An Introduction to Formal Computational Semantics

CS224N/Ling 280

Christopher Manning

May 23, 2000; revised 2008

A first example

Lexicon	Grammar
Kathy, $\mathrm{NP}:$ kathy	$\mathrm{S}: \beta(\alpha) \rightarrow \mathrm{NP}: \alpha \quad \mathrm{VP}: \beta$
Fong, $\mathrm{NP}:$ fong	$\mathrm{VP}: \beta(\alpha) \rightarrow \mathrm{V}: \beta \quad \mathrm{NP}: \alpha$
respects, $\mathrm{V}: \lambda y . \lambda x . \operatorname{respect}(x, y)$	$\mathrm{VP}: \beta \rightarrow \mathrm{V}: \beta$
runs, $\mathrm{V}: \lambda x$.run (x)	

Database/knowledgebase interfaces

- Assume that respect is a table Respect with two fields respecter and respected
- Assume that kathy and fong are IDs in the database: k and f
- If we assert Kathy respects Fong we might evaluate the form respect(fong)(kathy) by doing an insert operation:
insert into Respects(respecter, respected) val-
ues (k, f)

Typed λ calculus (Church 1940)

- Everything has a type (like Java!)
- Bool truth values ($\mathbf{0}$ and $\mathbf{1}$) Ind individuals Ind \rightarrow Bool \quad properties Ind \rightarrow Ind \rightarrow Bool binary relations
- kathy and fong are Ind run is Ind \rightarrow Bool respect is Ind \rightarrow Ind \rightarrow Bool
- Types are interpreted right associatively. respect is Ind \rightarrow (Ind \rightarrow Bool)
- We convert a several argument function into embedded unary functions. Referred to as currying.

Typed λ calculus (Church 1940)

- Once we have types, we don't need λ variables just to show what arguments something takes, and so we can introduce another operation of the λ calculus:
η reduction [abstractions can be contracted]
$\lambda x .(P(x)) \Rightarrow P$
- This means that instead of writing:
$\lambda y . \lambda x$.respect (x, y)
we can just write:
respect

Typed λ calculus (Church 1940)

- The first form we introduced is called the β, η long form, and the second more compact representation (which we use quite a bit below) is called the β, η normal form. Here are some examples:

- β, η normal form	β, η long form
run	λx.run (x)
every ${ }^{2}$ (kid, run)	every $^{2}((\lambda x . \operatorname{kid}(x)),(\lambda x . r u n(x))$
yesterday(run)	λy. yesterday $(\lambda x . \operatorname{run}(x))(y)$

A grammar fragment

A grammar fragment

- $\mathrm{S}: \beta(\alpha) \rightarrow \mathrm{NP}: \alpha$ VP: β
$\mathrm{NP}: \beta(\alpha) \rightarrow$ Det : $\beta \quad \mathrm{N}^{\prime}: \alpha$
$\mathrm{N}^{\prime}: \beta(\alpha) \rightarrow \mathrm{Adj}: \beta \quad \mathrm{N}^{\prime}: \alpha$
$\mathrm{N}^{\prime}: \beta(\alpha) \rightarrow \mathrm{N}^{\prime}: \alpha \quad \mathrm{PP}: \beta$
$\mathrm{N}^{\prime}: \beta \rightarrow \mathrm{N}: \beta$
$\mathrm{VP}: \beta(\alpha) \rightarrow \mathrm{V}: \beta \quad \mathrm{NP}: \alpha$
$\mathrm{VP}: \beta(\gamma)(\alpha) \rightarrow \mathrm{V}: \beta \quad \mathrm{NP}: \alpha \quad \mathrm{NP}: \gamma$
$\mathrm{VP}: \beta(\alpha) \rightarrow \mathrm{VP}: \alpha \quad \mathrm{PP}: \beta$
$\mathrm{VP}: \beta \rightarrow \mathrm{V}: \beta$
$\mathrm{PP}: \beta(\alpha) \rightarrow \mathrm{P}: \beta \quad \mathrm{NP}: \alpha$ type-raised to (Ind \rightarrow Bool) \rightarrow Bool that is properties.

Typed λ calculus (Church 1940)

- λ extraction allowed over any type (not just first-order)
- β reduction [application]
$(\lambda x . P(\cdots, x, \cdots))(Z) \Rightarrow P(\cdots, Z, \cdots)$
- η reduction [abstractions can be contracted] $\lambda x .(P(x)) \Rightarrow P$
- α reduction [renaming of variables]

Types of major syntactic categories

- nouns and verb phrases will be properties (Ind \rightarrow Bool)
- noun phrases are Ind - though they are commonly
- adjectives are (Ind \rightarrow Bool) \rightarrow (Ind \rightarrow Bool)

This is because adjectives modify noun meanings,

- Intensifiers modify adjectives: e.g, very in a very happy camper, so they're $(($ Ind \rightarrow Bool $) \rightarrow$ (Ind \rightarrow Bool) $) \rightarrow$ $(($ Ind \rightarrow Bool $) \rightarrow($ Ind \rightarrow Bool) $)$ [honest!].

```
- Kathy, NP : kathyInd
    Fong, NP : fongind
    Palo Alto, NP : paloaltolnd
    car,N : car Ind }->\mathrm{ Bool
    overpriced, Adj : overpriced (Ind }->\mathrm{ Bool) }->\mathrm{ (Ind }->\mathrm{ Bool)
    outside, PP : outside (Ind }->\mathrm{ Bool ) }->(\mathrm{ Ind }->\mathrm{ Bool)
    red, Adj: \lambdaP.(\lambdax.P(x)^ \mp@subsup{\operatorname{red}}{}{\prime}(x))
    in, P: \lambday.\lambdaP.\lambdax. (P(x)^ in'}(y)(x)
    the, Det:l
    a, Det : some }\mp@subsup{}{(}{(Ind}->\mathrm{ Bool )}->(\mathrm{ Ind }->\mathrm{ Bool ) }->\mathrm{ Bool
    runs, V : run Ind-> Bool
    respects, V : respect Ind }->\mathrm{ Ind }->\mathrm{ Bool
    likes, V : like Ind }->\mathrm{ Ind }->\mathrm{ Bool
```


A grammar fragment

- in $^{\prime}$ is Ind \rightarrow Ind \rightarrow Bool
- in $\stackrel{\text { def }}{=} \lambda y . \lambda P . \lambda x .\left(P(x) \wedge \mathbf{i n}^{\prime}(y)(x)\right)$ is Ind $\rightarrow($ Ind \rightarrow

Bool) \rightarrow (Ind \rightarrow Bool)

- red ${ }^{\prime}$ is Ind \rightarrow Bool
- red $\stackrel{\text { def }}{=} \lambda P .\left(\lambda x .\left(P(x) \wedge\right.\right.$ red $\left.^{\prime}(x)\right)$ is (Ind \rightarrow Bool) $\rightarrow($ Ind \rightarrow Bool)

Intersective adjectives

- Syntactic ambiguity is spurious: you get the same semantics either way
- Database evaluation is possible via a table join

Non-intersective adjectives

- For non-intersective adjectives get different semantics depending on what they modify
- overpriced(in(paloalto)(house))
- in(paloalto)(overpriced(house))
- But probably won't be able to evaluate it on database!

Generalized Quantifiers

- We have a reasonable semantics for red car in Palo Alto as a property from Ind \rightarrow Bool
- How do we represent noun phrases like the red car in Palo Alto or every red car in Palo Alto?
- $\llbracket \iota \rrbracket(P)=a$ if $(P(b)=\mathbf{1}$ iff $b=a)$
undefined, otherwise
- The semantics for the following Bertrand Russell, for whom the x meant the unique item satisfying a certain description

Adjective and PP modification

Why things get more complex

- When doing predicate logic did you wonder why:
- Kathy runs is run(kathy)
- no kid runs is $\neg(\exists x)(\boldsymbol{k i d}(x) \wedge \boldsymbol{r u n}(x))$
- Somehow the NP's meaning is wrapped around the predicate
- Or consider why this argument doesn't hold:
- Nothing is better than a life of peace and prosperity. A cold egg salad sandwich is better than nothing.
A cold egg salad sandwich is better than a life of peace and prosperity.
- The problem is that nothing is a quantifier

Generalized Quantifiers

- red car in Palo Alto
select Cars.obj from Cars, Locations, Red where
Cars.obj = Locations.obj AND
Locations.place = 'paloalto' AND Cars.obj = Red.obj
(here we assume the unary relations have one field, obj).

Generalized Quantifiers

- the red car in Palo Alto
- NP : $\iota\left(\lambda x . \operatorname{car}(x) \wedge\right.$ in $^{\prime}($ paloalto $\left.)(x) \wedge \operatorname{red}^{\prime}(x)\right)$

- the red car in Palo Alto
select Cars.obj from Cars, Locations, Red where
Cars.obj = Locations.obj AND
Locations.place = 'paloalto' AND Cars.obj = Red.obj
having count(*) $=1$

Generalized Quantifiers

- Generalized determiners are implemented via the quantifiers:
$\operatorname{every}(P)=1$ iff $(\forall x) P(x)=1$;
i.e., if $P=\operatorname{Dom}_{\text {Ind }}$
$\operatorname{some}(P)=\mathbf{1}$ iff $(\exists x) P(x)=\mathbf{1}$; i.e., if $P \neq \varnothing$

Generalized Quantifiers

- What then of every red car in Palo Alto?
- A generalized determiner is a relation between two properties, one contributed by the restriction from the N^{\prime}, and one contributed by the predicate quantified over:

$$
(\text { Ind } \rightarrow \text { Bool }) \rightarrow(\text { Ind } \rightarrow \text { Bool }) \rightarrow \text { Bool }
$$

- Here are some determiners

$$
\begin{aligned}
& \operatorname{some}^{2}(\operatorname{kid})(\text { run }) \equiv \operatorname{some}(\lambda x . \operatorname{kid}(x) \wedge \operatorname{run}(x)) \\
& \operatorname{every}^{2}(\operatorname{kid})(\text { run }) \equiv \operatorname{every}(\lambda x . \operatorname{kid}(x) \rightarrow \operatorname{run}(x))
\end{aligned}
$$

Generalized Quantifiers

- Every student likes the red car
- $\mathrm{S}: \operatorname{every}^{2}($ student $)\left(\operatorname{like}\left(\iota\left(\lambda x . \operatorname{car}(x) \wedge \wedge \operatorname{red}^{\prime}(x)\right)\right)\right)$

22

Nominal type shifting

- Common patterns of nominal type shifting

- In this diagram, \mathbf{R} is exactly this basic type-raising function for individuals.

Noun phrase scope - following Hendriks (1993)

Value raising raises a function that produces an individ-
ual to one that produces a quantifer. If $\alpha: \sigma \rightarrow$ Ind then $\lambda x . \lambda P . P(\alpha(x)): \sigma \rightarrow(\mathbf{I n d} \rightarrow$ Bool $) \rightarrow$ Bool
Argument raising replaces an argument of a boolean function with a variable and applies the quantifier semantically binding the replacing variable. If $\alpha: \sigma \rightarrow$ Ind $\rightarrow \boldsymbol{\tau} \rightarrow$ Bool then $\lambda x_{1} \cdot \lambda Q \cdot \lambda x_{3} \cdot Q\left(\lambda x_{2} \cdot \alpha\left(x_{1}\right)\left(x_{2}\right)\left(x_{3}\right)\right):$
$\sigma \rightarrow($ Ind \rightarrow Bool $) \rightarrow$ Bool $\rightarrow \boldsymbol{\tau} \rightarrow$ Bool
Argument lowering replaces a quantifier in a boolean function with an individual argument, where the semantics is calculated by applying the original function to the type raised argument. If $\alpha: \sigma \rightarrow((\boldsymbol{I n d} \rightarrow$ Bool $) \rightarrow$ Bool $) \rightarrow$ $\tau \rightarrow$ Bool then $\lambda x_{1} . \lambda x_{2} . \lambda x_{3} . \alpha\left(x_{1}\right)\left(\lambda P . P\left(x_{2}\right)\right)\left(x_{3}\right): \sigma \rightarrow$ Ind $\rightarrow \tau \rightarrow$ Bool

Some kid broke every toy

- $\quad \mathrm{S}:$ every $^{\mathbf{2}}($ toy $)\left(\lambda y_{o} \cdot\right.$ some $\left.^{\mathbf{2}}(\mathbf{k i d})\left(\lambda x_{s} \cdot \operatorname{break}\left(y_{o}\right)\left(x_{s}\right)\right)\right)$

Questions with answers!

- A yes/no question (Is Kathy running?) will be something of type Bool, checked on database
- A content question (Who likes Kathy?) will be an open proposition, that is something semantically of the type property (Ind \rightarrow Bool), and operationally we will consult the database to see what individuals will make the statement true.
- We use a grammar with a simple form of gap-threading for question words

Some kid broke every toy

Every student runs

Syntax/semantics for questions

```
- \(\mathrm{S}^{\prime}: \beta(\alpha) \rightarrow \mathrm{NP}[w h]: \beta\) Aux \(\mathrm{S}: \alpha\)
    \(\mathrm{S}^{\prime}: \alpha \rightarrow\) Aux \(\mathrm{S}: \alpha\)
    \(\mathrm{NP} / \mathrm{NP}_{z}: Z \rightarrow \mathrm{e}\)
    \(\mathrm{S}: \lambda z . F(\ldots z \ldots) \rightarrow \mathrm{S} / \mathrm{NP}_{z}: F(\ldots z \ldots)\)
```


Syntax/semantics for questions

- who, NP[wh]: $\lambda U . \lambda x . U(x) \wedge \operatorname{human}(x)$
what, NP[wh]: $\lambda U . U$
which, Det[wh] : $\lambda P . \lambda V . \lambda x . P(x) \wedge V(x)$
how_many, Det[wh]: $\lambda P . \lambda V .|\lambda x . P(x) \wedge V(x)|$
- Where $|\cdot|$ is the operation that returns the cardinality of a set (count).

Question examples

- select liked from Likes,Humans where Likes.liker='Kathy' AND Humans.obj = Likes.liked

Question examples

- select liked from Likes where Likes.liker='Kathy'

Question examples

- select liked from Cars,Likes where Cars.obj=Likes.liked AND Likes.liker='Kathy'

Question examples

- How many red cars in Palo Alto does Kathy like?
- select count(*) from Likes,Cars,Locations,Reds where Cars.obj $=$ Likes.liked AND Likes.liker $=$ 'Kathy' AND Red.obj = Likes.liked AND Locations.place = 'Palo Alto' AND Locations.obj = Likes.liked
- Did Kathy see the red car in Palo Alto?
- select 'yes' where Seeings.seer $=k$ AND Seeings.seen = (select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = 'paloalto' AND Cars.obj $=$ Red.obj having count(*) = 1)
$S^{\prime}: \operatorname{see}\left(\iota\left(\lambda x \cdot \operatorname{car}(x) \wedge\right.\right.$ in $^{\prime}($ paloalto $\left.\left.)(x) \wedge \operatorname{red}^{\prime}(x)\right)\right)($ kathy $)$
Aux $\mathrm{S}: \operatorname{see}\left(\iota\left(\lambda x . \operatorname{car}(x) \wedge \operatorname{in}^{\prime}(\right.\right.$ paloalto $\left.\left.)(x) \wedge \operatorname{red}^{\prime}(x)\right)\right)($ kathy $)$
$S^{\prime}: \mid \lambda x . \operatorname{car}(x) \wedge$ in $^{\prime}($ paloalto $)(x) \wedge \operatorname{red}^{\prime}(x) \wedge$ like $(x)($ kathy $)$

37

How could we learn such representations?

- After disengagement for many years, there has started to be very interesting work in this area:
- Luke S. Zettlemoyer and Michael Collins. 2005. Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars. In Proceedings of the 21 st UAI.
- Yuk Wah Wong and Raymond J. Mooney. 2007. Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus. In Proceedings of the 45th ACL, pp. 960-967.

39

How could we learn such representations?

- General approach (ZC05): Start with initial lexicon, category templates, and paired sentences and meanings:

What states border Texas?
$\lambda x . \operatorname{state}(x) \wedge$ borders $(x$, texas)

- Learn lexical syntax/semantics for other words and learn to parse to logical form (parse structure is hidden).
- They successfully do iterative refinement of a lexicon and maxent parser

40

How can we reason with such representations?

- Logical reasoning is practical for certain domains (business rules, legal code, etc.) and has been used (see Blackburn and Bos 2005 for background).
- But our knowledge of the world is in general incomplete and uncertain.
- There is various recent work on handling restricted fragments of first order logic in probabilistic models
- Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, Benjamin Taskar. 2007. Probabilistic Relational Models. In An Introduction to Statistical Relational Learning. MIT Press.

