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Statistical Parsing 

Christopher Manning 

CS224N 

Statistical parsing inference:  
The General Problem 

•  Someone gives you a PCFG G 

•  For any given sentence, you might want to: 
•  Find the best parse according to G 

•  Find a bunch of reasonably good parses 

•  Find the total probability of all parses licensed by G 

•  Techniques: 
•  CKY, for best parse; can extend it: 

•  To k-best: naively done, at high space and time cost – k2 
time/k space cost, but there are cleverer algorithms! 
(Huang and Chiang 2005: http://www.cis.upenn.edu/~lhuang3/huang-iwpt.pdf) 

•  To all parses, summed probability: the inside algorithm 

•  Beam search (like in MT) 

•  Agenda/chart-based search } Mainly useful if just 
want the best parse 

Parse as search definitions 

•  Grammar symbols: S, NP, @S->NP_ 

•  Parse items/edges represent a grammar symbol 
over a span: 

•  Backtraces/traversals represent the combination of 
adjacent edges into a larger edges: 

NP:[0,2] the:[0,1] 

S:[0,3] 

NP:[0,2] VP:[2,3] 

Parse trees and parse triangles 

•  A parse tree can be 
viewed as a collection of 
edges and traversals. 

S:[0,3] 

NP:[0,2] VP:[2,3] 

DT:[0,1] NN:[1,2] VBD:[2,3] 

the:[0,1] cat:[1,2] ran:[2,3] 

•  A parse triangle groups 
edges over the same span 

NN 

DT 

S→NP•VP 

NP 

Parsing as search: The parsing 
directed B-hypergraph 

X:h 

i jh

X:h 
[i,j] 

NN:Factory 
[0,1] 

NP:payrolls 
[0,2] 

PP:in 
[3,5] 

VP:fell 
[2,5] 

S:fell 
[0,5] 

goal 

NN:payrolls 
[1,2] 

VBD:fell 
[2,3] 

IN:in 
[3,4] 

NN:September 
[4,5] 

start 

S:payrolls 
[0,2] 

VBP:payrolls 
[1,2] 

[Klein and Manning 2001] 

CKY Parsing 

•  In CKY parsing, we visit edges tier by tier: 

  Guarantees correctness 
by working inside-out. 

  Build all small bits before 
any larger bits that could 
possibly require them. 

  Exhaustive: the goal is in 
the last tier! 
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Agenda-based parsing 

•  For general grammars 

•  Start with a table for recording δ(X,i,j) 
•  Records the best score of a parse of X over [i,j] 

•  If the scores are negative log probabilities, then entries 
start at ∞ and small is good 

•  This can be a sparse or a dense map 

•  Again, you may want to record backtraces (traversals) as 
well, like CKY 

•  Step 1: Initialize with the sentence and lexicon: 
•  For each word w and each tag t 

•  Set δ(X,i,i) = lex.score(w,t) 

Agenda-based parsing 

•  Keep a list of edges called an agenda 
•  Edges are triples [X,i,j] 

•  The agenda is a priority queue 

•  Every time the score of some δ(X,i,j) improves 
(i.e. gets lower): 
•  Stick the edge [X,i,j]-score into the agenda 
•  (Update the backtrace for δ(X,i,j) if your storing them) 

Agenda-Based Parsing 

•  The agenda is a holding zone for edges. 

•  Visit edges by some ordering policy. 
•  Combine edge with already-visited edges. 

•  Resulting new edges go wait in the agenda. 

•  We might revisit parse items: A new way to form an edge 
might be a better way. 

Agenda Table/ 
Chart 

new edges 

new combinations 

0.8 NP:[0,2] 0.5 

0.5 

VP:[2,3] 

--- S:[0,3] 

0.8 NP:[0,2] 0.5 

0.5 

VP:[2,3] 

0.2 S:[0,3] 

Agenda-based parsing 

•  Step II: While agenda not empty 
•  Get the “next” edge [X,i,j] from the agenda 

•  Fetch all compatible neighbors [Y,j,k] or [Z,k,i] 
•  Compatible means that there are rules A→X Y or B→ Z X 

•  Build all parent edges [A,i,k] or [B,k,j] found 
•  δ(A,i,k) ≤ δ(X,i,j) + δ(Y,j,k) + P(A→X Y) 

•  If we’ve improved δ(A,i,k), then stick it on the agenda 

•  Also project unary rules: 
•  Fetch all unary rules  A→X, score [A,i,j] built from this rule 

on [X,i,j] and put on agenda if you’ve improved δ(A,i,k) 

•  When do we know we have a parse for the root? 

Agenda-based parsing 

•  Open questions: 
•  Agenda priority: What did “next” mean? 

•  Efficiency: how do we do as little work as possible? 
•  Optimality: how do we know when we find the best 

parse of a sentence? 

•  If we use δ(X,i,j) as the priority: 
•  Each edge goes on the agenda at most once 
•  When an edge pops off the agenda, its best parse is 

known (why?) 

•  This is basically uniform cost search (i.e., Dijkstra’s 
algorithm).     [Cormen, Leiserson, and Rivest 1990; Knuth 1970]  

•  We want to work on good parses inside-out. 
•  CKY does this synchronously, by tiers. 
•  Uniform-cost does it asynchronously, ordering edges by their best 

known parse score. 
•  Why best parse is known: 

•  Adding structure incurs probability cost. 
•  Trees have lower probability than their sub-parts. 
•  The best-scored edge in the agenda cannot be waiting on any of its 

sub-edges. 
•  We never have to propagate. We don’t explore truly useless edges.  

Uniform-Cost Parsing 

β ≤ β+ε 

built before 
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Example of uniform cost search vs. CKY parsing: 
The grammar, lexicon, and sentence 

•  S → NP VP  %% 0.9 

•  S → VP  %% 0.1 

•  VP → V NP  %% 0.6 

•  VP → V  %% 0.4 
•  NP → NP NP  %% 0.3 

•  NP → N  %% 0.7 

•  people fish tanks 

•  N → people %% 0.8 

•  N → fish   %% 0.1 

•  N → tanks  %% 0.1 

•  V → people %% 0.1 
•  V → fish   %% 0.6 

•  V → tanks  %% 0.3 

Example of uniform cost search vs. CKY parsing: 
CKY vs. order of agenda pops in chart 

N[0,1] -> people  %% 0.8  %% [0,1] 
V[0,1] -> people  %% 0.1 
NP[0,1] -> N[0,1]  %% 0.56 
VP[0,1] -> V[0,1]  %% 0.04 
S[0,1] -> VP[0,1]  %% 0.004 
N[1,2] -> fish  %% 0.1  %% [1,2] 
V[1,2] -> fish  %% 0.6 
NP[1,2] -> N[1,2]  %% 0.07 
VP[1,2] -> V[1,2]  %% 0.24 
S[1,2] -> VP[1,2]  %% 0.024 
N[2,3] -> tanks  %% 0.1  %% [2,3] 
V[2,3] -> fish  %% 0.3 
NP[2,3] -> N[2,3]  %% 0.07 
VP[2,3] -> V[2,3]  %% 0.12 
S[2,3] -> VP[2,3]  %% 0.012 
NP[0,2] -> NP[0,1] NP[1,2]  %% 0.01176 %% [0,2] 
VP[0,2] -> V[0,1] NP[1,2]  %% 0.0042 
S[0,2] -> NP[0,1] VP[1,2]  %% 0.12096 
S[0,2] -> VP[0,2]  %% 0.00042 
NP[1,3] -> NP[1,2] NP[2,3]  %% 0.00147 %% [1,3] 
VP[1,3] -> V[1,2] NP[2,3]  %% 0.0252 
S[1,3] -> NP[1,2] VP[2,3]  %% 0.00756 
S[1,3] -> VP[1,3]  %% 0.00252 
S[0,3] -> NP[0,1] VP[1,3]  %% 0.0127008 %% [0,3] Best 
S[0,3] -> NP[0,2] VP[2,3]  %% 0.0021168 
VP[0,3] -> V[0,1] NP[1,3]  %% 0.0000882 
NP[0,3] -> NP[0,1] NP[1,3]  %% 0.00024696 
NP[0,3] -> NP[0,2] NP[2,3]  %% 0.00024696 
S[0,3] -> VP[0,3]  %% 0.00000882 

N[0,1] -> people  %% 0.8 
V[1,2] -> fish  %% 0.6 
NP[0,1] -> N[0,1]  %% 0.56 
V[2,3] -> fish  %% 0.3 
VP[1,2] -> V[1,2]  %% 0.24 
S[0,2] -> NP[0,1] VP[1,2]  %% 0.12096 
VP[2,3] -> V[2,3]  %% 0.12 
V[0,1] -> people  %% 0.1 
N[1,2] -> fish  %% 0.1 
N[2,3] -> tanks  %% 0.1 
NP[1,2] -> N[1,2]  %% 0.07 
NP[2,3] -> N[2,3]  %% 0.07 
VP[0,1] -> V[0,1]  %% 0.04 
VP[1,3] -> V[1,2] NP[2,3]  %% 0.0252 
S[1,2] -> VP[1,2]  %% 0.024 
S[0,3] -> NP[0,1] VP[1,3]  %% 0.0127008  
---- 
S[2,3] -> VP[2,3]  %% 0.012  
NP[0,2] -> NP[0,1] NP[1,2]  %% 0.01176 
S[1,3] -> NP[1,2] VP[2,3]  %% 0.00756 
VP[0,2] -> V[0,1] NP[1,2]  %% 0.0042 
S[0,1] -> VP[0,1]  %% 0.004 
S[1,3] -> VP[1,3]  %% 0.00252 
NP[1,3] -> NP[1,2] NP[2,3]  %% 0.00147 
NP[0,3] -> NP[0,2] NP[2,3]  %% 0.00024696 

Best 

What can go wrong? 

•  We can build too many edges. 
•  Most edges that can be built, shouldn’t. 

•  CKY builds them all! 

•  We can build in an bad order. 
•  Might find bad parses for parse item before good 

parses. 

•  Will trigger best-first propagation. 

Speed: build promising edges first. 

Correctness: keep edges on the agenda until 
you’re sure you’ve seen their best parse. 

Speeding up agenda-based parsers 

•  Two options for doing less work 

•  The optimal way: A* parsing 
•  Klein and Manning (2003) 

•  The ugly but much more practical way: “best-first” 
parsing 
•  Caraballo and Charniak (1998) 

•  Charniak, Johnson, and Goldwater (1998) 

A* Context Summary Sharpness 
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Adding local information changes 
the intercept, but not the slope! 

Best-First Parsing 

•  In best-first, parsing, we visit edges according a 
figure-of-merit (FOM). 

  A good FOM focuses work 
on “quality” edges. 

  The good: leads to full 
parses quickly. 

  The (potential) bad: leads 
to non-MAP parses. 

  The ugly: propagation 
  If we find a better way to build 

a parse item, we need to 
rebuild everything above it 

  In practice, works well! 

PP 

ate cake with icing 

VBD NP 

VP 

VP 

S 

NP 

S 

VP 

NP 

VP 

S 
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Search in modern lexicalized 
statistical parsers 

•  Klein and Manning (2003b) do optimal A* search 
•  Done in a restricted space of lexicalized PCFGs that 

“factors”, allowing very efficient A* search 

•  Collins (1999) exploits both the ideas of beams 
and agenda based parsing 
•  He places a separate beam over each span, and then, 

roughly, does uniform cost search 

•  Charniak (2000) uses inadmissible heuristics to 
guide search 
•  He uses very good (but inadmissible) heuristics – “best 

first search” – to find good parses quickly 

•  Perhaps unsurprisingly this is the fastest of the 3.  

Coarse-to-fine parsing 

•  Uses grammar projections to guide search 
•  VP-VBF, VP-VBG, VP-U-VBN, … → VP 

•  VP[buys/VBZ], VP[drive/VB], VP[drive/VBP], … → VP 

•  You can parse much more quickly with a simple 
grammar because the grammar constant is way smaller 

•  You restrict the search of the expensive refined model 
to explore only spans and/or spans with compatible 
labels that the simple grammar liked 

•  Very successfully used in several recent parsers 
•  Charniak and Johnson (2005) 

•  Petrov and Klein (2007) 

Coarse-to-fine parsing: A visualization of the span 
posterior probabilities from Petrov and Klein 2007 

Dependency parsing 

Dependency Grammar/Parsing 

•  A sentence is parsed by relating each word to other words in the 
sentence which depend on it. 

•  The idea of dependency structure goes back a long way 
•  To Pāṇini’s grammar (c. 5th century BCE) 

•  Constituency is a new-fangled invention 
•  20th century invention 

•  Modern work often linked to work of L. Tesniere (1959) 
•  Dominant approach in “East” (Russia, China, …) 

•  Basic approach of 1st millenium Arabic grammarians 

•  Among the earliest kinds of parsers in NLP, even in US: 
•   David Hays, one of the founders of computational linguistics, built 

early (first?) dependency parser (Hays 1962) 

Dependency structure 

•  Words are linked from head (regent) to dependent 

•  Warning! Some people do the arrows one way; some the other 
way (Tesniere has them point from head to dependent…). 

•  Usually add a fake ROOT so every word is a dependent 

Shaw Publishing acquired 30 % of American City in March  $$ 
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Relation between CFG to 
dependency parse 

•  A dependency grammar has a notion of a head 
•  Officially, CFGs don’t 
•  But modern linguistic theory and all modern 

statistical parsers (Charniak, Collins, Stanford, …) 
do, via hand-written phrasal “head rules”: 
•  The head of a Noun Phrase is a noun/number/adj/… 
•  The head of a Verb Phrase is a verb/modal/…. 

•  The head rules can be used to extract a 
dependency parse from a CFG parse (follow the 
heads). 

•  A phrase structure tree can be got from a 
dependency tree, but dependents are flat (no VP!) 

Propagating head words 

•  Small set of rules propagate heads 

S(announced)

NP(Smith)
NP(Smith)

NNP
John

NNP
Smith

NP(president)
NP

DT
the

NN
president

PP(of)
IN
of

NP
NNP
IBM

VP(announced)

VBD
announced

NP(resignation)

PRP$
his

NN
resignation

NP
NN

yesterday

Extracted structure 

NB. Not all dependencies shown here 

•  Dependencies are inherently untyped, 
though some work like Collins (1996) 
types them using the phrasal categories 

NP
[John Smith]

NPNP
[the president] of [IBM]

SNP VP

announced [hisResignation][yesterday]

VPVBD NP
NPVPVBD

Sources of information: 

•   bilexical dependencies 
•   distance of dependencies 

•   valency of heads (number of dependents) 

A word’s dependents (adjuncts, arguments) 

tend to fall near it    

in the string. 

Dependency Conditioning Preferences 

These next 6 slides are 
based on slides by Jason 
Eisner and Noah Smith 

Probabilistic dependency grammar: 
generative model 

1.  Start with left wall $ 

2.  Generate root w0 

3.  Generate left children w-1, 
w-2, ..., w-ℓ from the FSA λw0 

4.  Generate right children w1, 
w2, ..., wr from the FSA ρw0 

5.  Recurse on each wi for  i in {-
ℓ, ..., -1, 1, ..., r}, sampling αi 

(steps 2-4) 

6.  Return αℓ...α-1w0α1...αr 

w0 

w-1 

w-2 

w-ℓ wr 

w2 

w1 

... ... 

w-ℓ.-1 

$ 

λw-ℓ 

λw0 ρw0 

Naïve Recognition/Parsing 

It takes two to tango 

I
t takes two to tango 

to takes 

takes 

takes 

O(n5) 
combinations 

I
t

p 

p c 
i j k 

O(n5N3) if N 
nonterminals r 

0 n 

goal 

goal 
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Dependency Grammar Cubic Recognition/
Parsing (Eisner & Satta, 1999) 

•  Triangles: span over words, where 
tall side of triangle is the head, other 
side is dependent, and no non-head 
words expecting more dependents 

•  Trapezoids: span over words, where 
larger side is head, smaller side is 
dependent, and smaller side is still 
looking for dependents on its side of 
the trapezoid 

}

}

Dependency Grammar Cubic Recognition/
Parsing (Eisner & Satta, 1999) 

It takes two to tango 

goal 

One trapezoid 
per 

dependency. 

A triangle is a head 
with some left (or 

right) subtrees. 

Cubic Recognition/Parsing (Eisner & Satta, 1999) 

i j k i j k 

i j k i j k 

O(n3) 
combinations 

O(n3) 
combinations 

0 i n 

goal 

Gives O(n3) dependency grammar 
parsing  

O(n) 
combinations 

Evaluation of Dependency Parsing:  
Simply use (labeled) dependency accuracy 

                1      2      3        4             5 

1    2   We    SUBJ 
3    0   eat    ROOT  
4    5   the    DET 
5    5   cheese MOD 
6    2     sandwich SUBJ 

1    2   We    SUBJ 
3    0   eat    ROOT  
4    4   the    DET 
5    2   cheese OBJ 
6    2     sandwich PRED 

Accuracy  =  number of correct dependencies 
  total number of dependencies 

 =  2 / 5 = 0.40 
  
 40% 

GOLD PARSED 

McDonald et al. (2005 ACL): 
Online Large-Margin Training of Dependency Parsers 

•  Builds a discriminative dependency parser 

•  Can condition on rich features in that context 
•  Best-known recent dependency parser 

•  Lots of recent dependency parsing activity connected with 
CoNLL 2006/2007 shared task 

•  Doesn’t/can’t report constituent LP/LR, but 
evaluating dependencies correct: 
•  Accuracy is similar to but a fraction below dependencies 

extracted from Collins: 

•  90.9% vs. 91.4% … combining them gives 92.2% [all 
lengths] 

•  Stanford parser on length up to 40: 
•  Pure generative dependency model: 85.0% 

•  Lexicalized factored parser: 91.0% 

McDonald et al. (2005 ACL): 
Online Large-Margin Training of Dependency Parsers 

•  Score of a parse is the sum of the scores of its 
dependencies 

•  Each dependency is a linear function of features 
times weights 

•  Feature weights are learned by MIRA, an online 
large-margin algorithm 
•  But you could think of it as using a perceptron or maxent classifier 

•  Features cover: 
•  Head and dependent word and POS separately 

•  Head and dependent word and POS bigram features 

•  Words between head and dependent 
•  Length and direction of dependency 
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Extracting grammatical relations from 
statistical constituency parsers 

[de Marneffe et al. LREC 2006] 
•  Exploit the high-quality syntactic analysis done by 

statistical constituency parsers to get the grammatical 
relations [typed dependencies] 

•  Dependencies are generated by pattern-matching rules 

Bills on ports and immigration were submitted by Senator Brownback 

NP 

S 

NP 

NNP NNP 

PP 

IN 

VP 

VP 

VBN 

VBD 

NN CC NNS 

NP IN 

NP PP 

NNS 

submitted 

Bills were Brownback 

Senator 

nsubjpass auxpass agent 

nn prep_on 

ports 

immigration 

cc_and 

Discriminative Parsing 

Discriminative Parsing as a 
classification problem 

•  Classification problem 
•  Given a training set of iid samples T={(X1,Y1) … (Xn,Yn)} 

of input and class variables from an unknown 
distribution D(X,Y), estimate a function          that 
predicts the class from the input variables 

•  The observed X’s are the sentences. 

•  The class Y of a sentence is its parse tree 

•  The model has a large (infinite!) space of classes, but 
we can still assign them probabilities  
•  The way we can do this is by breaking whole parse 

trees into component parts 

)(ˆ Xh

1.  Distribution-free methods 
2.  Probabilistic model methods 

Motivating discriminative 
estimation (1) 

100                      6                                         2 

A training corpus of 108 (imperative) sentences. 

Based on an example by Mark Johnson 

Motivating discriminative 
estimation (2) 

•  In discriminative models, it is easy to 
incorporate different kinds of features 
•  Often just about anything that seems linguistically 

interesting 

•  In generative models, it’s often difficult, and the 
model suffers because of false independence 
assumptions 

•  This ability to add informative features is the 
real power of discriminative models for NLP. 
•  Can still do it for parsing, though it’s trickier. 

Discriminative Parsers 

•  Discriminative Dependency Parsing 
•  Not as computationally hard (tiny grammar constant) 
•  Explored considerably recently. E.g. McDonald et al. 2005  

•  Make parser action decisions discriminatively 
•  E.g. with a shift-reduce parser 

•  Dynamic-programmed Phrase Structure Parsing 
•  Resource intensive! Most work on sentences of length 

<=15 
•  The need to be able to dynamic program limits the feature 

types you can use 

•  Post-Processing: Parse reranking 
•  Just work with output of k-best generative parser 
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Discriminative models 

Shift-reduce parser Ratnaparkhi (98) 

•  Learns a distribution P(T|S) of parse trees given sentences 
using the sequence of actions of a shift-reduce parser 

•  Uses a maximum entropy model to learn conditional 
distribution of parse action given history 

•  Suffers from independence assumptions that actions are 
independent of future observations as with CMM/MEMM 

•  Higher parameter estimation cost to learn local maximum 
entropy models 

•  Lower but still good accuracy: 86% - 87% labeled 
precision/recall 

)...|()|( 11
1

SaaaPSTP i

n

i
i −

=
∏=

Discriminative dynamic-programmed 
parsers 

•  Taskar et al. (2004 EMNLP) show how to do joint 
discriminative SVM-style (“max margin) parsing 
building a phrase structure tree also conditioned 
on words in O(n3) time 
•  In practice, totally impractically slow. Results were 

never demonstrated on sentences longer than 15 words 

•  Turian et al. (2006 NIPS) do a decision-tree 
based discriminative parser 

•  Research continues…. 
•  Finkel, Kleeman, and Manning (2008 ACL) feature-

based parser is just about practical. 
•  We do parse long sentences 

Discriminative Models – Distribution 
Free Re-ranking (Collins 2000) 

•  Represent sentence-parse tree pairs by a feature 
vector F(X,Y) 

•  Learn a linear ranking model with parameters     
using the boosting loss 

Model LP LR 

Collins 99 

(Generative) 

88.3% 88.1% 

Collins 00 

(BoostLoss) 

89.9% 89.6% 

13% error 
reduction 

Still very close 
in accuracy to 
generative 
model [Charniak 
2000] 

α

Charniak and Johnson (2005 ACL): 
Coarse-to-fine n-best parsing and MaxEnt discriminative reranking 

•  Builds a maxent discriminative reranker over parses 
produced by (a slightly bugfixed and improved 
version of) Charniak (2000). 

•  Gets 50 best parses from Charniak (2000) parser 
•  Doing this exploits the “coarse-to-fine” idea to heuristically 

find good candidates 

•  Maxent model for reranking uses heads, etc. as 
generative model, but also nice linguistic features: 
•  Conjunct parallelism 

•  Right branching preference 

•  Heaviness (length) of constituents factored in 

•  Gets 91% LP/LR F1 (on all sentences! – up to 80 wd) 


