

Questions that linguistics should answer

- What kinds of things do people say?
- What do these things say/ask/request about the world?
- Example: In addition to this, she insisted that women were regarded as a different existence from men unfairly.
- Text corpora give us data with which to answer these questions
- They are an externalization of linguistic knowledge
- What words, rules, statistical facts do we find?
- How can we build programs that learn effectively from this data, and can then do NLP tasks?

Speech Recognition: Acoustic Waves

- Human speech generates a wave
- like a loudspeaker moving
- A wave for the words "speech lab" looks like:

Graphs from Simon Arnfield's web tutorial on speech, Sheffield
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

Spectral Analysis

- Frequency gives pitch; amplitude gives volume - sampling at $\sim 8 \mathrm{kHz}$ phone, $\sim 16 \mathrm{kHz}$ mic ($\mathrm{kHz}=1000$ cycles $/ \mathrm{sec}$)

- Fourier transform of wave displayed as a spectrogram
- darkness indicates energy at each frequency
- hundreds to thousands of frequency samples

Acoustic Sampling

- 10 ms frame ($\mathrm{ms}=$ millisecond $=1 / 1000$ second)
- $\sim 25 \mathrm{~ms}$ window around frame [wide band] to allow/smooth signal processing - it let's you see formants

The Speech Recognition Problem

- The Recognition Problem: Noisy channel model
- Build generative model of encoding: We started with English words, they were encoded as an audio signal, and we now wish to decode.
- Find most likely sequence w of "words" given the sequence of acoustic observation vectors a
- Use Bayes' rule to create a generative model and then decode
$-\operatorname{ArgMax}_{\mathbf{w}} \mathrm{P}(\mathbf{w} \mid \mathbf{a})=\operatorname{ArgMax}_{\mathbf{w}} \mathrm{P}(\mathbf{a} \mid \mathbf{w}) \mathrm{P}(\mathbf{w}) / \mathrm{P}(\mathbf{a})$
$=\operatorname{ArgMax}_{\mathbf{w}} P(\mathbf{a} \mid \mathbf{w}) P(\mathbf{w})$
- Acoustic Model: $\quad \mathrm{P}(\mathbf{a} \mid \mathbf{w})$
- Language Model: $\mathrm{P}(\mathbf{w})$ A probabilistic theory of a language
- Why is this progress?

MT: Just a Code?

- "Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized inferred considerable about, the powerful new mechanized methods in cryptography-methods which I believe succeed
even when one does not know what language has been coded even when one does not know what language has been coded
-one naturally wonders if the problem of translation could -one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When
look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'
- Warren Weaver (1955:18, quoting a letter he wrote in 1947)

Other Noisy-Channel Processes

- Handwriting recognition
$P($ text \mid strokes $) \propto P($ text $) P($ strokes \mid text $)$
- OCR
$P($ text \mid pixels $) \propto P($ text $) P($ pixels \mid text $)$
- Spelling Correction
$P($ text \mid typos $) \propto P($ text $) P($ typos \mid text $)$

N-Gram Language Models

- No loss of generality to break sentence probability down with the chain rule

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

- Too many histories!
- $P(? ? ?$ | No loss of generality to break sentence) ?
- $\quad \mathrm{P}($??? \mid the water is so transparent that $)$?
- N-gram solution: assume each word depends only on a short linear history (a Markov assumption)

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

Probabilistic Language Models

- Want to build models which assign scores to sentences.
- \quad (I saw a van) >> P(eyes awe of an)
- Not really grammaticality: $\mathrm{P}($ artichokes intimidate zippers $) \approx 0$
- One option: empirical distribution over sentences?
- Problem: doesn't generalize (at all)
- Two major components of generalization
- Backoff: sentences generated in small steps which can be recombined in other ways
- Discounting: allow for the possibility of unseen events

Unigram Models

Simplest case: unigrams
$P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i}\right)$

- Generative process: pick a word, pick a word,

As a graphical model:

- To make this a proper distribution over sentences, we have to generate a special

STOP symbol last. (Why?)

- Examples:
[ffith, an, of, futures, the, an, incorporated, a , a, the, inflation, most, dollars, quarter, in, is, mass.]
[thrift, idid eighty siald, hard, m, july, bullish]
[that, or, limited, the]
[that, or, imitited, the]

Bigram Models

- Big problem with unigrams: P (the the the the $) \gg P($ l like ice cream $)$!
- Condition on previous word:

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{i-1}\right)
$$

- Any better?
- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., fifty, five, yen]
- [outside, new, car, parking, lot, of, the, agreement, reached]
- [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out,
of, american, brands, vying, for, mr., womack, currently, sharedata incorporated, believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to,
conscientious, teaching]
- [this, would, be, a, record, november]

Regular Languages?

- N-gram models are (weighted) regular processes
- You can extend to trigrams, fourgrams,

Linguists have many arguments why language can't be regular.

- Long-distance effects:
"The computer which I had just put into the machine room on the fifth floor crashed."
- Why CAN we often get away with n-gram models?
- PCFG language models do model tree structure (later)
- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
- [lt, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

Estimating bigram probabilities:
 The maximum likelihood estimate

Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

- Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

- Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

- Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Evaluation

- What we want to know is:
- Will our model prefer good sentences to bad ones?
" That is, does it assign higher probability to "real" or "frequently observed" sentences than "ungrammatical" or "rarely observed"
sentences?
- As a component of Bayesian inference, will it help us discriminate correct utterances from noisy inputs?
- We train parameters of our model on a training set.
- To evaluate how well our model works, we look at the models performance on some new data
- This is what happens in the real world; we want to know how our model performs on data we haven't seen
- So a test set. A dataset which is different than our training set. Preferably totally unseen/unused.

Measuring Model Quality

- For Speech: Word Error Rate (WER) insertions + deletions + substitutions
Correct answer: Andy saw a part of the movie
Recognizer output: And he saw apart of the movie
"right" measure:

Task error driven
For speech recognition
For a specific recognizer!
:---
$=57 \%$

- Extrinsic, task-based evaluation is in principle best, but .
- For general evaluation and fast experimentation, we want a measure which references only good text, not mistake text

Measuring Model Quality

- The Shannon Game:
- How well can we predict the next word? When I order pizza, I wipe off the ___ Many children are allergic to

I saw a
\qquad
\qquad
\square grease 0.5 dust 0.05
mice 0.0001

- Unigrams are terrible at this game. (Why?) the $1 \mathrm{e}-100$
- The "Entropy" Measure
- Really: average cross-entropy of a text according to a model
$H(S \mid M)=\frac{\log _{2} P_{M}(S)}{|S|}=\frac{\sum_{i} \log _{2} P_{M}\left(s_{i}\right)}{\sum_{i}\left|s_{i}\right|} \underbrace{}_{\sum_{,} \log _{2} P_{M}\left(w_{j} \mid w_{j-1}\right)}$

Measuring Model Quality

- Problems with entropy:
- 0.1 bits of improvement doesn't sound so good
- Solution: perplexity

$$
\begin{aligned}
& \text { olution: perplexity } \\
& \qquad P(S \mid M)=2^{H(S \mid M)}=\sqrt[n]{\frac{1}{\prod_{i=1}^{n} P_{M}\left(w_{i} \mid h\right)}}
\end{aligned}
$$

- Intrinsic measure: may not reflect task performance (but is helpful as a first thing to measure and optimize on)
- Minor technical note: even though our models require a stop step, people typically don't count it as a symbol when taking these averages

What's in our text corpora

- Common words in Tom Sawyer (71,370 words)
- the: 3332, and:

2972, a: 1775, to:
1725, of: 1440,
was: 1161, it:
1027, in: 906, that:
877, he: 877, l:
783, his: 772, you:
686, Tom: 679
 Frequency 1 Wency of

Frequency
of Freq
3993 1292

- 3
- 4
- 5
- $\quad 6$
- 6
- $\quad 7$
$-\quad 8$
$-\quad 9$
- $\quad 10$
- 10

- $51-100$

99

664

410
99
\square
\square

Sparsity

- Problems with n-gram models
- New words appear regularly:
- Synaptitute
- 132,701.03
fuzzificational
- New bigrams: even more often
- Trigrams or more - still worse!

Zipf's Law

- Types (words) vs. tokens (word occurences)
- Types (words) vs. tokens (word occuren
- Specifically:

Specifically:

- Rank word types by token frequency
Rank word types by token frequency Frequency inversely proportional to rank: $f=k$
- Frequency inversely proportional to rank: $f=k / r$

Not special to language: randomly generated character strings have
Not special to language: randomly generated character strings have
this property (ry it!) this property (try it!)

Smoothing

Five types of smoothing

- We'll cover
- Add- δ smoothing (Laplace)
- We want to know what words follow some history h
- We want to know what words follow so
- We saw some small sample of N words from $P(w \mid h)$
- We want to reconstruct a useful approximation of $P(w \mid h)$

Counts of events we didn't see are always too low ($0<\mathrm{NP}(\mathrm{w} \mid \mathrm{h})$)
Counts of events we did see are in aggregate to high

- Example: $\quad P(w \mid$ denied the $) \quad P(w \mid$ affirmed the $)$

$$
3 \text { allegations }
$$

3 allegations
2 reports
1 claims
1 request
1 request

- Two issues: 13 total
- Discounting: how to reserve mass what we haven't seen
- Interpolation: how to allocate that mass amongst unseen events

Smoothing: Add-One, Etc.

c	number of word tokens in training data
$c(w)$	count of word w in training data
$c\left(w, w_{-1}\right)$	count of word w following word w_{-1}
V	total vocabulary size (assumed known)
N_{k}	number of word types with count k

- One class of smoothing/discounting functions:
- Add-one / delta: assumes a uniform prior

$$
P_{A D D-\delta}\left(w \mid w_{-1}\right)=\frac{c\left(w, w_{-1}\right)+\delta(1 / V)}{c\left(w_{-1}\right)+\delta}
$$

Add-One Estimation

- Idea: pretend we saw every word once more than we actually did [Laplace]

$$
P(w \mid h)=\frac{c(w, h)+1}{c(h)+V}
$$

- Corresponds to a uniform Dirichlet prior over vocabulary
- Think of it as taking items with observed count $r>1$ and treating them as having count $r^{*}<r$
- $\quad \mathrm{V} /(\mathrm{c}+\mathrm{V})$ of the probability space is from "fake" events
- $\mathrm{N}_{1+} /(\mathrm{C}+\mathrm{V})$ of which is distributed back to seen words
- $\mathrm{N}_{0} /(\mathrm{c}+\mathrm{V})$ actually passed on to unseen words (nearly all!)
- Actually tells us not only how much to hold out, but where to put it - Works astonishingly poorly in practice
- Quick fix: add some small δ instead of 1 [Lidstone, Jefferys] - Slightly better, holds out less mass, still a bad idea

Berkeley Restaurant Corpus Laplace smoothed bigram counts								
	1	want	to	eat	chinese	food	lunch	spend
1	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

How Much Mass to Withhold?

- Remember the key discounting problem:
- What count should r^{*} should we use for an event that occurred r times
in c samples?
- r is too big
- Idea: estimate empirically using held-out data [Jelinek and Mercer]
- Get another c samples
- See what the average count of items occurring r times is (e.g
doubletons on average might occur 1.78 times)
- Use those averages as r*
- Works better than fixing counts to add in advance

Backoff and Interpolation

Linear Interpolation

- One way to ease the sparsity problem for n-grams is to use less-sparse n-1-gram estimates
- Discounting says, "I saw event $X n$ times, but I will really treat it as if I saw it fewer than n times
- Backoff (and interpolation) says, "In certain cases, I will condition on less of my context than in other cases"
- The sensible thing is to condition on less in contexts that you haven't learned much about
- Backoff: use trigram if you have it, otherwise bigram, otherwise unigram
$P\left(w \mid w_{-1}\right)=\left[1-\lambda\left(w, w_{-1}\right)\right] \hat{P}\left(w \mid w_{-1}\right)+\left[\lambda\left(w, w_{-1}\right)\right] P(w)$
- Having a single global mixing constant is generally not ideal:

$$
P\left(w \mid w_{-1}\right)=[1-\lambda] \hat{P}\left(w \mid w_{-1}\right)+[\lambda] P(w)
$$

- [But actually works surprisingly well - simplest competent approach]
- A better yet still simple alternative is to vary the mixing constant as a function of the conditioning context
$P\left(w \mid w_{-1}\right)=\left[1-\lambda\left(w_{-1}\right)\right] \hat{P}\left(w \mid w_{-1}\right)+\lambda\left(w_{-1}\right) P(w)$

Held-Out Data

- Important tool for getting models to generalize

- Can use any optimization technique (line search or EM usually easiest)
- Example:
$P\left(w \mid w_{-1}\right)=[1-\lambda] \hat{P}\left(w \mid w_{-1}\right)+[\lambda] P(w)$

Good-Turing Reweighting I

We'd like to not need held-out data (why?)

- Idea: leave-one-out validation
- Take each of the c training words out in turn
- c training sets of size c-1, held-out of size 1
- What fraction of held-out words are unseen in training?
- $\mathrm{N}_{1} / \mathrm{c}$
- What fraction of held-out words are seen k times in training?
- $(\mathrm{k}+1) \mathrm{N}_{\mathrm{k}+1} / \mathrm{c}$
- So in the future we expect $(k+1) N_{k+1} / c$ of the words to be those with training count k
- There are N_{k} words with training count k
- Each should occur with probability.
- $(k+1) N_{k+1} / c / N_{k}$
- ...or expected count $(k+1) N_{k+1} / N_{k}$

Good Turing calculations

c	unseen (bass or catfish)	trout
MLE p	$p=\frac{0}{18}=0$	1
c^{*}		$\frac{1}{18}$
GT p_{GT}^{*}	$p_{\mathrm{GT}}^{*}($ unseen $)=\frac{N_{1}}{N}=\frac{3}{18}=.17$	$p_{\mathrm{GT}}^{*}($ trout $)=\frac{67}{18}=\frac{1}{27}=.037$

Good-Turing smoothing intuition

- Imagine you are fishing
- You have caught
- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is new
- 3/18
- Assuming so, how likely is it that the next species is a trout?
- Must be less than $1 / 18$

Good-Turing Reweighting II

Problem: what about "the"? (say c=4417)

- For small $k, N_{k}>N_{k+1}$
- For large k , too jumpy, zeros wreck estimates

- Simple Good-Turing [Gale and Sampson]: replace Simple Good-Turing [Gale and Sampson]: replace
empirical N_{k} with a best-fit regression (e.g., power empirical N_{k} with a best-fit regression (e.
law) once count counts get unreliable

Good-Turing Reweighting III

- Hypothesis: counts of k should be $k^{*}=(k+1) N_{k+1} / N_{k}$

Count in 22M Words	Actual c* (Next 22M)	GT's c ${ }^{*}$
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24
Mass on New	9.2%	9.2%

- Katz Smoothing
- Extends G-T smoothing into a backoff model using higher order contexts
- Use GT discounted bigram counts (roughly - Katz left large counts alone)
- Whatever mass is left goes to empirical unigram

$$
P_{K A T Z}\left(w \mid w_{-1}\right)=\frac{c^{*}\left(w, w_{-1}\right)}{\sum_{w} c\left(w, w_{-1}\right)}+\alpha\left(w_{-1}\right) \hat{P}(w)
$$

Intuition of Katz backoff + discounting

- How much probability to assign to all the zero trigrams?
- Use GT or other discounting algorithm to tell us
- How to divide that probability mass among different contexts?
- Use the $n-1$ gram estimates to tell us
- What do we do for the unigram words not seen in training?
- Out Of Vocabulary = OOV words

Kneser-Ney Smoothing I

- Something's been very broken all this time
- Shannon game: There was an unexpected ___?
- delay?
- Francisco?
- "Francisco" is more common than "delay"
- ... but "Francisco" always follows "San"
- Solution: Kneser-Ney smoothing
- In the back-off model, we don't want the unigram probability of w
- Instead, probability given that we are observing a novel continuation
- Every bigram type was a novel continuation the first time it was seen

$$
P_{\text {CONTINUATION }}(w)=\frac{\left|\left\{w_{-1}: c\left(w, w_{-1}\right)>0\right\}\right|}{\left|\left(w, w_{-1}\right): c\left(w, w_{-1}\right)>0\right|}
$$

Kneser-Ney Smoothing II

- One more aspect to Kneser-Ney:
- Look at the GT counts:

Count in 22M Words	Actual c* $($ Next 22M $)$	GT's c *
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24

- Absolute Discounting
- Save ourselves some time and just subtract 0.75 (or some d)
- Maybe have a separate value of d for very low counts
$P_{K N}\left(w \mid w_{-1}\right)=\frac{c\left(w, w_{-1}\right)-d}{\sum_{w^{\prime}} c\left(w^{\prime}, w_{-1}\right)}+\alpha\left(w_{-1}\right) P_{\text {CONTINUATION }}(w)$

What Actually Works?

- Unigrams, bigrams too little context
- Trigrams much better (when there's enough data)
- 4 -, 5 -grams usually not worth the cost (which is more than it seems, due to how speech recognizers are constructed)
Good-Turing-like methods for
count adjustment
- Absolute discounting, GoodTuring, held-out estimation, Witten-Bell
- Kneser-Ney equalization for lower-order models
- See [Chen+Goodman] reading for tons of graphs!

Google N-Gram Release

All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a
variety of R\&D projects, such as statistical machine translation, speech
recognition, spelling correction, entity detection, information extraction,
o share this enormous dataset with everyone. We processed
to share this enormous dataset with everyone. We processed
$1,024,908,267,229$ words of running text and are publishing the counts
$1,024,908,267,229$ words of running text and are publishing the counts
or all $1,176,470,663$ five-word sequences that appear at least 40 time here are $13,588,391$ unique words, after discarding words that appear less than 200 times.

- ... but so is picking a better smoothing mechanism!
- $\mathrm{N}>3$ often not worth the cost (though 4-grams begin to look good)

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234

Beyond N-Gram LMs

- Caching Models
- Recent words more likely to appear again
$P_{\text {CACHE }}(w \mid$ history $)=\lambda P\left(w \mid w_{-1} w_{-2}\right)+(1-\lambda) \frac{c(w \in \text { history })}{\mid \text { history } \mid}$
- Can be disastrous in practice for speech (why?)
- Skipping Models
$P_{\text {SKIP }}\left(w \mid w_{-1} w_{-2}\right)=\lambda_{1} \hat{P}\left(w \mid w_{-1} w_{-2}\right)+\lambda_{2} P\left(w \mid w_{-1} _\right)+\lambda_{3} P\left(w \mid \chi_{-2}\right)$
- Clustering Models: condition on word classes when words are too sparse
- Trigger Models: condition on bag of history words (e.g., maxent
- Structured Models: use parse structure (we'll see these later)

Unknown words: Open versus
 closed vocabulary tasks

Practical Considerations

- The unknown word symbol <UNK>:

If we know all the words in advance

- Vocabulary V is fixed
- Closed vocabulary task. Easy.
- Often we don't know this
- Out Of Vocabulary $=00 \mathrm{~V}$ words
- Open vocabulary task
- Instead: create an unknown word token <UNK>
- Training of <UNK> probabilities

At text normalization phase, any training word not in L changed to <UNK>

- There may be no such instances if L covers the training data
- Now we train its probabilities
- If low counts are mapped to <UNK , may train it ike a normal word
Otherwise, techniques like Good-Turing estimation
- At decoding time
- If text input: Use UNK probabilities for any word not in training
- In many cases, open vocabularies use multiple types of OOVs (e.g., numbers \& proper names)
- For the programming assignment:
- OK to assume there is only one unknown word type, UNK
- UNK will be quite common in new text!
- UNK stands for all unknown word types (define probability event model thus)
- To model the probability of individual new words occurring, you can use spelling models for them, but people usually don't
- Numerical computations
- We usually do everything in log space (log probabilities) - Avoid underflow
- (also addina is faster than multiplvina)
$p_{1} \times p_{2} \times p_{3} \times p_{4}=\exp \left(\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}\right)$

