An Introduction to Formal **Computational Semantics**

CS224N/Ling 280

Christopher Manning May 23, 2000; revised 2008

1

3

A first example

Lexicon Grammar Kathy, NP : kathy Fong, NP : fong respects, $V : \lambda y . \lambda x . respect(x, y)$ $VP : \beta \rightarrow V : \beta$ *runs*, V : λx .**run**(x)

 $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$ $VP:\beta(\alpha) \rightarrow V:\beta$ NP: α

2

A first example

= λx .respect(*x*, fong) [β red.]

[S Kathy respects Fong]: $[\lambda x.respect(x, fong)](kathy)$

= respect(kathy,fong)

Database/knowledgebase interfaces

- Assume that respect is a table Respect with two fields respecter and respected
- Assume that kathy and fong are IDs in the database: k and f
- If we assert Kathy respects Fong we might evaluate the form respect(fong)(kathy) by doing an insert operation:

insert into Respects(respecter, respected) values (k, f)

Typed λ calculus (Church 1940)

- Everything has a type (like Java!)
- Bool truth values (0 and 1)
 - Ind individuals
 - Ind → Bool properties
- $Ind \rightarrow Ind \rightarrow Bool$ binary relations
- kathy and fong are Ind run is Ind → Bool
 - respect is Ind \rightarrow Ind \rightarrow Bool
- Types are interpreted right associatively. **respect** is $Ind \rightarrow (Ind \rightarrow Bool)$
- We convert a several argument function into embedded unary functions. Referred to as currying.

Database/knowledgebase interfaces

- Below we focus on questions like *Does Kathy respect* Fong for which we will use the relation to ask: select 'yes' from Respects where Respects.respecter
 - = k and Respects.respected = f
- We interpret "no rows returned" as 'no' = 0.

Typed λ calculus (Church 1940)

• Once we have types, we don't need λ variables just to show what arguments something takes, and so we can introduce another operation of the λ calculus:

 η reduction [abstractions can be contracted] $\lambda x.(P(x)) \Rightarrow P$

• This means that instead of writing: $\lambda y.\lambda x.respect(x, y)$

we can just write:

respect

Typed λ calculus (Church 1940)

- + λ extraction allowed over any type (not just first-order)
- β reduction [application] $(\lambda x.P(\dots, x, \dots))(Z) \Rightarrow P(\dots, Z, \dots)$
- η reduction [abstractions can be contracted] $\lambda x.(P(x)) \Rightarrow P$
- α reduction [renaming of variables]

Typed λ calculus (Church 1940)

- The first form we introduced is called the β, η long form, and the second more compact representation (which we use quite a bit below) is called the β, η normal form. Here are some examples:
- β, η normal form β, η long form run $\lambda x.run(x)$ every²(kid, run) every²(($\lambda x.kid(x)$), ($\lambda x.run(x)$)) yesterday(run) $\lambda y.yesterday(\lambda x.run(x))(y)$

Types of major syntactic categories

- nouns and verb phrases will be properties (Ind \rightarrow Bool)
- noun phrases are Ind though they are commonly type-raised to (Ind → Bool) → Bool
- adjectives are (Ind → Bool) → (Ind → Bool)
 This is because adjectives modify noun meanings, that is properties.
- Intensifiers modify adjectives: e.g, very in a very happy camper, so they're ((Ind → Bool) → (Ind → Bool)) → ((Ind → Bool)) → ((Ind → Bool)) → (Ind → Bool)) [honest!].

10

8

A grammar fragment

• $S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$ $NP: \beta(\alpha) \rightarrow Det: \beta \quad N': \alpha$ $N': \beta(\alpha) \rightarrow Adj: \beta \quad N': \alpha$ $N': \beta(\alpha) \rightarrow N': \alpha \quad PP: \beta$ $N': \beta \rightarrow N: \beta$ $VP: \beta(\alpha) \rightarrow V: \beta \quad NP: \alpha$ $VP: \beta(\gamma)(\alpha) \rightarrow V: \beta \quad NP: \alpha \quad NP: \gamma$ $VP: \beta(\alpha) \rightarrow VP: \alpha \quad PP: \beta$ $VP: \beta \rightarrow V: \beta$ $PP: \beta(\alpha) \rightarrow P: \beta \quad NP: \alpha$

A grammar fragment

Kathy, NP : kathy_{Ind} Fong, NP : fong_{Ind} Palo Alto, NP : paloalto_{Ind} car, N : car_{Ind}→ Bool overpriced, Adj : overpriced_{(Ind}→ Bool)→(Ind→ Bool) outside, PP : outside_{(Ind}→ Bool)→(Ind→ Bool) red, Adj : λP.(λx.P(x) ∧ red'(x)) in, P : λy.λP.λx.(P(x) ∧ in'(y)(x)) the, Det : ι a, Det : some²(Ind→ Bool)→(Ind→ Bool)→ Bool runs, V : run_{Ind}→ Bool respects, V : respect_{Ind}→ Ind→ Bool likes, V : like_{Ind}→ Ind→ Bool

7

A grammar fragment

- in' is Ind \rightarrow Ind \rightarrow Bool
- in $\cong \lambda y . \lambda P . \lambda x . (P(x) \land in'(y)(x))$ is Ind \rightarrow (Ind \rightarrow Bool) \rightarrow (Ind \rightarrow Bool)
- red' is Ind \rightarrow Bool
- red $\cong \lambda P.(\lambda x.(P(x) \land \text{red}'(x)) \text{ is } (\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})$

Adjective and PP modification

Intersective adjectives

- Syntactic ambiguity is spurious: you get the same semantics either way
- Database evaluation is possible via a table join

Non-intersective adjectives

- For non-intersective adjectives get different semantics depending on what they modify
- overpriced(in(paloalto)(house))
- in(paloalto)(overpriced(house))
- But probably won't be able to evaluate it on database!

Why things get more complex

- When doing predicate logic did you wonder why:
 - Kathy runs is run(kathy)
 - no kid runs is $\neg(\exists x)(\mathbf{kid}(x) \land \mathbf{run}(x))$
- Somehow the NP's meaning is wrapped around the predicate
- Or consider why this argument doesn't hold:
 - Nothing is better than a life of peace and prosperity.
 A cold egg salad sandwich is better than nothing.
 A cold egg salad sandwich is better than a life of peace and prosperity.
- The problem is that nothing is a quantifier

Generalized Quantifiers

- We have a reasonable semantics for red car in Palo
 Alto as a property from Ind → Bool
- How do we represent noun phrases like the red car in Palo Alto or every red car in Palo Alto?
- [[ι](P) = a if (P(b) = 1 iff b = a)
 undefined, otherwise
- The semantics for *the* following Bertrand Russell, for whom *the x* meant the unique item satisfying a certain description

Generalized Quantifiers

• red car in Palo Alto

select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND

Locations.place = 'paloalto' AND Cars.obj = Red.obj (here we assume the unary relations have one field, obj).

13

15

Generalized Quantifiers

• the red car in Palo Alto

De

• NP : $\iota(\lambda x. \mathbf{car}(x) \land \mathbf{in'}(\mathbf{paloalto})(x) \land \mathbf{red'}(x))$

$$\overbrace{t:\iota} N': \lambda x. car(x) \land in'(paloalto)(x) \land red'(x)$$

the red car in Palo Alto • the red car in Palo Alto

> select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = 'paloalto' AND Cars.obj = Red.obj having count(*) = 1

> > 19

21

Generalized Quantifiers

- What then of every red car in Palo Alto?
- A generalized determiner is a relation between two properties, one contributed by the restriction from the N', and one contributed by the predicate quantified over:

 $(\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}$

• Here are some determiners

some²(kid)(run) \equiv some(λx .kid(x) \wedge run(x)) every²(kid)(run) \equiv every(λx .kid(x) \rightarrow run(x))

20

Generalized Quantifiers

• Generalized determiners are implemented via the quantifiers:

every(P) = 1 iff $(\forall x)P(x) = 1$; i.e., if $P = \text{Dom}_{\text{Ind}}$ some(P) = 1 iff $(\exists x)P(x) = 1$; i.e., if $P \neq \emptyset$

Generalized Quantifiers

- · Every student likes the red car
- S: every²(student)(like($\iota(\lambda x.car(x) \land \land red'(x)))$)

 $\begin{array}{ll} \mathrm{NP}: \mathbf{every}^{\mathbf{2}}(\mathbf{student}) & \mathrm{VP}: \mathbf{like}(\iota(\lambda x.\mathbf{car}(x) \wedge \mathbf{red}'(x))) \\ \hline \\ \mathrm{Det}: \mathbf{every}^{\mathbf{2}} & \mathrm{N}': \mathbf{student} & \mathrm{V}: \mathbf{like} & \mathrm{NP}: \iota(\lambda x.\mathbf{car}(x) \wedge \mathbf{red}'(x)) \end{array}$

every student likes $Det : \iota$ $N' : \lambda x.(car(x) \wedge red'(x))$ the $Adj : \lambda P.(\lambda x.P(x) \wedge red'(x))$ N' : carred N : car

22

car

Representing proper nouns with quantifiers

- The central insight of Montague's PTQ was to treat individuals as of the same type as quantifiers (as typeraised individuals):
- Kathy : $\lambda P.P(\mathbf{kathy})$
- Both good and bad
- The main alternative (which we use) is flexible *type shifting* you raise the type of something when necessary.

Nominal type shifting

• Common patterns of nominal type shifting

- $\mathbf{R}(\mathbf{x}) = \lambda P.P(\mathbf{x})$ $\mathbf{some}^2(\mathbf{P}) = \lambda Q.(Q \cap P) \neq \emptyset$ $\mathbf{Q}(\mathbf{x}) = \lambda y.\mathbf{x} = y$
- In this diagram, R is exactly this basic type-raising function for individuals.

Noun phrase scope - following Hendriks (1993)

- **Value raising** raises a function that produces an individual to one that produces a quantifer. If $\alpha : \sigma \rightarrow \text{Ind}$ then $\lambda x. \lambda P. P(\alpha(x)) : \sigma \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}$
- Argument raising replaces an argument of a boolean

function with a variable and applies the quantifier se-

mantically binding the replacing variable. If $\alpha:\sigma$ –

 $\textbf{Ind} \rightarrow \tau \rightarrow \textbf{Bool} \text{ then } \lambda x_1.\lambda Q.\lambda x_3.Q(\lambda x_2.\alpha(x_1)(x_2)(x_3)):$

$\sigma \rightarrow (\mathsf{Ind} \rightarrow \mathsf{Bool}) \rightarrow \mathsf{Bool} \rightarrow \tau \rightarrow \mathsf{Bool}$

Argument lowering replaces a quantifier in a boolean function with an individual argument, where the semantics is calculated by applying the original function to the type raised argument. If $\alpha : \sigma - ((Ind - Bool) \rightarrow T - Bool$ then $\lambda_{X1}.\lambda_{X2}.\lambda_{X3}.\alpha(x_1)(\lambda P.P(x_2))(x_3) : \sigma - Ind - \tau - Bool$

25

27

Every student runs

• S: every²(student)(run) \equiv every(λx .student(x) \rightarrow run(x))

26

Some kid broke every toy

NP : some		by $(\lambda y_o.some^2(kid)(\lambda x_s.break(y_o)(x_s))))$ VP : $\lambda S'.every^2(toy)(\lambda y_o.S')$	$(\lambda x_s.\mathbf{break}(y_o)$	$(x_{s})))$
Det : some ² some	N' : kid N : kid kid	$ \begin{array}{l} \mathbb{V} : \lambda O.\lambda S'.O(\lambda y_o.S'(\lambda x_s.\mathbf{break}(y_o)(x_s))) \\ \mathbb{V} : \lambda x_o.\lambda S.S(\lambda x_s.\mathbf{break}(x_o)(x_s)) \\ \mathbb{V} : \lambda y.\lambda x.\mathbf{break}(y)(x) \\ \\ broke \end{array} $	NP : every Det : every ² every	y ² (toy) N': toy N: toy toy

Some kid broke every toy

• S: some ² (kid)(λy_s .every ² (toy)(λx_o .break(x_o)(y_s)))							
NP : some ² (kid)		VP : $\lambda S.S(\lambda y_s.every^2(toy)(\lambda x_o.break(x_o)(y_s)))$					
Det : some ² some	N' : kid N : kid kid	$ \begin{array}{l} \forall : \lambda O'.\lambda S.S(\lambda y_s.O(\lambda x_o. \textit{break}(x_o)(y_s))) \\ \forall : \lambda x_s.O(\lambda x_o. \textit{break}(x_o)(x_s)) \\ \forall : \lambda y.\lambda x. \textit{break}(y)(x) \\ & \\ & broke \end{array} $	NP : every Det : every ² every				

28

Questions with answers!

- A yes/no question (*Is Kathy running?*) will be something of type **Bool**, checked on database
- A content question (Who likes Kathy?) will be an open proposition, that is something semantically of the type property (Ind → Bool), and operationally we will consult the database to see what individuals will make the statement true.
- We use a grammar with a simple form of gap-threading for question words

Syntax/semantics for questions

• $S' : \beta(\alpha) \to NP[wh] : \beta$ Aux $S : \alpha$ $S' : \alpha \to Aux$ $S : \alpha$ $NP/NP_Z : z \to e$ $S : \lambda z.F(...z..) \to S/NP_Z : F(...z..)$

Syntax/semantics for questions

- who, NP[wh] : $\lambda U.\lambda x.U(x) \wedge human(x)$ what, NP[wh] : $\lambda U.U$ which, Det[wh] : $\lambda P.\lambda V.\lambda x.P(x) \wedge V(x)$ how_many, Det[wh] : $\lambda P.\lambda V.|\lambda x.P(x) \wedge V(x)|$
- Where | · | is the operation that returns the cardinality of a set (count).

Question examples

Question examples

select liked from Likes, Humans where Likes.liker='Kathy' AND Humans.obj
 = Likes.liked

Question examples

• select liked from Cars,Likes where Cars.obj=Likes.liked AND Likes.liker='Kathy'

34

32

Question examples

Question examples

- How many red cars in Palo Alto does Kathy like?
- select count(*) from Likes,Cars,Locations,Reds where Cars.obj = Likes.liked AND Likes.liker = 'Kathy' AND Red.obj = Likes.liked AND Locations.place = 'Palo Alto' AND Locations.obj = Likes.liked
- Did Kathy see the red car in Palo Alto?
- select 'yes' where Seeings.seer = k AND Seeings.seen
 = (select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = 'paloalto' AND Cars.obj = Red.obj having count(*) = 1)

31

S' :| $\lambda x.car(x) \wedge in'(paloalto)(x) \wedge red'(x) \wedge like(x)(kathy)$ NP[*wh*]: λV . | $\lambda x. \operatorname{car}(x) \wedge \operatorname{in'}(\operatorname{paloalto})(x) \wedge \operatorname{red'}(x) \wedge V(x)$ | Aux S : ? S/N Det : $\lambda P.\lambda V. \mid \lambda x.P(x) \wedge V(x) \mid$ N': $\lambda x. car(x) \wedge in'(paloalto)(x) \wedge red'(x)$ does $NP \cdot \vec{k}$ How_many PP : $\lambda P.\lambda x.(P(x) \land in'(paloalto)(x))$ N' : $\lambda x.(\mathbf{car}(x) \wedge \mathbf{red'}(x))$ Adj: $\lambda P.(\lambda x.P(x) \land \mathbf{red}'(x)) \land \mathbf{N}': \mathbf{car} \ P: \lambda y.\lambda P.\lambda x.(P(x) \land \mathbf{in}'(y)(x)) \land \mathbf{NP}: \mathbf{paloalto}$ N: car Palo Alto red in cars 37

Did Kathy see the red car in Palo Alto?

 $S': \textbf{see}(\iota(\lambda x. \textbf{car}(x) \land \textbf{in'}(\textbf{paloalto})(x) \land \textbf{red'}(x)))(\textbf{kathy})$

How could we learn such representations?

How many red cars in Palo Alto does Kathy like?

- After disengagement for many years, there has started to be very interesting work in this area:
 - Luke S. Zettlemoyer and Michael Collins. 2005.
 Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars. In Proceedings of the 21st UAI.
 - Yuk Wah Wong and Raymond J. Mooney. 2007. Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus. In *Proceedings of the 45th ACL*, pp. 960-967.

39

How could we learn such representations?

- General approach (ZC05): Start with initial lexicon, category templates, and paired sentences and meanings:
 - What states border Texas?
 - $\lambda x.state(x) \land borders(x, texas)$
- Learn lexical syntax/semantics for other words and learn to parse to logical form (parse structure is hidden).
- They successfully do iterative refinement of a lexicon and maxent parser

40

How can we reason with such representations?

- Logical reasoning is practical for certain domains (business rules, legal code, etc.) and has been used (see Blackburn and Bos 2005 for background).
- But our knowledge of the world is in general incomplete and uncertain.
- There is various recent work on handling *restricted* fragments of first order logic in probabilistic models
 - Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, Benjamin Taskar. 2007. Probabilistic Relational Models. In *An Introduction to Statistical Relational Learning*. MIT Press.

How can we reason with such representations?

- Undirected model:
 - Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon, Matthew Richardson, Parag Singla. 2008. Markov Logic.
 In L. De Raedt, P. Frasconi, K. Kersting and S. Muggleton (eds.), *Probabilistic Inductive Logic Programming*, pp. 92-117. Springer.
- A recent attempt to apply this to natural language inference:
 - Chloé Kiddon. 2008. Applying Markov Logic to the Task of Textual Entailment. Senior Honors Thesis, Computer Science. Stanford University.
- Logical formulae are given weights which are grounded out in an undirected markov network