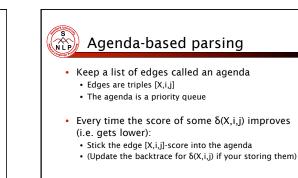
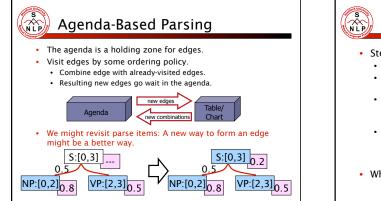
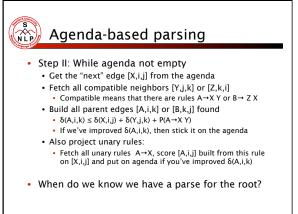


• For general grammars

- Start with a table for recording δ(X,i,j)
 - Records the best score of a parse of X over [i,j]
 - If the scores are negative log probabilities, then entries start at ∞ and small is good
 - This can be a sparse or a dense map
 - Again, you may want to record backtraces (traversals) as well, like CKY
- Step 1: Initialize with the sentence and lexicon:
 For each word w and each tag t
 - Set δ(X,i,i) = lex.score(w,t)

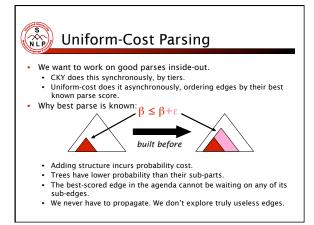


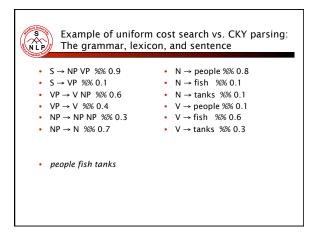




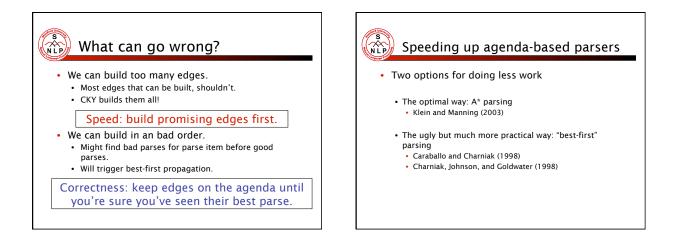
Agenda-based parsing

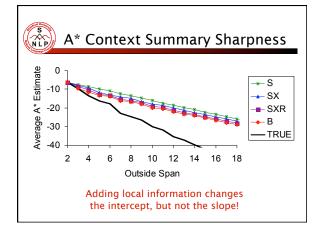
- Open questions:
 - Agenda priority: What did "next" mean?
 - · Efficiency: how do we do as little work as possible?
 - Optimality: how do we know when we find the best parse of a sentence?
- If we use $\delta(X, i, j)$ as the priority:
 - · Each edge goes on the agenda at most once
 - When an edge pops off the agenda, its best parse is known (why?)
 - This is basically uniform cost search (i.e., Dijkstra's algorithm). [Cormen, Leiserson, and Rivest 1990; Knuth 1970]

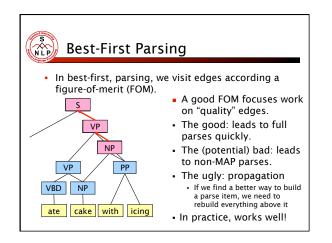




Example of uniform cost search vs. CKY parsing: CKY vs. order of agenda pops in chart		
N(0,1) >> people 3%0.0.8 \$% [0,1] V(0,1) >> people 3%0.0.1 \$% [0,1] NP(0,1) >> N(0,1] 3%0.0.4 \$% [0,1] S(0,1) >> V(0,1] 3%0.0.04 \$% [1,2] V(1,2) >> fish 3%0.0.1 \$% [1,2]	N(0,1) -> people %% 0.8 V(1,2) -> fish %% 0.6 NP(0,1) -> N(0,1) %% 0.56 V(2,3) -> fish %% 0.3 VP(1,2) -> V(1,2) %% 0.24 S(0,2) -> NP(0,1) VP(1,2) %% 0.12096 VP(2,3) -> V(2,3) %% 0.12	
V(1,2) > 5151 356 0.6 NP[1,2] > N(1,2] 356 0.07 VP[1,2] > V[1,2] 356 0.24 S[1,2] > VP[1,2] 356 0.24 N[2,3] > 1561 356 0.1 926 [2,3] V[2,3] > 5161 356 0.3 NP[2,3] > N(2,3] 35 0.07	VP(2,3) > V(2,3) ≫ 0.12 V(0,1) > people 3% 0.1 N(1,2) >> fish 3% 0.1 N(2,3) >> tanks 3% 0.1 NP(1,2) >> N(1,2) % 0.07 NP(2,3) >> N(2,3) %% 0.07 VP(0,1) >> V(0,1) 3% 0.04	
VP[2,3] >> V[2,3] %% 0.12 S[2,3] >> VP[2,3] %% 0.012 NP[0,2] >> NP[0,1] NP[1,2] %% 0.01176 %% [0,2] VP[0,2] >> V[0,1] NP[1,2] %% 0.0042 S[0,2] >> VP[0,1] VP[1,2] %% 0.02096 S[0,2] >> VP[0,2] %% 0.00042	$\begin{array}{l} \label{eq:vp1} \mbox{VP1},3] > \mbox{V1},2] \ \mbox{WP2},3] \ \mbox{WP0},22 \\ \mbox{S1},2] > \mbox{VP1},2] \ \mbox{WP0},2] \ \mbox{WP0},3] > \mbox{WP0},3] \ \mbox{WP0}$	Best
NP[1,3] >> NP[1,2] NP[2,3] %% 0.00147 %% [1,3] VP[1,3] >> VP[1,2] NP[2,3] %% 0.0252 S[1,3] >> NP[1,2] VP[2,3] %% 0.02756 S[1,3] >> NP[1,3] %% 0.00252 S[0,3] >> NP[0,1] VP[1,3] %% 0.0127008 %% [0,3] Best S[0,3] >> NP[0,2] VP[1,3] %% 0.0021168	S[1,3] -> NP[1,2] VP[2,3] 9% 0.00756 VP[0,2] -> V[0,1] NP[1,2] 9% 0.0042 S[0,1] -> VP[0,1] 9% 0.004 S[1,3] -> VP[1,3] 9% 0.00252 NP[1,3] -> NP[1,2] NP[2,3] 9% 0.00147 NP[0,3] NP[0,2] NP[2,3] 9% 0.0024696	
VP[0,3] → V[0,1] NP[1,3] %% 0.0000882 NP[0,3] → NP[0,1] NP[1,3] %% 0.00024696 NP[0,3] → NP[0,2] NP[2,3] %% 0.00024696 S[0,3] → VP[0,3] %% 0.0000882		

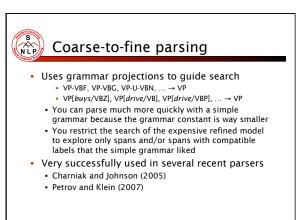


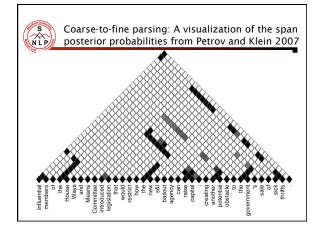


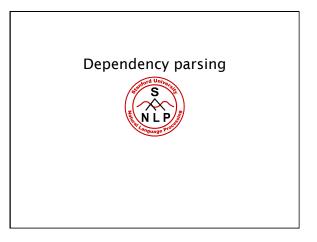


Search in modern lexicalized statistical parsers

- Klein and Manning (2003b) do optimal A* search
 Done in a restricted space of lexicalized PCFGs that "factors", allowing very efficient A* search
- Collins (1999) exploits both the ideas of beams and agenda based parsing
- He places a separate beam over each span, and then, roughly, does uniform cost search
- Charniak (2000) uses inadmissible heuristics to guide search
 - He uses very good (but inadmissible) heuristics "best first search" to find good parses quickly
 - Perhaps unsurprisingly this is the fastest of the 3.

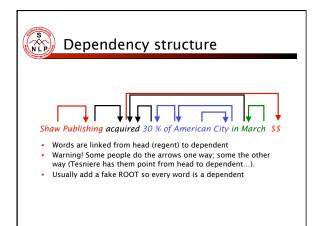






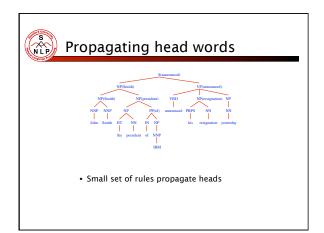
Dependency Grammar/Parsing

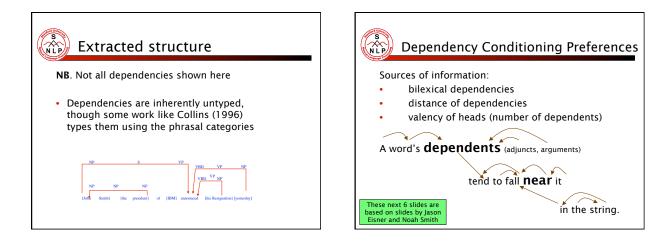
- A sentence is parsed by relating each word to other words in the
- sentence which depend on it.
- The idea of dependency structure goes back a long way
 To Pāṇini's grammar (c. 5th century BCE)
- Constituency is a new-fangled invention
- 20th century invention
- Modern work often linked to work of L. Tesniere (1959)
 Dominant approach in "East" (Russia, China, ...)
- Basic approach of 1st millenium Arabic grammarians
- Among the earliest kinds of parsers in NLP, even in US: • David Hays, one of the founders of computational linguistics, built early (first?) dependency parser (Hays 1962)

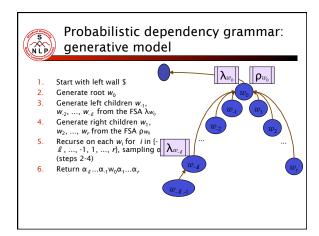


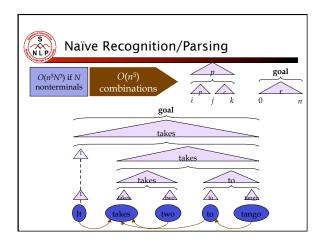
Relation between CFG to dependency parse

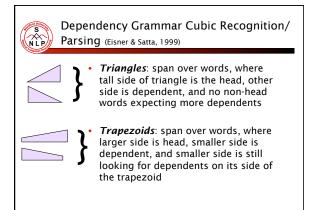
- A dependency grammar has a notion of a head
- Officially, CFGs don't
- But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, ...) do, via hand-written phrasal "head rules":
 The head of a Noun Phrase is a noun/number/adj/...
- The head of a Verb Phrase is a verb/modal/....
- The head rules can be used to extract a dependency parse from a CFG parse (follow the heads).
- A phrase structure tree can be got from a dependency tree, but dependents are flat (no VP!)

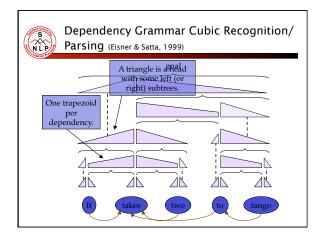


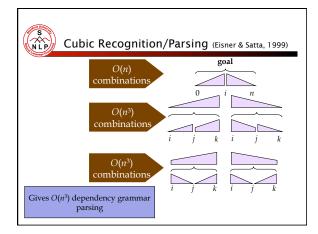


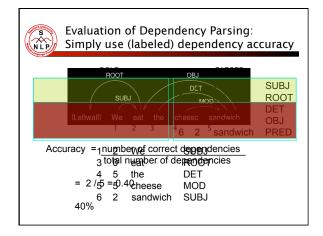












McDonald et al. (2005 ACL): Online Large-Margin Training of Dependency Parsers

- Builds a discriminative dependency parser
- Can condition on rich features in that context
- Best-known recent dependency parser

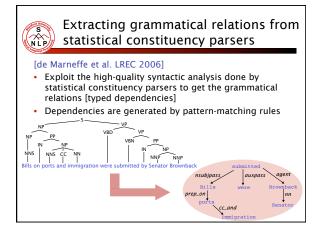
NLP

- Lots of recent dependency parsing activity connected with CoNLL 2006/2007 shared task
- Doesn't/can't report constituent LP/LR, but evaluating dependencies correct:
- Accuracy is similar to but a fraction below dependencies extracted from Collins:
 - 90.9% vs. 91.4% ... combining them gives 92.2% [all lengths]
 - Stanford parser on length up to 40:
 - Pure generative dependency model: 85.0%
 - Lexicalized factored parser: 91.0%

S |

McDonald et al. (2005 ACL): Online Large-Margin Training of Dependency Parsers

- Score of a parse is the sum of the scores of its dependencies
- Each dependency is a linear function of features times weights
- Feature weights are learned by MIRA, an online large-margin algorithm
- But you could think of it as using a perceptron or maxent classifier
 Features cover:
- Head and dependent word and POS separately
- Head and dependent word and POS bigram features
- Words between head and dependent
- Length and direction of dependency



VP

NP

rice

NF

 \mathbf{p}

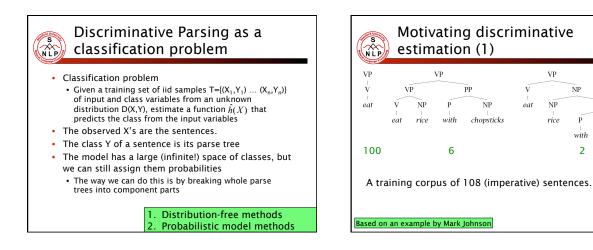
with

2

PP

NP

chopsticks



Motivating discriminative estimation (2)

In discriminative models, it is easy to incorporate different kinds of features

N L P

- · Often just about anything that seems linguistically interesting
- In generative models, it's often difficult, and the model suffers because of false independence assumptions
- This ability to add informative features is the real power of discriminative models for NLP. • Can still do it for parsing, though it's trickier.

S N L P **Discriminative Parsers Discriminative Dependency Parsing** • Not as computationally hard (tiny grammar constant) • Explored considerably recently. E.g. McDonald et al. 2005 Make parser action decisions discriminatively • E.g. with a shift-reduce parser Dynamic-programmed Phrase Structure Parsing

- · Resource intensive! Most work on sentences of length <=15
- The need to be able to dynamic program limits the feature types you can use
- Post-Processing: Parse reranking • Just work with output of k-best generative parser

Discriminative models

- Shift-reduce parser Ratnaparkhi (98)
- Learns a distribution P(T|S) of parse trees given sentences using the sequence of actions of a shift-reduce parser

 $P(T | S) = \prod_{i=1}^{n} P(a_i | a_1 \dots a_{i-1}S)$

- Uses a maximum entropy model to learn conditional distribution of parse action given history
- Suffers from independence assumptions that actions are independent of future observations as with CMM/MEMM
- Higher parameter estimation cost to learn local maximum entropy models
- Lower but still good accuracy: 86% 87% labeled
 precision/recall

Discriminative dynamic-programmed

• Taskar et al. (2004 EMNLP) show how to do joint discriminative SVM-style ("max margin) parsing building a phrase structure tree also conditioned on words in O(n³) time

- In practice, totally impractically slow. Results were never demonstrated on sentences longer than 15 words
- Turian et al. (2006 NIPS) do a decision-tree based discriminative parser
- Research continues....
 - Finkel, Kleeman, and Manning (2008 ACL) featurebased parser is just about practical.
 We do parse long sentences

