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A first example

Lexicon Grammar

Kathy, NP : kathy S : β(α) → NP : α VP : β

Fong, NP : fong VP : β(α) →V : β NP : α

respects, V : λy.λx.respect(x, y) VP : β →V : β

runs, V : λx.run(x)
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A first example

• S : respect(kathy, fong)

NP : kathy

Kathy

VP : λx.respect(x, fong)

V : λy.λx.respect(x, y)

respects

NP : fong

Fong

• [VP respects Fong] : [λy.λx.respect(x, y)](fong)

= λx.respect(x, fong) [β red.]

[S Kathy respects Fong] : [λx.respect(x, fong)](kathy)

= respect(kathy,fong)
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Database/knowledgebase interfaces

• Assume that respect is a table Respect with two fields

respecter and respected

• Assume that kathy and fong are IDs in the database:

k and f

• If we assert Kathy respects Fong we might evaluate

the form respect(fong)(kathy) by doing an insert op-

eration:

insert into Respects(respecter, respected) val-

ues (k, f )
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Database/knowledgebase interfaces

• Below we focus on questions like Does Kathy respect

Fong for which we will use the relation to ask:

select ‘yes’ from Respects where Respects.respecter

= k and Respects.respected = f

• We interpret “no rows returned” as ‘no’ = 0.
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Typed λ calculus (Church 1940)

• Everything has a type (like Java!)

• Bool truth values (0 and 1)

Ind individuals

Ind → Bool properties

Ind → Ind → Bool binary relations

• kathy and fong are Ind

run is Ind → Bool

respect is Ind → Ind → Bool

• Types are interpreted right associatively.

respect is Ind → (Ind → Bool)

• We convert a several argument function into embed-

ded unary functions. Referred to as currying.
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Typed λ calculus (Church 1940)

• Once we have types, we don’t need λ variables just

to show what arguments something takes, and so we

can introduce another operation of the λ calculus:

η reduction [abstractions can be contracted]

λx.(P(x))⇒ P

• This means that instead of writing:

λy.λx.respect(x, y)

we can just write:

respect
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Typed λ calculus (Church 1940)

• λ extraction allowed over any type (not just first-order)

• β reduction [application]

(λx.P(· · · , x, · · ·))(Z)⇒ P(· · · , Z, · · ·)

• η reduction [abstractions can be contracted]

λx.(P(x))⇒ P

• α reduction [renaming of variables]
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Typed λ calculus (Church 1940)

• The first form we introduced is called the β,η long

form, and the second more compact representation

(which we use quite a bit below) is called the β,η

normal form. Here are some examples:

• β,η normal form β,η long form

run λx.run(x)

every2(kid, run) every2((λx.kid(x)), (λx.run(x))

yesterday(run) λy.yesterday(λx.run(x))(y)
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Types of major syntactic categories

• nouns and verb phrases will be properties (Ind→Bool)

• noun phrases are Ind – though they are commonly

type-raised to (Ind → Bool) → Bool

• adjectives are (Ind → Bool) → (Ind → Bool)

This is because adjectives modify noun meanings,

that is properties.

• Intensifiers modify adjectives: e.g, very in a very happy

camper, so they’re ((Ind → Bool) → (Ind → Bool)) →

((Ind → Bool) → (Ind → Bool)) [honest!].
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A grammar fragment

• S : β(α) → NP : α VP : β

NP : β(α) →Det : β N′ : α

N′ : β(α) →Adj : β N′ : α

N′ : β(α) →N′ : α PP : β

N′ : β →N : β

VP : β(α) →V : β NP : α

VP : β(γ)(α) →V : β NP : α NP : γ

VP : β(α) →VP : α PP : β

VP : β →V : β

PP : β(α) →P : β NP : α
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A grammar fragment

• Kathy, NP : kathyInd

Fong, NP : fongInd

Palo Alto, NP : paloaltoInd

car, N : carInd→ Bool
overpriced , Adj : overpriced(Ind→ Bool)→(Ind→ Bool)
outside, PP : outside(Ind→ Bool)→(Ind→ Bool)
red , Adj : λP.(λx.P(x)∧ red′(x))

in, P : λy.λP.λx.(P(x)∧ in′(y)(x))

the, Det : ι

a, Det : some2
(Ind→ Bool)→(Ind→ Bool)→ Bool

runs, V : runInd→ Bool
respects, V : respectInd→ Ind→ Bool
likes, V : likeInd→ Ind→ Bool
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A grammar fragment

• in′ is Ind → Ind → Bool

• in ≝ λy.λP.λx.(P(x) ∧ in′(y)(x)) is Ind → (Ind →

Bool) →(Ind → Bool)

• red′ is Ind → Bool

• red ≝ λP.(λx.(P(x)∧ red′(x)) is (Ind → Bool) →(Ind

→ Bool)
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Adjective and PP modification

• N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

Adj : λP.(λx.P(x) ∧ red′(x))

red

N′ : λx.(car(x)∧ in′(paloalto)(x))

N′ : car

N : car

car

PP : λP.λx.(P(x) ∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x) ∧ in′(y)(x))

in

NP : paloalto

Palo Alto

• N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x))

N′ : λx.(car(x)∧ red′(x))

Adj : λP.(λx.P(x) ∧ red′(x))

red

N′ : car

N : car

car

PP : λP.λx.(P(x) ∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x) ∧ in′(y)(x))

in

NP : paloalto

Palo Alto
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Intersective adjectives

• Syntactic ambiguity is spurious: you get the same

semantics either way

• Database evaluation is possible via a table join

Non-intersective adjectives

• For non-intersective adjectives get different seman-

tics depending on what they modify

• overpriced(in(paloalto)(house))

• in(paloalto)(overpriced(house))

• But probably won’t be able to evaluate it on database!
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Why things get more complex

• When doing predicate logic did you wonder why:

– Kathy runs is run(kathy)

– no kid runs is ¬(∃x)(kid(x)∧ run(x))

• Somehow the NP’s meaning is wrapped around the

predicate

• Or consider why this argument doesn’t hold:

– Nothing is better than a life of peace and prosperity.

A cold egg salad sandwich is better than nothing.

A cold egg salad sandwich is better than a life

of peace and prosperity.

• The problem is that nothing is a quantifier
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Generalized Quantifiers

• We have a reasonable semantics for red car in Palo

Alto as a property from Ind → Bool

• How do we represent noun phrases like the red car in

Palo Alto or every red car in Palo Alto?

• [[ι]](P) = a if (P(b) = 1 iff b = a)

undefined, otherwise

• The semantics for the following Bertrand Russell, for

whom the x meant the unique item satisfying a cer-

tain description
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Generalized Quantifiers

• red car in Palo Alto

select Cars.obj from Cars, Locations, Red where

Cars.obj = Locations.obj AND

Locations.place = ‘paloalto’ AND Cars.obj = Red.obj

(here we assume the unary relations have one field,

obj).
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Generalized Quantifiers

• the red car in Palo Alto

• NP : ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x))

Det : ι

the

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

red car in Palo Alto

• the red car in Palo Alto

select Cars.obj from Cars, Locations, Red where

Cars.obj = Locations.obj AND

Locations.place = ‘paloalto’ AND Cars.obj = Red.obj

having count(*) = 1
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Generalized Quantifiers

• What then of every red car in Palo Alto?

• A generalized determiner is a relation between two

properties, one contributed by the restriction from

the N′, and one contributed by the predicate quanti-

fied over:

(Ind → Bool) → (Ind → Bool) → Bool

• Here are some determiners

some2(kid)(run) ≡ some(λx.kid(x)∧ run(x))

every2(kid)(run) ≡ every(λx.kid(x)→ run(x))
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Generalized Quantifiers

• Generalized determiners are implemented via the quan-

tifiers:

every(P) = 1 iff (∀x)P(x) = 1;

i.e., if P = DomInd

some(P) = 1 iff (∃x)P(x) = 1; i.e., if P 6= ∅
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Generalized Quantifiers

• Every student likes the red car

• S : every2(student)(like(ι(λx.car(x)∧∧red′(x))))

NP : every2(student)

Det : every2

every

N′ : student

student

VP : like(ι(λx.car(x)∧ red′(x)))

V : like

likes

NP : ι(λx.car(x)∧ red′(x))

Det : ι

the

N′ : λx.(car(x)∧ red′(x))

Adj : λP.(λx.P(x) ∧ red′(x))

red

N′ : car

N : car

car
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Representing proper nouns with quantifiers

• The central insight of Montague’s PTQ was to treat in-

dividuals as of the same type as quantifiers (as type-

raised individuals):

• Kathy : λP.P(kathy)

• Both good and bad

• The main alternative (which we use) is flexible type

shifting – you raise the type of something when nec-

essary.
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Nominal type shifting

• Common patterns of nominal type shifting

•

Ind Ind → Bool

Q

ι

R some2

(Ind → Bool) → Bool

• R(x) = λP.P(x)

some2(P) = λQ.(Q∩ P) 6= ∅

Q(x) = λy.x = y

• In this diagram, R is exactly this basic type-raising

function for individuals.
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Noun phrase scope – following Hendriks (1993)

Value raising raises a function that produces an individ-

ual to one that produces a quantifer. If α : σ → Ind

then λx.λP.P(α(x)) : σ → (Ind→ Bool)→ Bool

Argument raising replaces an argument of a boolean

function with a variable and applies the quantifier se-

mantically binding the replacing variable. If α : σ →

Ind → τ → Bool then λx1.λQ.λx3.Q(λx2.α(x1)(x2)(x3)) :

σ → (Ind→ Bool)→ Bool→ τ → Bool
Argument lowering replaces a quantifier in a boolean function with an individ-

ual argument, where the semantics is calculated by applying the original

function to the type raised argument. If α : σ → ((Ind→ Bool)→ Bool) →

τ → Bool then λx1.λx2.λx3.α(x1)(λP.P(x2))(x3) : σ → Ind→ τ → Bool
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Every student runs

• S : every2(student)(run) ≡ every(λx.student(x)→ run(x))

NP : every2(student)

Det : every2

every

N′ : student

N : student

student

VP : λQ.Q(λx.run(x))

VP : run

V : run

runs
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Some kid broke every toy

• S : every2(toy)(λyo.some2(kid)(λxs.break(yo)(xs)))

NP : some2(kid)

Det : some2

some

N′ : kid

N : kid

kid

VP : λS′.every2(toy)(λyo.S
′(λxs .break(yo)(xs)))

V : λO.λS′.O(λyo.S
′(λxs.break(yo)(xs)))

V : λxo.λS.S(λxs .break(xo)(xs))

V : λy.λx.break(y)(x)

broke

NP : every2(toy)

Det : every2

every

N′ : toy

N : toy

toy
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Some kid broke every toy

• S : some2(kid)(λys.every2(toy)(λxo.break(xo)(ys)))

NP : some2(kid)

Det : some2

some

N′ : kid

N : kid

kid

VP : λS.S(λys .every2(toy)(λxo.break(xo)(ys)))

V : λO′.λS.S(λys .O(λxo.break(xo)(ys)))

V : λxs.O(λxo.break(xo)(xs))

V : λy.λx.break(y)(x)

broke

NP : every2(toy)

Det : every2

every

N′ : toy

N : toy

toy
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Questions with answers!

• A yes/no question (Is Kathy running? ) will be some-

thing of type Bool, checked on database

• A content question (Who likes Kathy? ) will be an

open proposition, that is something semantically of

the type property (Ind → Bool), and operationally we

will consult the database to see what individuals will

make the statement true.

• We use a grammar with a simple form of gap-threading

for question words
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Syntax/semantics for questions

• S′ : β(α) → NP[wh ] : β Aux S : α

S′ : α → Aux S : α

NP/NPz : z → e

S : λz.F(. . . z . . .) → S/NPz : F(. . . z . . .)
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Syntax/semantics for questions

• who, NP[wh ] : λU.λx.U(x)∧ human(x)

what , NP[wh ] : λU.U

which , Det[wh ] : λP.λV.λx.P(x)∧ V(x)

how many, Det[wh ] : λP.λV.|λx.P(x)∧ V(x)|

• Where |· | is the operation that returns the cardinality

of a set (count).
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Question examples

• S’ : λz.like(z)(kathy)

NP[wh] : λU.U

What

Aux

does

S : λz.like(z)(kathy)

S/NPz : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

• select liked from Likes where Likes.liker=’Kathy’
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Question examples

• S’ : λx.like(x)(kathy)∧ human(x)

NP[wh] : λU.λx.U(x)∧ human(x)

Who

Aux

does

S : λz.like(z)(kathy)

S/NPz : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

• select liked from Likes,Humans where Likes.liker=’Kathy’ AND Humans.obj

= Likes.liked
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Question examples

• S′ : λx.car(x)∧ like(x)(kathy)

NP[wh] : λV.λx.car(x)∧ V(x)

Det : λP.λV.λx.P(x) ∧ V(x)

Which

N′ : car

N : car

cars

Aux

did

S : λz.like(z)(kathy)

S/NP : like(z)(kathy)

NP : kathy

Kathy

VP/NPz : like(z)

V : like

like

NP/NPz : z

e

• select liked from Cars,Likes where Cars.obj=Likes.liked AND Likes.liker=’Kathy’
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Question examples

• S′ : λx.car(x)∧ every2(student)(like(x))

NP[wh] : λV.λx.car(x)∧ V(x)

Det : λP.λV.λx.P(x) ∧ V(x)

Which

N′ : car

N : car

cars

Aux

did

S : λz.every2(student)(like(z))

S/NP : every2(student)(like(z))

NP : every2(student)

Det : every2

every

N′ : student

student

VP

NPz : like(z)

V : like

like

NP

NPz : z

e

• ???
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Question examples

• How many red cars in Palo Alto does Kathy like?

• select count(*) from Likes,Cars,Locations,Reds where

Cars.obj = Likes.liked AND Likes.liker = ’Kathy’ AND

Red.obj = Likes.liked AND Locations.place = ’Palo Alto’

AND Locations.obj = Likes.liked

• Did Kathy see the red car in Palo Alto?

• select ‘yes’ where Seeings.seer = k AND Seeings.seen

= (select Cars.obj from Cars, Locations, Red where

Cars.obj = Locations.obj AND Locations.place = ‘paloalto’

AND Cars.obj = Red.obj having count(*) = 1)
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How many red cars in Palo Alto does Kathy like?

S′ :| λx.car(x)∧ in′(paloalto)(x)∧ red′(x)∧ like(x)(kathy) |

NP[wh] : λV. | λx.car(x)∧ in′(paloalto)(x)∧ red′(x)∧ V(x) |

Det : λP.λV. | λx.P(x)∧ V(x) |

How many

N′ : λx.car(x)∧ in′(paloalto)(x)∧ red′(x)

N′ : λx.(car(x)∧ red′(x))

Adj : λP.(λx.P(x) ∧ red′(x))

red

N′ : car

N : car

cars

PP : λP.λx.(P(x) ∧ in′(paloalto)(x))

P : λy.λP.λx.(P(x) ∧ in′(y)(x))

in

NP : paloalto

Palo Alto

Aux

does

S : λz
S/NP

NP : kathy

Kathy
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Did Kathy see the red car in Palo Alto?

S’ : see(ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x)))(kathy)

Aux

Did

S : see(ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x)))(kathy)

NP : kathy

Kathy

VP : see(ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x)))

V : see

see

NP : ι(λx.car(x)∧ in′(paloalto)(x)∧ red′(x))

Det : ι

the

N′ : λx.car(x)∧ in′(paloalto)(x)

Adj : λP.(λx.P(x) ∧ red′(x))

red

N′ : λx.(car

N : car

car P : λy
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How could we learn such representations?

• After disengagement for many years, there has started

to be very interesting work in this area:

– Luke S. Zettlemoyer and Michael Collins. 2005.

Learning to Map Sentences to Logical Form: Struc-

tured Classification with Probabilistic Categorial Gram-

mars. In Proceedings of the 21st UAI .

– Yuk Wah Wong and Raymond J. Mooney. 2007.

Learning Synchronous Grammars for Semantic Pars-

ing with Lambda Calculus. In Proceedings of the

45th ACL , pp. 960–967.
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How could we learn such representations?

• General approach (ZC05): Start with initial lexicon,

category templates, and paired sentences and mean-

ings:

What states border Texas?

λx.state(x)∧ borders(x, texas)

• Learn lexical syntax/semantics for other words and

learn to parse to logical form (parse structure is hid-

den).

• They successfully do iterative refinement of a lexicon

and maxent parser
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How can we reason with such representations?

• Logical reasoning is practical for certain domains (busi-

ness rules, legal code, etc.) and has been used (see

Blackburn and Bos 2005 for background).

• But our knowledge of the world is in general incom-

plete and uncertain.

• There is various recent work on handling restricted

fragments of first order logic in probabilistic models

– Lise Getoor, Nir Friedman, Daphne Koller, Avi Pf-

effer, Benjamin Taskar. 2007. Probabilistic Re-

lational Models. In An Introduction to Statistical

Relational Learning. MIT Press.
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How can we reason with such representations?

• Undirected model:

– Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon,

Matthew Richardson, Parag Singla. 2008. Markov Logic.

In L. De Raedt, P. Frasconi, K. Kersting and S. Muggleton

(eds.), Probabilistic Inductive Logic Programming, pp. 92–

117. Springer.

• A recent attempt to apply this to natural language inference:

– Chloé Kiddon. 2008. Applying Markov Logic to the Task

of Textual Entailment. Senior Honors Thesis, Computer

Science. Stanford University.

• Logical formulae are given weights which are grounded out in

an undirected markov network

42


