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CS224N NLP 

Christopher Manning 
Spring 2008 

Borrows many slides from Bob Carpenter, Dan Klein, 
Roger Levy, Josh Goodman, Dan Jurafsky 

Questions that linguistics should answer 

  What kinds of things do people say? 
  What do these things say/ask/request about the 

world? 
  Example: In addition to this, she insisted that women were 

regarded as a different existence from men unfairly. 

  Text corpora give us data with which to answer 
these questions 

  They are an externalization of linguistic knowledge 
  What words, rules, statistical facts do we find? 
  How can we build programs that learn effectively 

from this data, and can then do NLP tasks?  
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Graphs from Simon Arnfield’s web tutorial on speech, Sheffield: 
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/ 

“l” to “a” 
transition: 

Speech Recognition: Acoustic Waves 

•  Human speech generates a wave  
–  like a loudspeaker moving 

•  A wave for the words “speech lab” looks like: 

Acoustic Sampling 

•  10 ms frame (ms = millisecond = 1/1000 second) 
•  ~25 ms window around frame [wide band] to allow/smooth 

signal processing – it let’s you see formants 

25 ms 

10ms 

. . . 

a1      a2      a3 

Result: 
Acoustic Feature Vectors 
(after transformation, 
numbers in roughly R14) 

Spectral Analysis 

•  Frequency gives pitch; amplitude gives volume 
–  sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec) 

•  Fourier transform of wave displayed as a spectrogram 
–  darkness indicates energy at each frequency 
–  hundreds to thousands of frequency samples 
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The Speech Recognition Problem 

•  The Recognition Problem: Noisy channel model 
–  Build generative model of encoding: We started with English words, 

they were encoded as an audio signal, and we now wish to decode. 
–  Find most likely sequence w of “words” given the sequence of 

acoustic observation vectors a  

–  Use Bayes’ rule to create a generative model and then decode 
–  ArgMaxw  P(w|a) = ArgMaxw  P(a|w) P(w) / P(a) 
                                 = ArgMaxw  P(a|w) P(w)  

•  Acoustic Model:      P(a|w) 
•  Language Model:    P(w) 

•  Why is this progress?   

A probabilistic theory 
of a language 
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MT: Just a Code? 

  “Also knowing nothing official about, but having guessed and 
inferred considerable about, the powerful new mechanized 
methods in cryptography—methods which I believe succeed 
even when one does not know what language has been coded
—one naturally wonders if the problem of translation could 
conceivably be treated as a problem in cryptography.  When I 
look at an article in Russian, I say: ‘This is really written in 
English, but it has been coded in some strange symbols. I will 
now proceed to decode.’  ”  

  Warren Weaver (1955:18, quoting a letter he wrote in 1947) 

MT System Components 

source 
P(e) 

e f 

decoder 
observed      

argmax P(e|f) = argmax P(f|e)P(e) 
e e 

e f 
best 

channel 
P(f|e) 

Language Model Translation Model 

Other Noisy-Channel Processes 

  Handwriting recognition 

  OCR 

  Spelling Correction 

)|()()|( textstrokesPtextPstrokestextP ∝

)|()()|( textpixelsPtextPpixelstextP ∝

)|()()|( texttyposPtextPtypostextP ∝

Probabilistic Language Models 

  Want to build models which assign scores to sentences. 
  P(I saw a van) >> P(eyes awe of an) 
  Not really grammaticality: P(artichokes intimidate zippers) ≈ 0 

  One option: empirical distribution over sentences? 
  Problem: doesn’t generalize (at all) 

  Two major components of generalization 
  Backoff: sentences generated in small steps which can be 

recombined in other ways 
  Discounting: allow for the possibility of unseen events 

N-Gram Language Models 
  No loss of generality to break sentence probability down with 

the chain rule 

  Too many histories! 
  P(??? | No loss of generality to break sentence) ? 
  P(??? | the water is so transparent that) ? 

  N-gram solution: assume each word depends only on a short 
linear history (a Markov assumption) 
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Unigram Models 
  Simplest case: unigrams 

  Generative process: pick a word, pick a word, … 
  As a graphical model: 

  To make this a proper distribution over sentences, we have to generate a special 
STOP symbol last.  (Why?) 

  Examples: 
  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.] 
  [thrift, did, eighty, said, hard, 'm, july, bullish] 
  [that, or, limited, the] 
  [] 
  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico, 

never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a, 
details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, they, three, 
edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, however, said, 
possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, half, between, 
nasdaq] 
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Bigram Models 
  Big problem with unigrams: P(the the the the) >> P(I like ice cream)! 
  Condition on previous word: 

  Any better? 
  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., 

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, 
fifty, five, yen] 

  [outside, new, car, parking, lot, of, the, agreement, reached] 
  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, 

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, 
of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated, 
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, 
conscientious, teaching] 

  [this, would, be, a, record, november] 
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Regular Languages? 
  N-gram models are (weighted) regular processes 

  You can extend to trigrams, fourgrams, … 
  Why can’t we model language like this? 

  Linguists have many arguments why language can’t be regular. 
  Long-distance effects: 
 “The computer which I had just put into the machine room on 

the fifth floor crashed.” 
  Why CAN we often get away with n-gram models? 

  PCFG language models do model tree structure (later): 
  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk, 

involving, IRS, leaders, and, transportation, prices, .] 
  [It, could, be, announced, sometime, .] 
  [Mr., Toseland, believes, the, average, defense, economy, is, drafted, 

from, slightly, more, than, 12, stocks, .] 

Estimating bigram probabilities: 
The maximum likelihood estimate 

  <s> I am Sam </s> 
  <s> Sam I am </s> 
  <s> I do not like green eggs and ham </s> 

  This is the Maximum Likelihood Estimate, because it is the one 
which maximizes P(Training set|Model) 

Berkeley Restaurant Project 
sentences 

  can you tell me about any good cantonese 
restaurants close by 

  mid priced thai food is what i’m looking for 
  tell me about chez panisse 
  can you give me a listing of the kinds of food 

that are available 
  i’m looking for a good place to eat breakfast 
  when is caffe venezia open during the day 

Raw bigram counts 

  Out of 9222 sentences 

Raw bigram probabilities 

  Normalize by unigrams: 

  Result: 



4/7/08 

4 

Evaluation 

  What we want to know is: 
  Will our model prefer good sentences to bad ones? 

  That is, does it assign higher probability to “real” or “frequently 
observed” sentences than “ungrammatical” or “rarely observed” 
sentences? 

  As a component of Bayesian inference, will it help us 
discriminate correct utterances from noisy inputs? 

  We train parameters of our model on a training set. 
  To evaluate how well our model works, we look at the 

models performance on some new data 
  This is what happens in the real world; we want to know 

how our model performs on data we haven’t seen 
  So a test set. A dataset which is different than our 

training set. Preferably totally unseen/unused. 

Measuring Model Quality 
  For Speech: Word Error Rate (WER) 

  The “right” measure: 
  Task error driven 
  For speech recognition 
  For a specific recognizer! 

  Extrinsic, task-based evaluation is in principle best, but … 
  For general evaluation and fast experimentation, we want a 

measure which references only good text, not mistake text 

Correct answer:          Andy saw a part of the movie 

Recognizer output:     And he saw apart of the movie 

insertions + deletions + substitutions 
true sentence size 

WER: 4/7 
= 57% 

Measuring Model Quality 
  The Shannon Game: 

  How well can we predict the next word? 

  Unigrams are terrible at this game.  (Why?) 

  The “Entropy” Measure 
  Really: average cross-entropy of a text according to a model 

When I order pizza, I wipe off the ____ 

Many children are allergic to ____ 

I saw a ____ 
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Measuring Model Quality 

  Problems with entropy: 
  0.1 bits of improvement doesn’t sound so good 
  Solution: perplexity 

  Intrinsic measure: may not reflect task performance (but is 
helpful as a first thing to measure and optimize on) 

  Minor technical note: even though our models require a 
stop step, people typically don’t count it as a symbol when 
taking these averages. 
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What’s in our text corpora 

  Common words in 
Tom Sawyer 
(71,370 words) 

  the: 3332, and: 
2972, a: 1775, to: 
1725, of: 1440, 
was: 1161, it: 
1027, in: 906, that: 
877, he: 877, I: 
783, his: 772, you: 
686, Tom: 679  

  Word Frequency 
Frequency of Frequency 

  1   3993 
  2  1292 
  3  664 
  4  410 
  5  243 
  6  199 
  7  172 
  8  131 
  9  82 
  10  91 
  11–50 540 
  51–100 99 
  >100 102 
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Sparsity 
  Problems with n-gram models: 

  New words appear regularly: 
  Synaptitute 
  132,701.03 
  fuzzificational 

  New bigrams: even more often 
  Trigrams or more – still worse! 

  Zipf’s Law 
  Types (words) vs. tokens (word occurences) 
  Broadly: most word types are rare ones 
  Specifically:  

  Rank word types by token frequency 
  Frequency inversely proportional to rank: f = k/r 
  Statistically: word distributions are heavy tailed 

  Not special to language: randomly generated character strings have 
this property (try it!) 
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Zipf’s Law (on the Brown corpus) Smoothing 
  We often want to make estimates from sparse statistics: 

  Smoothing flattens spiky distributions so they generalize better 

  Very important all over NLP, but easy to do badly! 
  Illustration with bigrams (h = previous word, could be anything). 

P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 request 
  7 total 
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P(w | denied the) 
  2.5 allegations 
  1.5 reports 
  0.5 claims 
  0.5 request 
  2 other 
  7 total 

Smoothing 
  Estimating multinomials 

  We want to know what words follow some history h 
  There’s some true distribution P(w | h) 
  We saw some small sample of N words from P(w | h) 
  We want to reconstruct a useful approximation of P(w | h) 
  Counts of events we didn’t see are always too low (0 < N P(w | h)) 
  Counts of events we did see are in aggregate to high 

  Example: 

  Two issues: 
  Discounting: how to reserve mass what we haven’t seen 
  Interpolation: how to allocate that mass amongst unseen events 

P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 speculation 
  … 
  1 request 
  13 total 

P(w | affirmed the) 
  1 award 

Five types of smoothing 

  We’ll cover 
  Add-δ smoothing (Laplace) 
  Simple interpolation 
  Good-Turing smoothing 
  Katz smoothing 
  Kneser-Ney smoothing 

  Or less if we run out of time … and then you’ll 
just have to read the textbook! 

Smoothing: Add-One, Etc. 

  One class of smoothing/discounting functions: 
  Add-one / delta: assumes a uniform prior 

δ
δ

δ +
+
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VwwcwwPADD

c number of word tokens in training data 

c(w) count of word w in training data 

c(w,w-1) count of word w following word w-1 

V total vocabulary size (assumed known) 

Nk number of word types with count k 

Add-One Estimation 
  Idea: pretend we saw every word once more than we actually did 

[Laplace] 

  Corresponds to a uniform Dirichlet prior over vocabulary 
  Think of it as taking items with observed count r > 1 and treating them 

as having count r* < r 
  V/(c+V) of the probability space is from “fake” events 

  N1+/(c+V) of which is distributed back to seen words 
  N0/(c+V) actually passed on to unseen words (nearly all!) 
  Actually tells us not only how much to hold out, but where to put it 

  Works astonishingly poorly in practice 

  Quick fix: add some small δ instead of 1 [Lidstone, Jefferys] 
  Slightly better, holds out less mass, still a bad idea 

Vhc
hwchwP
+
+

=
)(

1),()|(



4/7/08 

6 

Berkeley Restaurant Corpus 
Laplace smoothed bigram counts Laplace-smoothed bigrams 

Reconstituted counts How Much Mass to Withhold? 
  Remember the key discounting problem: 

  What count should r* should we use for an event that occurred r times 
in c samples? 

  r is too big 

  Idea: estimate empirically using held-out data [Jelinek and Mercer] 
  Get another c samples 
  See what the average count of items occurring r times is (e.g. 

doubletons on average might occur 1.78 times) 
  Use those averages as r* 

  Works better than fixing counts to add in advance 

Backoff and Interpolation 

  Discounting says, “I saw event X n times, but I 
will really treat it as if I saw it fewer than n times 

  Backoff (and interpolation) says, “In certain 
cases, I will condition on less of my context than 
in other cases” 
  The sensible thing is to condition on less in 

contexts that you haven’t learned much about 

  Backoff: use trigram if you have it, otherwise 
bigram, otherwise unigram 

  Interpolation: mix all three  

Linear Interpolation 
  One way to ease the sparsity problem for n-grams is to use 

less-sparse n-1-gram estimates 
  General linear interpolation: 

  Having a single global mixing constant is generally not ideal: 

  [But actually works surprisingly well – simplest competent approach] 

  A better yet still simple alternative is to vary the mixing constant 
as a function of the conditioning context 

1 1 1 1
ˆ( | ) [1 ( , )] ( | ) [ ( , )] ( )P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ( | ) [1 ] ( | ) [ ] ( )P w w P w w P wλ λ− −= − +

€ 

P(w | w−1) = [1− λ(w−1)] ˆ P (w | w−1) +λ(w−1)P(w)
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Held-Out Data 
  Important tool for getting models to generalize: 

  When we have a small number of parameters that control the degree of 
smoothing, we set them to maximize the (log-)likelihood of held-out data 

  Can use any optimization technique (line search or EM usually easiest) 

  Example: 

Training Data Held-Out 
Data 

Test 
Data 
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Good-Turing smoothing intuition 

  Imagine you are fishing 
  You have caught  

  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 
eel = 18 fish 

  How likely is it that next species is new 
  3/18 

  Assuming so, how likely is it that the next 
species is a trout? 
  Must be less than 1/18 

Good-Turing Reweighting I 
  We’d like to not need held-out data (why?) 
  Idea: leave-one-out validation 

  Take each of the c training words out in turn 
  c training sets of size c-1, held-out of size 1 
  What fraction of held-out words are unseen 

in training?  
  N1/c 

  What fraction of held-out words are seen k 
times in training? 
  (k+1)Nk+1/c 

  So in the future we expect (k+1)Nk+1/c of the 
words to be those with training count k 

  There are Nk words with training count k 
  Each should occur with probability: 

  (k+1)Nk+1/c/Nk 
  …or expected count (k+1)Nk+1/Nk 

N1 

N2 

N3 

N4417 

N3511 

. .
 . 

. 

N0 

N1 

N2 

N4416 

N3510 

. .
 . 

. 

Good-Turing Reweighting II 
  Problem: what about “the”?  (say c=4417) 

  For small k, Nk > Nk+1 
  For large k, too jumpy, zeros wreck estimates 

  Simple Good-Turing [Gale and Sampson]: replace 
empirical Nk with a best-fit regression (e.g., power 
law) once count counts get unreliable 

N1 

N2 

N3 

N4417 

N3511 

. .
 . 

. 

N0 

N1 

N2 

N4416 

N3510 

. .
 . 

. 

N1 
N2 N3 

N1 
N2 

Good Turing calculations Good-Turing Reweighting III 
  Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk 

  Katz Smoothing 
  Extends G-T smoothing into a backoff model using higher order contexts 
  Use GT discounted bigram counts (roughly – Katz left large counts alone) 
  Whatever mass is left goes to empirical unigram 
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Count in 22M Words Actual c* (Next 22M) GT’s c* 

1 0.448 0.446 

2 1.25 1.26 

3 2.24 2.24 

4 3.23 3.24 

Mass on New  9.2% 9.2% 
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Intuition of Katz backoff + discounting 

  How much probability to assign to all the zero 
trigrams? 
  Use GT or other discounting algorithm to tell us 

  How to divide that probability mass among 
different contexts? 
  Use the n-1 gram estimates to tell us 

  What do we do for the unigram words not seen 
in training? 
  Out Of Vocabulary = OOV words 

Kneser-Ney Smoothing I 
  Something’s been very broken all this time 

  Shannon game:  There was an unexpected ____? 
  delay? 
  Francisco? 

  “Francisco” is more common than “delay” 
  … but “Francisco” always follows “San” 

  Solution: Kneser-Ney smoothing 
  In the back-off model, we don’t want the unigram probability of w 
  Instead, probability given that we are observing a novel continuation 
  Every bigram type was a novel continuation the first time it was seen 
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Kneser-Ney Smoothing II 
  One more aspect to Kneser-Ney: 

  Look at the GT counts: 

  Absolute Discounting 
  Save ourselves some time and just subtract 0.75 (or some d) 
  Maybe have a separate value of d for very low counts 

Count in 22M Words Actual c* (Next 22M) GT’s c* 

1 0.448 0.446 

2 1.25 1.26 

3 2.24 2.24 

4 3.23 3.24 

€ 

PKN (w |w−1) =
c(w,w−1) − d
c(w',w−1)

w'
∑

+α(w−1)PCONTINUATION (w)

What Actually Works? 
  Trigrams: 

  Unigrams, bigrams too little 
context 

  Trigrams much better (when 
there’s enough data) 

  4-, 5-grams usually not 
worth the cost (which is 
more than it seems, due to 
how speech recognizers are 
constructed) 

  Good-Turing-like methods for 
count adjustment 
  Absolute discounting, Good-

Turing, held-out estimation, 
Witten-Bell 

  Kneser-Ney equalization for 
lower-order models 

  See [Chen+Goodman] reading 
for tons of graphs! 

[Graph from 
Joshua Goodman] 

Data >> Method? 
  Having more data is always good… 

  … but so is picking a better smoothing mechanism! 
  N > 3 often not worth the cost (though 4-grams begin to look good) 
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Google N-Gram Release 
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Google N-Gram Release 
  serve as the incoming 92

  serve as the incubator 99

  serve as the independent 794

  serve as the index 223

  serve as the indication 72

  serve as the indicator 120

  serve as the indicators 45

  serve as the indispensable 111

  serve as the indispensible 40

  serve as the individual 234


Beyond N-Gram LMs 
  Caching Models 

  Recent words more likely to appear again 

  Can be disastrous in practice for speech (why?) 

  Skipping Models 

  Clustering Models: condition on word classes when words are too sparse 
  Trigger Models: condition on bag of history words (e.g., maxent) 
  Structured Models: use parse structure (we’ll see these later) 
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Unknown words: Open versus 
closed vocabulary tasks 

  If we know all the words in advance 
  Vocabulary V is fixed 
  Closed vocabulary task. Easy. 

  Often we don’t know this 
  Out Of Vocabulary = OOV words 
  Open vocabulary task 

  Instead: create an unknown word token <UNK> 
  Training of <UNK> probabilities 

  Create a fixed lexicon L of size V 
  At text normalization phase, any training word not in L changed to  <UNK> 

  There may be no such instances if L covers the training data 
  Now we train its probabilities 

  If low counts are mapped to <UNK>, may train it like a normal word 
  Otherwise, techniques like Good-Turing estimation are applicable 

  At decoding time 
  If text input: Use UNK probabilities for any word not in training 

Practical Considerations 
  The unknown word symbol <UNK>: 

  In many cases, open vocabularies use multiple types of OOVs 
(e.g., numbers & proper names) 

  For the programming assignment: 
  OK to assume there is only one unknown word type, UNK 
  UNK will be quite common in new text! 
  UNK stands for all unknown word types (define probability event 

model thus) 
  To model the probability of individual new words occurring, you 

can use spelling models for them, but people usually don’t 
  Numerical computations 

  We usually do everything in log space (log probabilities) 
  Avoid underflow 
  (also adding is faster than multiplying) 


