An Introduction to Formal Computational Semantics

CS224N/Ling 280

Christopher Manning May 23, 2000; revised 2008

A first example

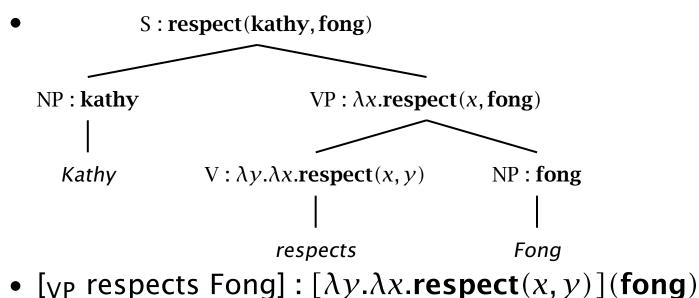
Lexicon

Kathy, NP : **kathy** Fong, NP : fong *respects*, $V : \lambda y . \lambda x . respect(x, y) \quad VP : \beta \rightarrow V : \beta$ *runs*, V : λx .**run**(x)

Grammar

```
S:\beta(\alpha) \rightarrow NP:\alpha \quad VP:\beta
VP:\beta(\alpha) \rightarrow V:\beta \quad NP:\alpha
```

A first example



- $[v_{p} | c_{p} | c_{$
 - $= \lambda x.respect(x, fong) \qquad [\beta red.]$

[s Kathy respects Fong]: $[\lambda x.respect(x, fong)](kathy)$ = respect(kathy,fong)

Database/knowledgebase interfaces

- Assume that **respect** is a table Respect with two fields respecter and respected
- Assume that kathy and fong are IDs in the database:
 k and f
- If we assert Kathy respects Fong we might evaluate the form respect(fong)(kathy) by doing an insert operation:

insert into Respects(respecter, respected) values (k, f)

Database/knowledgebase interfaces

- Below we focus on questions like Does Kathy respect
 Fong for which we will use the relation to ask:
 select 'yes' from Respects where Respects.respecter
 = k and Respects.respected = f
- We interpret "no rows returned" as 'no' = **0**.

- Everything has a type (like Java!)
- Bool truth values (0 and 1) individuals
 - Ind → Bool properties
 - $Ind \rightarrow Ind \rightarrow Bool$ binary relations
- kathy and fong are Ind
 run is Ind → Bool
 respect is Ind → Ind → Bool
- Types are interpreted right associatively.
 respect is Ind → (Ind → Bool)
- We convert a several argument function into embedded unary functions. Referred to as *currying*.

- Once we have types, we don't need λ variables just to show what arguments something takes, and so we can introduce another operation of the λ calculus: η reduction [abstractions can be contracted] $\lambda x.(P(x)) \Rightarrow P$
- This means that instead of writing:

 $\lambda y . \lambda x . respect(x, y)$

we can just write:

respect

- λ extraction allowed over any type (not just first-order)
- β reduction [application]

 $(\lambda x.P(\cdots, x, \cdots))(Z) \Rightarrow P(\cdots, Z, \cdots)$

- η reduction [abstractions can be contracted] $\lambda x.(P(x)) \Rightarrow P$
- α reduction [renaming of variables]

The first form we introduced is called the β, η long form, and the second more compact representation (which we use quite a bit below) is called the β, η normal form. Here are some examples:

•	β , η normal form	eta,η long form
	run	$\lambda x.run(x)$
	every ² (kid, run)	every ² (($\lambda x.kid(x)$), ($\lambda x.run(x)$)
	yesterday(run)	$\lambda y.yesterday(\lambda x.run(x))(y)$

Types of major syntactic categories

- nouns and verb phrases will be properties (Ind → Bool)
- noun phrases are Ind though they are commonly type-raised to (Ind → Bool) → Bool
- adjectives are (Ind → Bool) → (Ind → Bool)
 This is because adjectives modify noun meanings, that is properties.
- Intensifiers modify adjectives: e.g, very in a very happy camper, so they're ((Ind → Bool) → (Ind → Bool)) → ((Ind → Bool)) → ((Ind → Bool)) → ((Ind → Bool)) → (Ind → Bool)) [honest!].

A grammar fragment

•
$$S: \beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$$

 $NP: \beta(\alpha) \rightarrow Det: \beta \quad N': \alpha$
 $N': \beta(\alpha) \rightarrow Adj: \beta \quad N': \alpha$
 $N': \beta(\alpha) \rightarrow N': \alpha \quad PP: \beta$
 $N': \beta \rightarrow N: \beta$
 $VP: \beta(\alpha) \rightarrow V: \beta \quad NP: \alpha$
 $VP: \beta(\gamma)(\alpha) \rightarrow V: \beta \quad NP: \alpha \quad NP: \gamma$
 $VP: \beta(\alpha) \rightarrow VP: \alpha \quad PP: \beta$
 $VP: \beta \rightarrow V: \beta$
 $PP: \beta(\alpha) \rightarrow P: \beta \quad NP: \alpha$

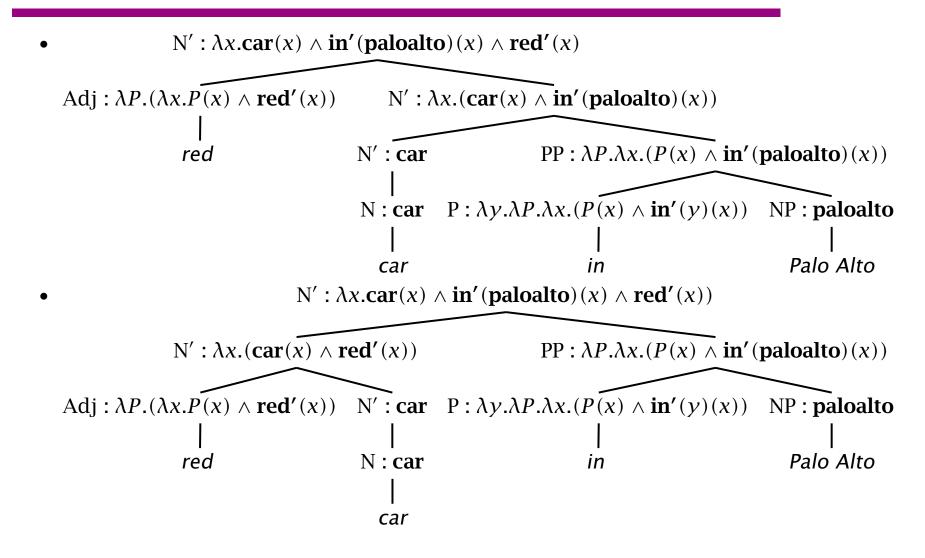
A grammar fragment

```
• Kathy, NP : kathy<sub>Ind</sub>
   Fong, NP : fong<sub>Ind</sub>
   Palo Alto, NP : paloalto<sub>Ind</sub>
  car, N : carInd→ Bool
   overpriced, Adj : overpriced(Ind → Bool) → (Ind → Bool)
   outside, PP : outside(Ind \rightarrow Bool)\rightarrow(Ind \rightarrow Bool)
   red, Adj : \lambda P.(\lambda x.P(x) \wedge \mathbf{red'}(x))
   in, P: \lambda y \cdot \lambda P \cdot \lambda x \cdot (P(x) \wedge in'(y)(x))
   the, Det : ι
  a, Det : some<sup>2</sup> (Ind \rightarrow Bool)\rightarrow (Ind \rightarrow Bool)\rightarrow Bool
   runs, V : runInd→ Bool
   respects, V : respect_{Ind} \rightarrow Ind \rightarrow Bool
   likes, V : like<sub>Ind</sub>→ Ind→ Bool
```

A grammar fragment

- in' is Ind → Ind → Bool
- in $\triangleq \lambda y . \lambda P . \lambda x . (P(x) \land in'(y)(x))$ is Ind \rightarrow (Ind \rightarrow Bool) \rightarrow (Ind \rightarrow Bool)
- red' is Ind → Bool
- red $\triangleq \lambda P.(\lambda x.(P(x) \land red'(x)) \text{ is (Ind } \rightarrow Bool) \rightarrow (Ind \rightarrow Bool))$

Adjective and PP modification



Intersective adjectives

- Syntactic ambiguity is spurious: you get the same semantics either way
- Database evaluation is possible via a table join

Non-intersective adjectives

- For non-intersective adjectives get different semantics depending on what they modify
- overpriced(in(paloalto)(house))
- in(paloalto)(overpriced(house))
- But probably won't be able to evaluate it on database!

Why things get more complex

- When doing predicate logic did you wonder why:
 - *Kathy runs* is **run(kathy**)
 - no kid runs is $\neg(\exists x)(\mathbf{kid}(x) \land \mathbf{run}(x))$
- Somehow the NP's meaning is wrapped around the predicate
- Or consider why this argument doesn't hold:
 - Nothing is better than a life of peace and prosperity.
 A cold egg salad sandwich is better than nothing.
 A cold egg salad sandwich is better than a life of peace and prosperity.
- The problem is that *nothing* is a quantifier

- We have a reasonable semantics for *red car in Palo* Alto as a property from Ind → Bool
- How do we represent noun phrases like the red car in Palo Alto or every red car in Palo Alto?

•
$$[[\iota]](P) = a$$
 if $(P(b) = 1$ iff $b = a)$

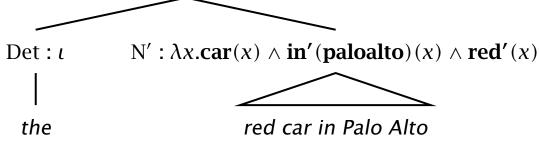
undefined, otherwise

• The semantics for *the* following Bertrand Russell, for whom *the* x meant the unique item satisfying a certain description

• red car in Palo Alto

select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = 'paloalto' AND Cars.obj = Red.obj (here we assume the unary relations have one field, obj).

- the red car in Palo Alto
- NP : $\iota(\lambda x.car(x) \land in'(paloalto)(x) \land red'(x))$



• the red car in Palo Alto

select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = 'paloalto' AND Cars.obj = Red.obj having count(*) = 1

- What then of every red car in Palo Alto?
- A generalized determiner is a relation between two properties, one contributed by the restriction from the N', and one contributed by the predicate quantified over:

 $(Ind \rightarrow Bool) \rightarrow (Ind \rightarrow Bool) \rightarrow Bool$

• Here are some determiners

some²(kid)(run) \equiv some(λx .kid(x) \wedge run(x)) every²(kid)(run) \equiv every(λx .kid(x) \rightarrow run(x))

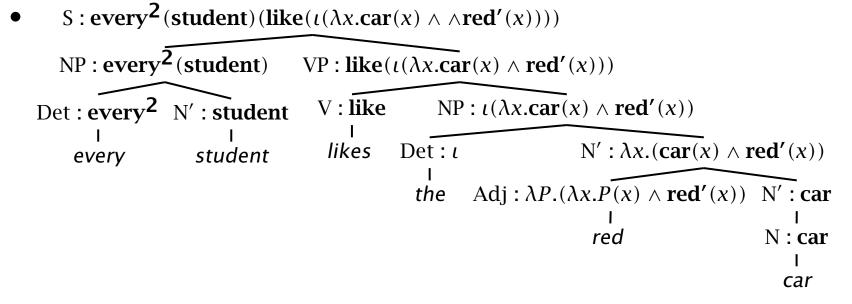
• Generalized determiners are implemented via the quantifiers:

```
every(P) = 1 iff (\forall x)P(x) = 1;
```

```
i.e., if P = \mathbf{Dom}_{\mathbf{Ind}}
```

some(*P*) = **1** iff $(\exists x)P(x) = \mathbf{1}$; i.e., if $P \neq \emptyset$

• Every student likes the red car

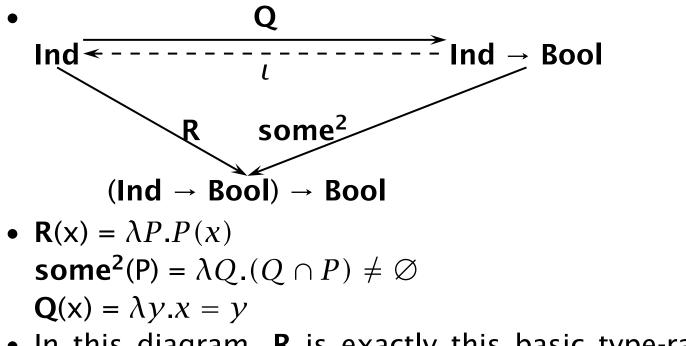


Representing proper nouns with quantifiers

- The central insight of Montague's PTQ was to treat individuals as of the same type as quantifiers (as typeraised individuals):
- *Kathy* : $\lambda P.P($ **kathy**)
- Both good and bad
- The main alternative (which we use) is flexible *type shifting* you raise the type of something when necessary.

Nominal type shifting

• Common patterns of nominal type shifting



• In this diagram, **R** is exactly this basic type-raising function for individuals.

Noun phrase scope – following Hendriks (1993)

Value raising raises a function that produces an individual to one that produces a quantifer. If $\alpha : \sigma \rightarrow \mathbf{Ind}$ then $\lambda x. \lambda P. P(\alpha(x)) : \sigma \rightarrow (\mathbf{Ind} \rightarrow \mathbf{Bool}) \rightarrow \mathbf{Bool}$

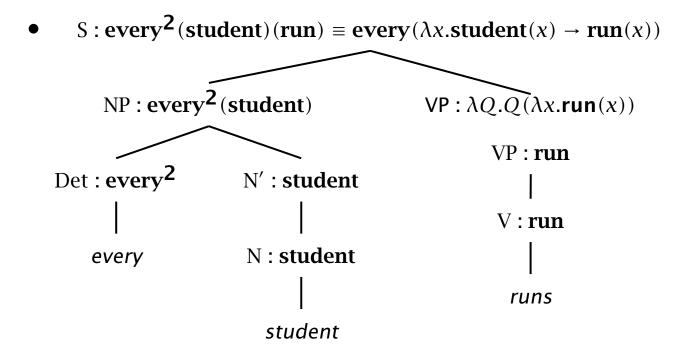
Argument raising replaces an argument of a boolean function with a variable and applies the quantifier semantically binding the replacing variable. If $\alpha : \sigma \rightarrow$

Ind $\rightarrow \tau \rightarrow \text{Bool}$ then $\lambda x_1 \cdot \lambda Q \cdot \lambda x_3 \cdot Q(\lambda x_2 \cdot \alpha(x_1)(x_2)(x_3))$:

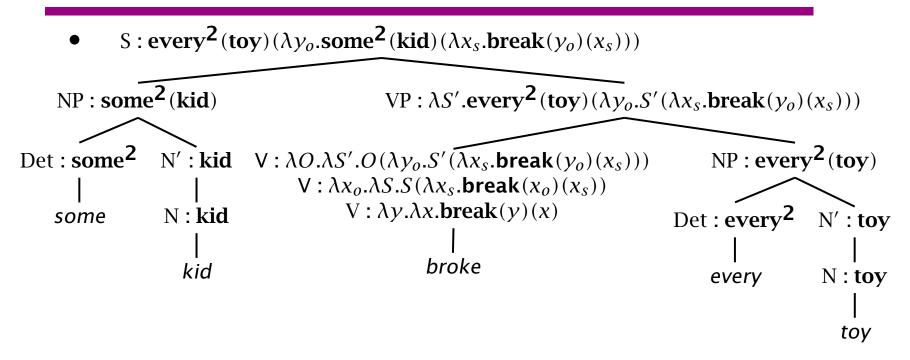
 $\sigma \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool} \rightarrow \tau \rightarrow \text{Bool}$

Argument lowering replaces a quantifier in a boolean function with an individual argument, where the semantics is calculated by applying the original function to the type raised argument. If $\alpha : \sigma \rightarrow ((\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}) \rightarrow \tau \rightarrow \text{Bool}$ then $\lambda x_1 . \lambda x_2 . \lambda x_3 . \alpha(x_1) (\lambda P.P(x_2))(x_3) : \sigma \rightarrow \text{Ind} \rightarrow \tau \rightarrow \text{Bool}$

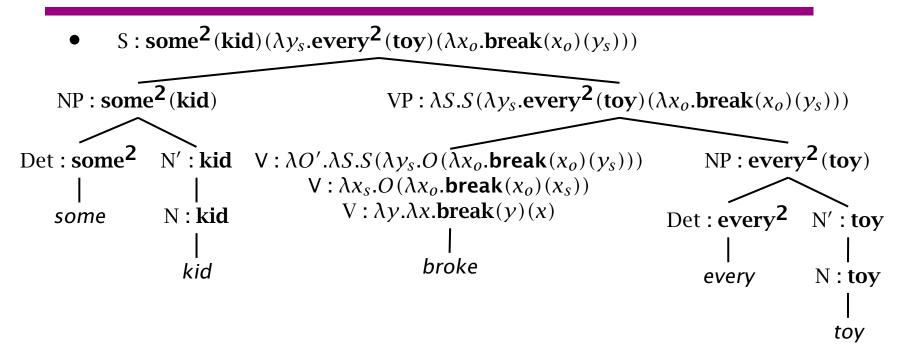
Every student runs



Some kid broke every toy



Some kid broke every toy



Questions with answers!

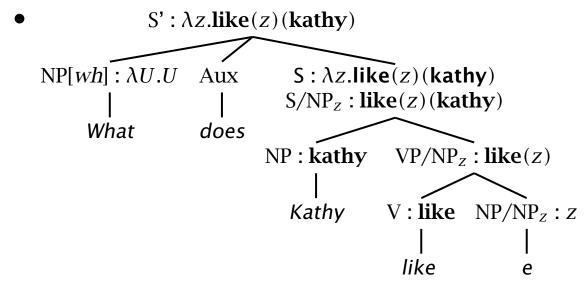
- A yes/no question (*Is Kathy running?*) will be something of type **Bool**, checked on database
- A content question (Who likes Kathy?) will be an open proposition, that is something semantically of the type property (Ind → Bool), and operationally we will consult the database to see what individuals will make the statement true.
- We use a grammar with a simple form of gap-threading for question words

Syntax/semantics for questions

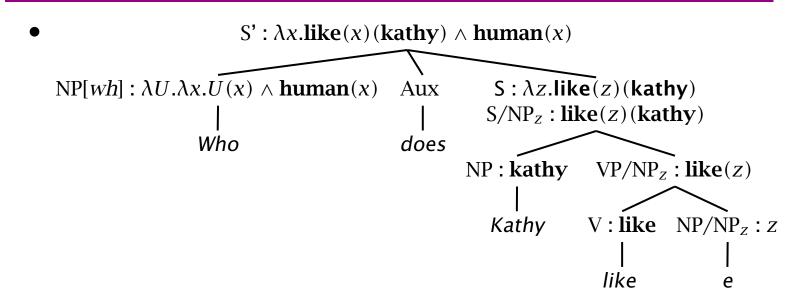
•
$$S' : \beta(\alpha) \rightarrow NP[wh] : \beta$$
 Aux $S : \alpha$
 $S' : \alpha \rightarrow Aux$ $S : \alpha$
 $NP/NP_Z : Z \rightarrow e$
 $S : \lambda z.F(...z..) \rightarrow S/NP_Z : F(...z..)$

Syntax/semantics for questions

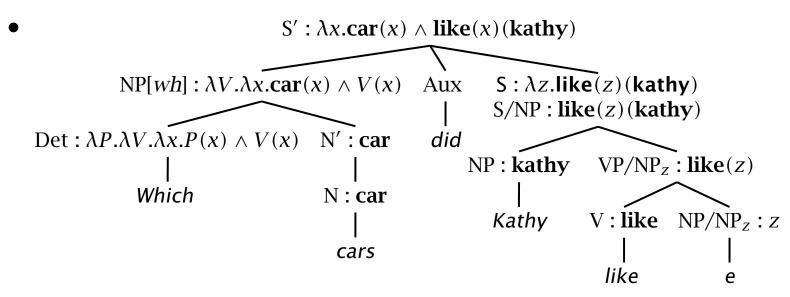
- who, NP[wh] : $\lambda U.\lambda x.U(x) \wedge human(x)$ what, NP[wh] : $\lambda U.U$ which, Det[wh] : $\lambda P.\lambda V.\lambda x.P(x) \wedge V(x)$ how_many, Det[wh] : $\lambda P.\lambda V.|\lambda x.P(x) \wedge V(x)|$
- Where | · | is the operation that returns the cardinality of a set (count).



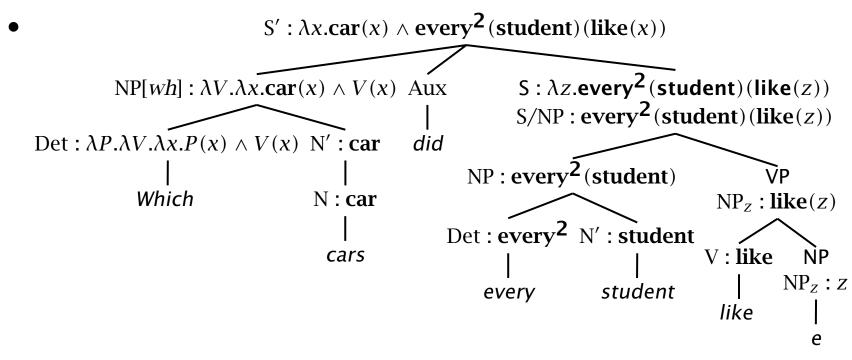
• select liked from Likes where Likes.liker='Kathy'



select liked from Likes, Humans where Likes.liker='Kathy' AND Humans.obj
 = Likes.liked



• select liked from Cars,Likes where Cars.obj=Likes.liked AND Likes.liker='Kathy'

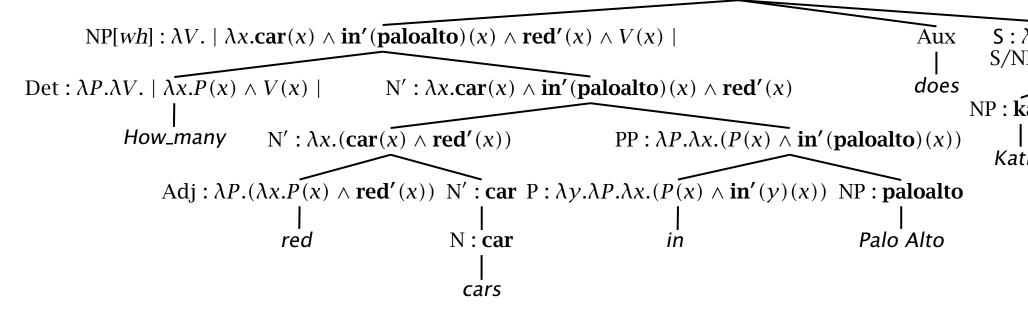


• ???

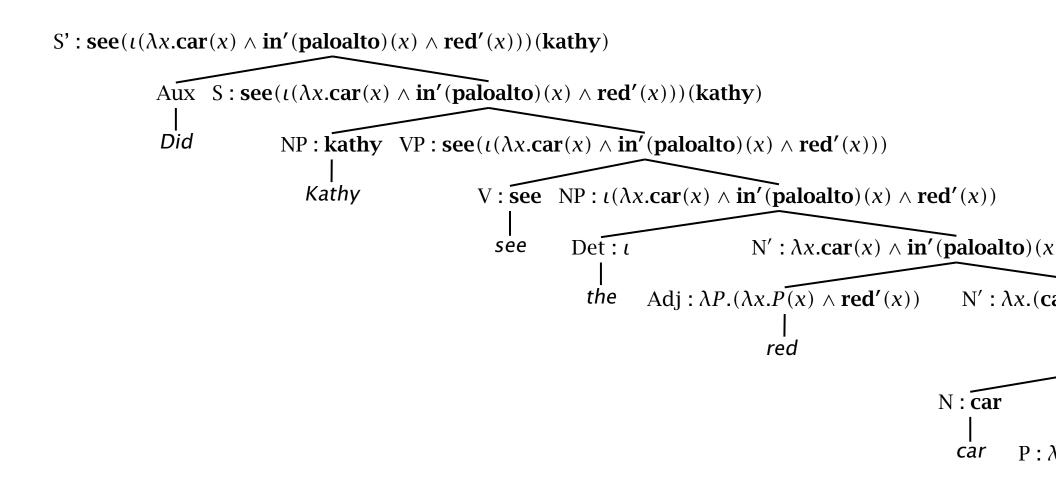
- How many red cars in Palo Alto does Kathy like?
- select count(*) from Likes, Cars, Locations, Reds where Cars.obj = Likes.liked AND Likes.liker = 'Kathy' AND Red.obj = Likes.liked AND Locations.place = 'Palo Alto' AND Locations.obj = Likes.liked
- Did Kathy see the red car in Palo Alto?
- select 'yes' where Seeings.seer = k AND Seeings.seen
 = (select Cars.obj from Cars, Locations, Red where
 Cars.obj = Locations.obj AND Locations.place = 'paloalto'
 AND Cars.obj = Red.obj having count(*) = 1)

How many red cars in Palo Alto does Kathy like?

S' :| $\lambda x.car(x) \wedge in'(paloalto)(x) \wedge red'(x) \wedge like(x)(kathy)$



Did Kathy see the red car in Palo Alto?



How could we learn such representations?

- After disengagement for many years, there has started to be very interesting work in this area:
 - Luke S. Zettlemoyer and Michael Collins. 2005.
 Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars. In *Proceedings of the 21st UAI*.
 - Yuk Wah Wong and Raymond J. Mooney. 2007.
 Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus. In *Proceedings of the* 45th ACL, pp. 960–967.

How could we learn such representations?

• General approach (ZC05): Start with initial lexicon, category templates, and paired sentences and mean-ings:

What states border Texas?

 $\lambda x.state(x) \land borders(x, texas)$

- Learn lexical syntax/semantics for other words and learn to parse to logical form (parse structure is hidden).
- They successfully do iterative refinement of a lexicon and maxent parser

How can we reason with such representations?

- Logical reasoning is practical for certain domains (business rules, legal code, etc.) and has been used (see Blackburn and Bos 2005 for background).
- But our knowledge of the world is in general incomplete and uncertain.
- There is various recent work on handling *restricted* fragments of first order logic in probabilistic models
 - Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, Benjamin Taskar. 2007. Probabilistic Relational Models. In An Introduction to Statistical Relational Learning. MIT Press.

How can we reason with such representations?

- Undirected model:
 - Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon, Matthew Richardson, Parag Singla. 2008. Markov Logic.
 In L. De Raedt, P. Frasconi, K. Kersting and S. Muggleton (eds.), *Probabilistic Inductive Logic Programming*, pp. 92– 117. Springer.
- A recent attempt to apply this to natural language inference:
 - Chloé Kiddon. 2008. Applying Markov Logic to the Task of Textual Entailment. Senior Honors Thesis, Computer Science. Stanford University.
- Logical formulae are given weights which are grounded out in an undirected markov network