
An Introduction to Formal Computational Semantics

CS224N/Ling 280 – Christopher Manning

May 23, 2000; revised 2005

1 Motivation

We have seen ways to extract and represent elements of meaning in statistical and other quan-

titative ways (word sense disambiguation, semantic similarity, information extraction tem-

plates). But there are many NLP domains, such as automated question answering, dialog

systems, story understanding, and automated knowledge base construction, where we need

to deal with the meanings of sentences in a more sophisticated and precise (yet robust) way.

Characterizing what we mean by meaning is a difficult philosophical issue, but the only thing

implementation-ready as a system of representation seems to be the tradition of logical seman-

tics, appropriately extended to natural language (Montague 1973). I believe that a promising

approach for many domain-embedded applications is to use the benefits of statistical models

for disambiguation at a lexical/syntactic level, and then to use logical semantic representations

for detailed interpretations.

In computational semantics, we can isolate the following questions:

1. How can we automate the process of associating semantic representations with expres-

sions of natural language?

2. How can we use semantic representations of natural language expressions in the process

of drawing inferences?

We will concentrate on the first goal. This is for two reasons. Firstly, this issue is normally

ignored in logic or knowledge representation and reasoning classes, whereas the second is

covered in depth. Secondly, it’s the mapping from language to a meaning representation that

is most interesting. One way to do inference with a meaning representation is using logical

proofs, but we can also explore quite different methods such as probabilistic models.

This presentation attempts to be self-contained, but moves quickly and assumes that

you’ve seen some logic before. It covers some ideas that you don’t normally see in a quar-

ter course on logic/semantics.

2 Compositionality, rule-to-rule translation, and the need for λ-calculus

We’ll start with a version of First-Order Predicate Calculus (FOPC), which contains constants

like fong and kathy (which we’ll sometimes abbreviate as f and k), variables ranging over

constants like x and y , and some n-ary functions like respect, which evaluate to truth values

(0 or 1, as in C).

1

We want to have a meaning representation for a sentence like Kathy likes Fong. Just like in

a logic class, we’ll want the meaning representation to be likes(k, f). where k and f are Kathy

and Fong, respectively, and respect captures the respecting relation. Now, if we give those

meanings to the words concerned, things look kind of close:

S

NP : kathy

Kathy

VP

V : respect

respects

NP : fong

Fong

But how do we work out the meaning of the whole sentence from the words? And how do

we know that it comes out as respect(k, f), and not respect(f, k) – or even respect(k, f) ∧

respect(f,k)?

Our goal is a system to build up a logical proposition out of the components of the sen-

tence. We exploit the fact that the syntax and the semantics are actually pretty parallel in

defining a rule-to-rule translation. Consider:

(1) a. A bookshop is across the street.

b. A strange man is across the street.

The syntactic observation here is that [A bookshop] and [A strange man] are interchangeable

without affecting the grammaticality of the sentence. Due in part to this observation, syntac-

ticians posit that the two sequences of words are constituents of a common type–in this case,

NP. The semantic observation is that the shared parts of these two sentences seem to have

a common meaning, and that the contribution made by [A bookshop] and [A strange man] to

sentence meaning is parallel. This first idea is the Principle of compositionality (usually at-

tributed to Frege): The meaning of an expression is determined by the meanings of its parts

and the way in which they are combined. Among other things, this means that knowing the

words is a good start.

But we need to provide more structure as to the way the meanings of parts are combined.

What we’ll do to capture this is to define a semantics in parallel to a syntax. In every syntactic

rule, each category will be annotated with a semantic value, (typically) determining how the

semantics of the mother is built out of the semantics of the daughters. These notations are

called semantic attachments, and the method of building up a compositional semantics using

semantic attachments of this sort is referred to as the idea of rule-to-rule translation (Bach

1976).

The third thing we’ll need is a secret weapon that gives us an algebra for meaning assem-

bly. It’s called the λ-calculus (Church 1940), and you may have seen it in the more enlightened

functional programming languages. It allows us to “hold out” positions within a FOPC expres-

sion and to “fill” them later, by applying the new expression to another expression. The first

fundamental rule to remember for λ-formulae is the idea of function application.

(λx.P(· · · , x, · · ·))(Z) ⇒ P(· · · , Z, · · ·) β reduction [application]

This just says that you can apply an argument to a lambda function, and it gets substituted

in. When doing application, you have to make sure in the conversion rules that variable names

don’t accidentally overlap, but I’ll leave this informal.

2

3 A first example

Putting this together, we’ll have lexical items and a grammar that look something like this:

Lexicon Grammar

Kathy, NP : kathy S : β(α) → NP : α VP : β

Fong, NP : fong VP : β(α) →V : β NP : α

respects, V : λy.λx.respect(x, y) VP : β →V : β

runs, V : λx.run(x)

Here the ‘:’ is read ‘means’. In the lexicon, note the reversal of the arguments of likes, since it

will combine first with its object in the syntax. In the syntax, the phrase structure rules show

how to combine meanings; here, just by function application. In general, head-nonhead syn-

tactic composition corresponds to functional application. However, in certain cases, semantic

heads deviate from syntactic heads. This occurs principally with determiners, and modifiers

(adjectives and adverbs). We will see examples below.

With this syntax & semantics, we get a logical proposition (something whose meaning is a

truth-value) for the root node S of the sentence. Here’s one of the 6 sentences in the language:

S : respect(kathy, fong)

NP : kathy

Kathy

VP : λx.respect(x, fong)

V : λy.λx.respect(x, y)

respects

NP : fong

Fong

We have:

[vp respects Fong] : [λy.λx.respect(x, y)](fong) = λx.respect(x, fong) [β red.]

[s Kathy respects Fong] : [λx.respect(x, fong)](kathy) = respect(kathy, fong)

If the semantics always precisely followed the syntax, then it would be this easy (and some-

times this is all introductory textbooks show). But, as we will see below, there are also many

constructions where sentence meaning and its compositional units differs from syntactic units.

At this point you have a choice: to complicate the syntax with extraneous stuff which will allow

you to more easily generate a parallel semantics, or else to add more combinatory power to

the formulae that generate semantic representations, so that correct semantic representations

can be derived without complicating the syntax. We lean towards the latter approach.

4 Some more formal stuff

But before we get on to the hard part, let us just touch on more technical issues of proof

theory, model theory, and typing.

4.1 Typed λ calculus (Church 1940)

Once we get into more complicated stuff below (that is, higher order terms), in order to keep

track of things (and to avoid certain paradoxes), we will use a typed λ calculus. This means

3

each semantic value will have a type (just like the strong typing in most current programming

languages). The result is an ω-order logic (which just means that you can do any finite order

quantification over types). Then we have λ terms of various types. There are two basic types,

Bool = truth values and Ind = individuals, which correspond to the type of Kathy or Fong,

above. (Some proposals use more basic types, but we’ll stick to just those two.) Other types

are made up as higher-order functional types out of simpler types. So we have:

Bool truth values (0 and 1)

Ind individuals

Ind → Bool properties

Ind → Ind → Bool binary relations

A type like the last is to be interpreted right associatively as Ind → (Ind → Bool) – as in the

simple example, above, we standardly convert a several argument function into embedded

unary functions. This is referred to as currying them. From now on our various semantic

forms have a definite type:

k and f are Ind

run is Ind → Bool

respect is Ind → Ind → Bool

Once we have types, we don’t need λ variables just to show what arguments something

takes, and so we can introduce another operation of the λ calculus:

λx.(P(x)) ⇒ P η reduction [abstractions can be contracted]

This means that instead of writing:

λy.λx.respect(x, y)

we can just write:

respect

You just have to know that respect is something of type Ind → Ind → Bool.

I’m not going to get into all the formal details, but a Church-Rosser theorem corollary is

that the order of reductions of typed λ-calculus terms doesn’t matter – and so there are usable

proof-theoretic techniques (two terms are logically equivalent iff they are reducible to the same

form). There are normal forms (built using η-reductions [removing lambdas] and α-reduction

[renaming of variables]). The first form we introduced is called the β,η long form, and the

second more compact representation (which we use quite a bit below) is called the β,η normal

form. Here are a few more examples:

β,η normal form: run, every(kid, run), yesterday(run)

β,η long form: λx.run(x), every(λx.kid(x)), (λx.run(x)), λy.yesterday(λx.run(x))(y)

Our major syntactic categories will have corresponding types: nouns and verb phrases

will be properties (Ind →Bool), noun phrases are Ind – though, we will see later that they are

commonly type-raised to (Ind→ Bool) → Bool, adjectives are (Ind→ Bool)→ (Ind→ Bool). This

is because adjectives modify noun meanings, that is properties. Intensifiers modify adjectives:

e.g, very in a very happy camper , so they’re ((Ind → Bool) → (Ind → Bool)) → ((Ind → Bool)

→ (Ind → Bool)) [honest!]. We will find that we can question and quantify over many of these

higher-order types.

4

4.2 Logical Inference and Meaning Postulates

Once we have these predicate logic forms, we can do reasoning on them directly, using proof

theory. Reasoning works pretty straightforwardly on the familiar propositional logic operators

∨,∧,⇒,¬. For a system of lexical meaning representation, we might want to code in meaning

postulates background knowledge relating predicates to each other. For example, we might

argue that

admire(x)(y) ⇒ respect(x)(y)

or, perhaps less controversially, if give(x)(y)(z) means “Z gives X Y”, and give(y)(z) means “Z

gives X”, then

give(x)(y)(z) ⇒ give(y)(z)

Such auxiliary facts are useful for doing inferences involving linguistic facts and facts about

the world, for instance, in a question answering system.

4.3 Model-theoretic Interpretation

So far we’ve got a compositional system of semantics, but you might note that really all we

have is a lot of fancy syntax. How do we actually ground things in meanings? We’ll touch

on that now. We’ll make our semantics truth conditional. By truth-conditional, we mean that

a sentence’s meaning is what the world would have to be like in order for it to be true. It’s

difficult to prove formal theorems about the world, so we build a mathematic model of aspects

of the world. This gives us a model-theoretic semantics (Tarski 1935): the logical language we

use to build up meanings is distinguished from its interpretation in the domain, which is

a mathematical model of “real-world” objects and substantive relations. A model-theoretic

approach to natural language meaning was pioneered by Montague (1973). We seek meaning

in a notion of model denotation, not simply by translating one symbol string into a different

symbol string.

We build a model M = 〈Dom, [[·]]〉 as a pair of a frame that gives a domain for basic

types (with functional types defined in the obvious manner), and an interpretation function

[[·]] : Con → Dom, which tells us the denotation of semantic expressions, that is, it tells

us what constants in the semantic representation refer to in the model. The denotation of a

constant is taken to be an individual, whereas the denotation of a function is taken to be a set,

and the meaning of a sentence is a truth value (Boolean). An assignment function similarly

tells us the meaning of variables.

For our example in the previous section, we might use the following model:

Dom = {k, f , b}

[[kathy]] = k

[[fong]] = f

[[run]] = {f}

[[respect]] = {(f , k), (k, k), (k, f), (b, f)}

The domain has three individuals, and f is running, and there are 4 elements in a respect

relation. The denotation of fong is f , which is an object in the model.

5

The truth value of an n-ary function applied to an ordered n-tuple of constants is 1 if

the n-tuple is in the function’s meaning; it is 0 otherwise. Assuming the above model, the

sentence we built in the previous section has a truth value of 1, since (f , k) ∈ [[respect]]. We

can equivalently think of the denotation of a curried function like this:

[[respect]] = [[λy.λx.respect(x, y)]] =















































f ֏









f ֏ 0

k֏ 1

b ֏ 0

k֏









f ֏ 1

k ֏ 1

b ֏ 0

b ֏









f ֏ 1

b ֏ 0

r ֏ 0

[[λx.λy.respect(y)(x)(b)(f)]] = 1

A property, that is, a one-argument function, is an indicator function, which simply picks out

a subset of the elements of the domain.

Exercise: Assuming f and b are kids, what would the function kid look like?

It is important to realize that this mapping is not trivial; it need not be 1–1, not even for

the case of individuals. For example, it would be perfectly possible that [[kathy]] = [[fong]] =

k; in the case that kathy and fong were two different names for the same individual. You

can think of the values kathy and fong as being the more linguistic entities “that person

who is referred to as Kathy (resp. Fong).” Much philosophical mileage may be gotten out of

this distinction, and perhaps some computational mileage as well. The idea here would be

to represent a database of knowledge in model-theoretic terms, and then evaluate the truth

value of statements/queries (see a later section) directly against this database. Lots of times,

multiple terms (such as Dubya, Bush, or George W. Bush) refer to the same database record.

The meaning of categories will be a lambda expression. This can be thought of as just a

symbolic stand-in for the domain element it denotes in some model. However, in computa-

tional work, in order to use proof-theoretic techniques for reasoning in computational applica-

tions, we need to be able to manipulate these terms. Indeed, in computational work the main

focus is on manipulation of the semantic values, ignoring the model-theoretic interpretation.

Exercise: How can logical constants like and and quantifiers like everyInd be represented

in this model theory? The intended interpretation is that and will be true only if its two

arguments are true, and everyInd requires some property to hold of every individual in the

model: everyInd is of type (Ind → Bool) → Bool.

5 The problem of quantifiers motivates use of higher order logic

“Seems pretty easy,” you might say, “is that all there is to it?” Not quite. As soon as you

get away from the domain of proper names and into noun phrases containing determiners

or quantifiers, things start to change. When doing a predicate logic course, have you ever

6

wondered how come Kathy runs is run(k), but no kid runs is ¬(∃x)(kid(x)∧run(x))? Bertrand

Russell did (1905). Or you might have noticed that the following argument doesn’t hold:

(2) Nothing is better than a life of peace and prosperity.

A cold egg salad sandwich is better than nothing.

A cold egg salad sandwich is better than a life of peace and prosperity.

But it would, given the semantics in the previous section, and assuming transitivity of better

and that the semantic rules for VP and S presented in the previous section applied straight-

forwardly to semantic values for nothing, a life of peace and prosperity, and a cold egg salad

sandwich as NPs (why?). The problem is that nothing is a quantifier .

There are several ways to deal with quantifiers; the one we’ll look at crucially uses our

logical formalism with a rich system of higher order types, among which type-shifting can

occur. We will now allow variables and quantification over relations (over relations).

Crucially, now, we can perform λ-abstraction over arbitrary types, not just constants as

we could before. This is necessary to capture the fundamental insight that the semantics

of a quantifier or determiner contains the semantics of the verb, but the semantics of the

verb contains the semantics of the noun next to the determiner. In order to get this result

compositionally, a λ-expression must be applied to a non-constant expression. We’ll see this

soon.

6 A first grammar fragment

But for now, we’ll take a look at the nice fact that this higher-order type system allows us to do

modification of VPs and NPs very easily. We expand somewhat the grammar from the previous

section, write it down in one place, and take a look at the results. We give the type for each

constant or function in the lexicon as a subscript for reference. We won’t usually include it in

derivations.

Kathy, NP : kathyInd

Fong, NP : fongInd S : β(α) → NP : α VP : β

Palo Alto, NP : paloaltoInd NP : β(α) →Det : β N′ : α

car , N : carInd→ Bool N′ : β(α) →Adj : β N′ : α

overpriced, Adj : overpriced(Ind→ Bool)→(Ind→ Bool) N′ : β(α) →N′ : α PP : β

outside, PP : outside(Ind→ Bool)→(Ind→ Bool) N′ : β →N : β

red, Adj : λP.(λx.P(x)∧ red′(x)) VP : β(α) →V : β NP : α

in, P : λy.λP.λx.(P(x)∧ in′(y)(x)) VP : β(γ)(α) →V : β NP : α NP : γ

the, Det : ι VP : β(α) →VP : α PP : β

a, Det : some2
(Ind→ Bool)→(Ind→ Bool)→ Bool VP : β →V : β

runs, V : runInd→ Bool PP : β(α) →P : β NP : α

respects, V : respectInd→ Ind→ Bool
likes, V : likeInd→ Ind→ Bool
sees, V : seeInd→ Ind→ Bool

7

in′ is Ind → Ind → Bool

in ≝ λy.λP.λx.(P(x)∧ in′(y)(x)) is Ind → (Ind → Bool) →(Ind → Bool)

red′ is Ind → Bool

red ≝ λP.(λx.(P(x)∧ red′(x)) is (Ind → Bool) →(Ind → Bool)

Using this grammar, you might note that for intersective adjectives (like red) and preposi-

tions we get spurious attachment ambiguities – that is that there are two syntactic derivations

that yield the same resulting semantics.

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

Adj : λP.(λx.P(x)∧ red′(x))

red

N′ : λx.(car(x)∧ in′(paloalto)(x))

N′ : car

N : car

car

PP : λP.λx.(P(x)∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x)∧ in′(y)(x))

in

NP : paloalto

Palo Alto

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x))

N′ : λx.(car(x)∧ red′(x))

Adj : λP.(λx.P(x)∧ red′(x))

red

N′ : car

N : car

car

PP : λP.λx.(P(x)∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x)∧ in′(y)(x))

in

NP : paloalto

Palo Alto

But for non-intersective adjectives (such as overpriced, we don’t; we get two different mean-

ings. We’ll get:

overpriced(in(paloalto)(house))

in(paloalto)(overpriced(house))

Non-intersective adjectives are precisely those whose denotation depends on the term they

are modifying in a way that cannot be described as set intersection. (In the example above, we

leave out the determiner from the noun phrase; we’ll return to that topic soon.)

Here’s an example of a preposition modifying a VP:

S : run(kathy)∧ in′(paloalto)(kathy))

NP : kathy

Kathy

VP : λx.(run(x)∧ in′(paloalto)(x))

VP : run

V : run

runs

PP : λP.λx.(P(x)∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x)∧ in′(y)(x))

in

NP : paloalto

Palo Alto

Note that because a VP and an N′ are both a property, a PP can modify either. On the other

hand, note that the intersective semantics for in that I have used isn’t necessarily correct here

– it gives a “subject-centered” analysis rather than an “event-centered” analysis.

8

For such semantic forms, it is straightforward to evaluate them in a model or against a

database or a knowledge base (which instantiates a model).

7 Database/knowledgebase interfaces

We will assume that the predicates of our logical representations are available as tables in a

database. We’ll assume a straightforward mapping of one table per predicate. In practice,

there would often be more indirect mappings (for instance, a unary red predicate could come

from a table that lists objects and their colors), but we’ll assume we have any necessary views

set up to make the mapping straightforward. Let’s do the easiest example again:

S : respect(fong)(kathy)

NP : kathy

Kathy

VP : respect(fong)

V : respect

respects

NP : fong

Fong

Here we assume that respect is a table Respect with two fields respecter and respected, and

that kathy and fong are IDs in the database: k and f . If this were asserting a statement, we

might evaluate the form respect(fong)(kathy) by doing an insert operation:

insert into Respects(respecter, respected) values (k, f)

Or if we wish to check that we agree with a statement, we might instead do a select from

the database, and say whether we agree that the statement is true or not. In particular, below,

we will focus on questions like the corresponding Does Kathy respect Fong for which we will

use the relation to ask:

select ‘yes’ from Respects where Respects.respecter = k and Respects.respected =

f

(we interpret “no rows returned” as 0).

8 Generalized Quantifiers

We have a reasonable semantics for red car in Palo Alto as a property from Ind → Bool, but

what about when we want to represent noun phrases like the red car in Palo Alto or every red

car in Palo Alto? Let’s start with the to which we gave without explanation the translation ι

above. [[ι]](P) = a if (P(b) = 1 iff b = a). We use this as a semantics for the following Russell,

for whom the x meant the unique item satisfying a certain description (in reality things get a

little more complex, I might note). ι is thus only a partial function, returning undefined if there

is no such object (undefined represents a presupposition failure which is technically different

from a false statement).

Let’s continue the example from above, doing now the red car in Palo Alto:

9

NP : ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x))

Det : ι

the

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

red car in Palo Alto

For red car in Palo Alto we have the property semantics from before, which we render in SQL

as:

select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND

Locations.place = ‘paloalto’ AND Cars.obj = Red.obj

(here we assume the unary relations have one field, obj). The effect of ι would then be rendered

via a having clause:

select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND

Locations.place = ‘paloalto’ AND Cars.obj = Red.obj

having count(*) = 1

Here’s another example:

S : run(ι(overpriced(car)))

NP : ι(overpriced(car))

Det : ι

the

N′ : overpriced(car)

Adj : overpriced

overpriced

N : car

car

VP : run

V : run

runs

What then of every red car in Palo Alto? If we want to translate a sentence like Every red

car in Palo Alto is expensive, then we need to make a quantificational statement that involves

red cars in Palo Alto and expensive things. A generalized determiner is a relation between

two properties, one contributed by the restriction from the N′, and one contributed by the

predicate quantified over:

(Ind → Bool) → (Ind → Bool) → Bool

(In other literature, these are generally called “generalized quantifiers”, but we take quantifiers

to take a single property argument, and to map from (Ind → Bool) → Bool, that is to be things

of the type at the bottom of the type-shifting triangle below. A generalized determiner maps

from a property to a quantifier.) Here are some other determiners:

some2(kid)(run) ≡ some(λx.kid(x)∧ run(x))

every2(kid)(run) ≡ every(λx.kid(x) → run(x))

Generalized determiners are implemented via the quantifiers:

every(P) = 1 iff (∀x)P(x) = 1; i.e., if P = DomInd

some(P) = 1 iff (∃x)P(x) = 1; i.e., if P 6= ∅

10

Exercise:

no2(kid)(run) ≡

two2(kid)(run) ≡

A central insight of Montague’s PTQ (proper theory of quantification) was that the same

type could be applied to indviduals, representing them as quantifiers (which are type-raised

individuals):

Kathy : λP.P(kathy)

The syntactic category of noun phrases can then be realized uniformly in the semantic dimen-

sion, by making all noun phrases be quantifiers. This was both good, and bad – everything

was always raised to the most complicated type needed for anything of the category. We’d

prefer to allow more flexible type-shifting for nominal expressions in circumstances where it

is needed. The diagram below shows common patterns of nominal type shifting:

Ind Ind → Bool R(x) = λP.P(x)

Q

ι
some2(P) = λQ.(Q∩ P) 6= ∅

R some2 Q(x) = λy.x = y

(Ind → Bool) → Bool

In this diagram, R is exactly this basic type-raising function for individuals.

9 Noun phrase scope

Next, I’ll illustrate how this approach can handle quantifier scope ambiguities. We’ll first do

Every student runs. We could just redefine things to allow the subject to take the verb phrase

as its argument semantically, but we can maintain the usual idea of what is the functor (the

verb) and what is the argument (the noun phrase) by alternatively doing argument raising

on the VP. This applies the ideas of nominal type-raising and lowering which we saw earlier

within functional types (that is, it changes the types of the NP arguments). We will use rules

as follows (Hendriks 1993, simplified):

Value raising raises a function that produces an individual as a result to one that produces a

quantifer. If α : σ → Ind then λx.λP.P(α(x)) : σ → (Ind→ Bool)→ Bool

Argument raising replaces an argument of a boolean function with a variable and applies the

quantifier semantically binding the replacing variable. If α : σ → Ind → τ → Bool then

λx1.λQ.λx3.Q(λx2.α(x1)(x2)(x3)) : σ → (Ind→ Bool)→ Bool→ τ → Bool

Argument lowering replaces a quantifier in a boolean function with an individual argument,

where the semantics is calculated by applying the original function to the type raised ar-

gument. Ifα : σ → ((Ind→ Bool)→ Bool)→ τ → Bool then λx1.λx2.λx3.α(x1)(λP.P(x2))(x3) :

σ → Ind→ τ → Bool

Here is an example showing argument raising of the verb:

11

S : every2(student)(run) ≡ every(λx.student(x)→ run(x))

NP : every2(student)

Det : every2

every

N′ : student

N : student

student

VP : λQ.Q(λx.run(x))

VP : run

V : run

runs

Following Hendriks (1993), we can use argument type shifting – argument raising and low-

ering – to do (a fair amount of) the analysis of scopal ambiguities, for example, the two readings

of Some kid broke every toy – one where one particular kid broke them all, and the other where

different kids broke different toys:

S : every2(toy)(λyo.some2(kid)(λxs .break(yo)(xs)))

NP : some2(kid)

Det : some2

some

N′ : kid

N : kid

kid

VP : λS′.every2(toy)(λyo.S
′(λxs .break(yo)(xs)))

V : λO.λS′.O(λyo.S
′(λxs .break(yo)(xs)))

V : λxo.λS.S(λxs.break(xo)(xs))

V : λy.λx.break(y)(x)

broke

NP : every2(toy)

Det : every2

every

N′ : toy

N : toy

toy

S : some2(kid)(λys .every2(toy)(λxo.break(xo)(ys)))

NP : some2(kid)

Det : some2

some

N′ : kid

N : kid

kid

VP : λS.S(λys.every2(toy)(λxo.break(xo)(ys)))

V : λO′.λS.S(λys .O(λxo.break(xo)(ys)))

V : λxs.O(λxo.break(xo)(xs))

V : λy.λx.break(y)(x)

broke

NP : every2(toy)

Det : every2

every

N′ : toy

N : toy

toy

10 Questions with answers!

We would like to be able to work with more complex examples. I’ll show some (hopefully

correct!) SQL, but we will only work through the translation from English to logical representa-

tions. The translation to SQL is then “in principle” straightforward, since relational databases

implement a simple form of logic (cf. Datalog).

Questions will not actually have a special logical representation. A yes/no question (Is

Kathy running?) will be something of type Bool, but if it is a question we will interrogate our

database to see if it is true or not, rather than either asserting or checking the fact as for a

statement. We could put something like a question mark before it to indicate this interpre-

tation, but I won’t. A content question (Who likes Kathy?) will be an open proposition, that is

12

something semantically of the type property (Ind → Bool), and operationally we will consult

the database to see what individuals will make the statement true. For the kind of semantic

forms we produce, it is fairly straightforward to evaluate them in a model or against a database

or a knowledge base.

We will need new syntax rules for questions, new lexical items, and empty missing NPs,

which include a means of gap threading to link them up with their filler, the wh-phrase. I won’t

give formal rules, but empty gapped elements are carried up the tree, until the variable is

reintroduced at some (sentential) node. (This idea of gap threading is formalized in various

syntactic theories like GPSG/HPSG.) Under our analysis, auxiliaries make no contribution to

meaning – that’s reasonable enough as what meaning contribution they do make is in areas

like tense, which we aren’t dealing with.

S′ : β(α) → NP[wh] : β Aux S : α who, NP[wh] : λU.λx.U(x)∧ human(x)

S′ : α → Aux S : α what, NP[wh] : λU.U

NP/NPz : z → e which, Det[wh] : λP.λV.λx.P(x)∧ V(x)

S : λz.F(. . . z . . .) → S/NPz : F(. . . z . . .) how many, Det[wh] : λP.λV.|λx.P(x)∧ V(x)|

Where | · | is the operation that returns the cardinality of a set (count).

S’ : λz.like(z)(kathy)

NP[wh] : λU.U

What

Aux

does

S : λz.like(z)(kathy)

S/NPz : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

select liked from Likes where Likes.liker=’Kathy’

S’ : λx.like(x)(kathy)∧ human(x)

NP[wh] : λU.λx.U(x)∧ human(x)

Who

Aux

does

S : λz.like(z)(kathy)

S/NPz : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

select liked from Likes,Humans where Likes.liker=’Kathy’ AND Humans.obj=Likes.liked

13

S′ : λx.car(x)∧ like(x)(kathy)

NP[wh] : λV.λx.car(x)∧ V(x)

Det : λP.λV.λx.P(x)∧ V(x)

Which

N′ : car

N : car

cars

Aux

did

S : λz.like(z)(kathy)

S/NP : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

select liked from Cars,Likes where Cars.obj=Likes.liked AND Likes.liker=’Kathy’

S′ : λx.car(x)∧ every2(student)(like(x))

NP[wh] : λV.λx.car(x)∧ V(x)

Det : λP.λV.λx.P(x)∧ V(x)

Which

N′ : car

N : car

cars

Aux

did

S : λz.every2(student)(like(z))

S/NP : every2(student)(like(z))

NP : every2(student)

Det : every2

every

N′ : student

student

VP

NPz : like(z)

V : like

like

NP

NPz : z

e

S′ :| λx.car(x)∧ in′(paloalto)(x)∧ red′(x)∧ like(x)(kathy) |

NP[wh] : λV. | λx.car(x)∧ in′(paloalto)(x)∧ red′(x)∧ V(x) |

Det : λP.λV. | λx.P(x)∧ V(x) |

How many

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

N′ : λx.(car(x)∧ red′(x))

Adj : λP.(λx.P(x)∧ red′(x))

red

N′ : car

N : car

cars

PP : λP.λx.(P(x)∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x)∧ in′(y)(x))

in

NP : paloalto

Palo Alto

Aux

does

S : λz.like(z)(kathy)
S/NP : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

select count(*) from Likes,Cars,Locations,Reds where Cars.obj = Likes.liked AND

Likes.liker = ’Kathy’ AND Red.obj = Likes.liked AND Locations.place = ’Palo Alto’

AND Locations.obj = Likes.liked

14

S’ : see(ι(λx.car(x)∧ in′(paloalto)(x) ∧ red′(x)))(kathy)

Aux

Did

S : see(ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x)))(kathy)

NP : kathy

Kathy

VP : see(ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x)))

V : see

see

NP : ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x))

Det : ι

the

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

Adj : λP.(λx.P(x) ∧ red′(x))

red

N′ : λx.(car(x)∧ in′(paloalto)(x))

N′ : car

N : car

car

PP : λP.λx.(P(x)∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x)∧ in′(y)(x))

in

NP : paloalto

Palo Alto

select ‘yes’ where Seeings.seer = k AND

Seeings.seen = (select Cars.obj from Cars, Locations, Red where Cars.obj =

Locations.obj AND Locations.place = ‘paloalto’ AND Cars.obj = Red.obj

having count(*) = 1)

References

There’s at last an up-to-date book length treatment of computational semantics: Patrick Black-

burn & Johan Bos, Representation and Inference for Natural Language: A First Course in Com-

putational Semantics, CSLI Publications, 2005. They also provide implementations of their

models in Prolog. Many other places you might look are not as useful as you might hope. Ju-

rafsky & Martin present some of the basic implements for doing computational semantics, but

it is hard to take seriously a fragment that can’t even handle a sentence like Who did you call?

[and they just do translation to markerese]. Russell and Norvig also avoid dealing properly

with quantifiers. The presentation here draws most closely from Bob Carpenter, Type-Logical

Semantics (MIT Press 1999), but reformulates things so that I don’t have to introduce catego-

rial grammar. (Many semanticists like categorial grammar because of the nice connections it

provides between the syntactic and semantic theories. In particular, things we have specified,

like type-raising rules, are theorems of the Lambek calculus.) There are other good intros to

semantics from a linguistic perspective, including De Swart, Introduction to Natural Language

Semantics (CSLI), Gamut, Logic, Language and Meaning (University of Chicago Press, 1991),

and Heim and Kratzer, Semantics in Generative Grammar (Blackwell, 1997), but they don’t

mention computational issues.

15

