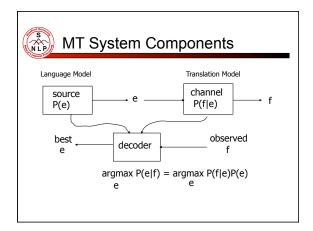


MT: Just a Code?

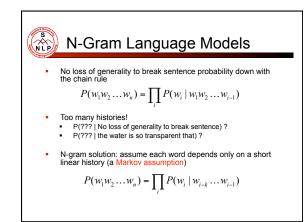
- "Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded —one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."
 - Warren Weaver (1955:18, quoting a letter he wrote in 1947)

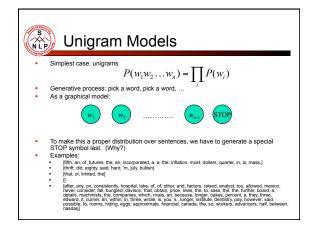


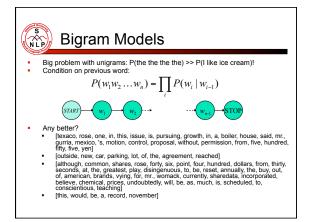
When Noisy-Channel Processes Handwriting recognition P(text | strokes) ∝ P(text)P(strokes | text) OCR P(text | pixels) ∝ P(text)P(pixels | text) Spelling Correction P(text | typos) ∝ P(text)P(typos | text)

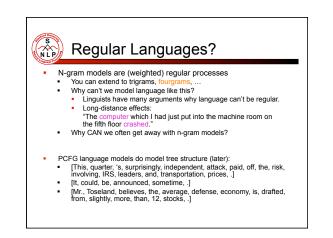
Probabilistic Language Models Want to build models which assign scores to sentences. P(I saw a van) >> P(eyes awe of an)

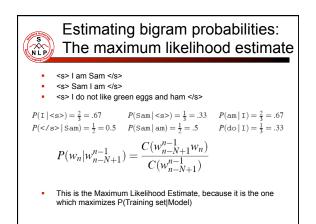
- Not really grammaticality: P(artichokes intimidate zippers) = 0
- One option: empirical distribution over sentences?
 Problem: doesn't generalize (at all)
- Two major components of generalization
 - Backoff: sentences generated in small steps which can be recombined in other ways
 - Discounting: allow for the possibility of unseen events

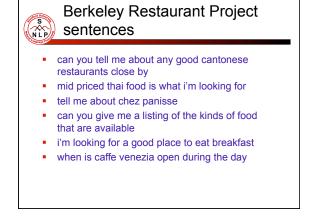










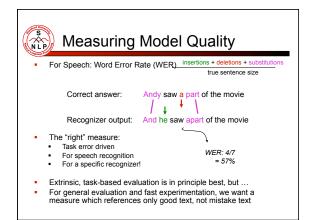


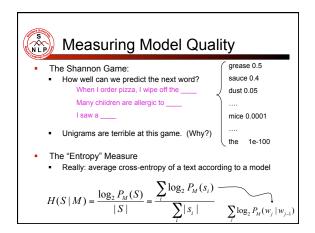
 Out of 9222 se 	ntences							
Out of 9222 sentences								
i want t	o eat	chinese	food	lunch	spend			
i 5 827 () 9	0	0	0	2			
want $2 0 \epsilon$	508 1	6	6	5	1			
to 2 0 4	686	2	0	6	211			
eat 0 0 2	2 0	16	2	42	0			
chinese 1 0 0) 0	0	82	1	0			
food 15 0 1	15 0	1	4	0	0			
lunch 2 0 0) 0	0	1	0	0			
spend 1 0 1	l 0	0	0	0	0			

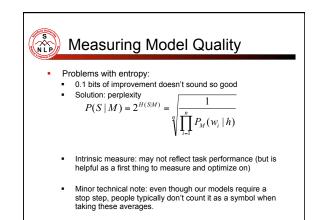
			Jigi	am	pro	Juar	ш	แธง						
-				Raw bigram probabilities										
 Normalize by unigrams: 														
, , , , , , , , , , , , , , , , , , , ,							spend							
	253	3 927	24	17 7	46	158	1	093	341	278				
	_	1	want	to	eat	chine	se	food	lunch	sper				
i	_	0.002	0.33	0	0.003			0	0	0.00				
wan	t	0.0022	0	0.66	0.001	11 0.006	5	0.0065	0.0054	0.00				
to		0.00083	0	0.0017	0.28	0.000	83	0	0.0025	0.08				
eat 0		0	0	0.0027	0	0.021		0.0027	0.056	0				
eat	chinese 0.0063		0	0	0	0		0.52	0.0063	0				
			_	0.014	0	0.000	92	0.0037	0	0				
chir		0.014	0	0.014										
chir	1	0.014 0.0059	0 0	0.014	0	0		0.0029	0	0				

Evaluation What we want to know is: Will our model prefer good sentences to bad ones? That is, does it assign higher probability to "real" or "frequently observed" sentences? As a component of Bayesian inference, will it help us discriminate correct uterances from noisy inputs?

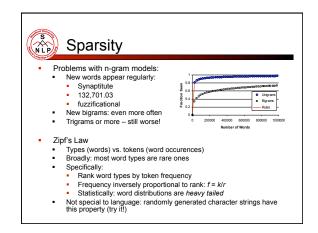
- We train parameters of our model on a training set.
- To evaluate how well our model works, we look at the models performance on some new data
- This is what happens in the real world; we want to know
- how our model performs on data we haven't seen
- So a test set. A dataset which is different than our training set. Preferably totally unseen/unused.

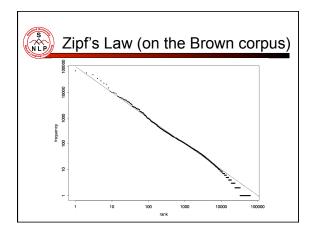


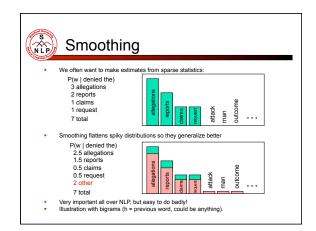


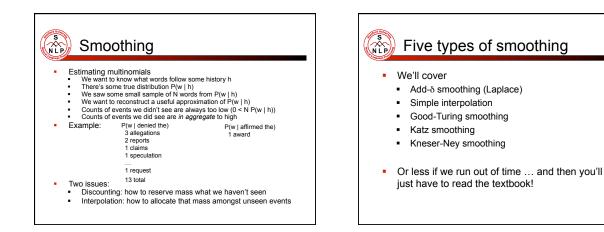


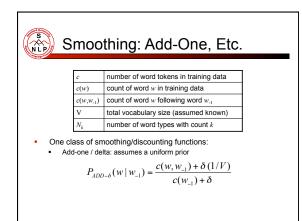
S	
What's in our	r text corpora
Roman P	•
 Common words in Tom Sawyer 	Frequency of Frequency
	• 1 3993
(71,370 words)	• 2 1292
the: 3332, and:	 3 664 4 410
2972, a: 1775, to:	• 5 243
1725, of: 1440,	• 6 199
was: 1161, it:	• 7 172
,	 8 131
1027, in: 906, that:	• 9 82
877, he: 877, l:	 10 91
783, his: 772, you:	 11–50 540
	 51–100 99
686, Tom: 679	 >100 102

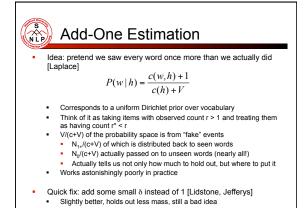








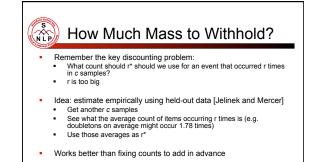




Berkeley Restaurant Corpus Laplace smoothed bigram counts								
	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams									
$P^*(w_n w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$									
	i	want	to	eat	chinese	food	lunch	spend	
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.0007	
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.0008	
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055	
		0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.0004	
eat	0.00046								
	0.00046 0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.0006	
eat chinese			0.00062 0.0063	0.00062 0.00039	0.00062 0.00079	0.052 0.002	0.0012 0.00039		
eat	0.0012	0.00062						0.0006 0.0003 0.0005	

Reconstituted counts								
Chronik .		•		-	· .			
	*/		[C]	$(w_{n-1}v)$	$(v_n) + 1$	$\times C(\mathfrak{n}$	(n-1)	
	$C^{+}(W$	$v_{n-1}w_n$) =	C	$\frac{(w_n)+1}{(w_{n-1})}$	+V		
				C	(mn-1)			
	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16



Backoff and Interpolation

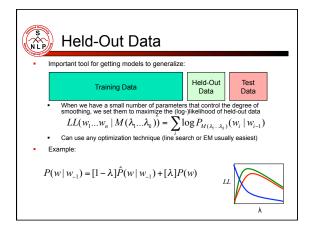
- Discounting says, "I saw event X n times, but I will really treat it as if I saw it fewer than n times
- Backoff (and interpolation) says, "In certain cases, I will condition on less of my context than in other cases"
 - The sensible thing is to condition on less in contexts that you haven't learned much about
- Backoff: use trigram if you have it, otherwise bigram, otherwise unigram
- Interpolation: mix all three

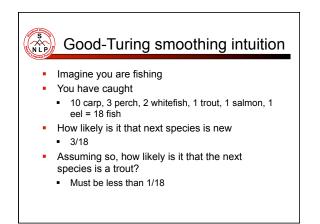
Linear Interpolation One way to ease the sparsity problem for n-grams is to use less-sparse n-1-gram estimates General linear interpolation: $P(w|w_{-1}) = [1 - \lambda(w, w_{-1})]\hat{P}(w|w_{-1}) + [\lambda(w, w_{-1})]P(w)$

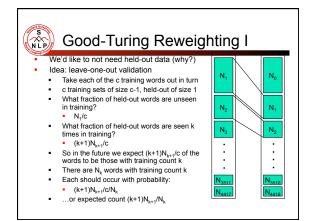
Having a single global mixing constant is generally not ideal:

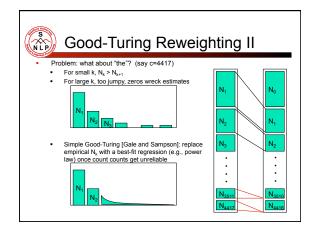
 $P(w | w_{-1}) = [1 - \lambda] \hat{P}(w | w_{-1}) + [\lambda] P(w)$

- [But actually works surprisingly well simplest competent approach]
- A better yet still simple alternative is to vary the mixing constant as a function of the conditioning context $P(w \mid w_{-1}) = [1 - \lambda(w_{-1})]\hat{P}(w \mid w_{-1}) + \lambda(w_{-1})P(w)$

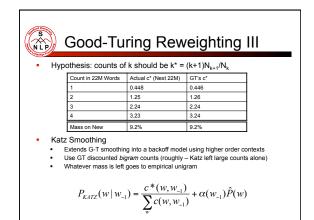






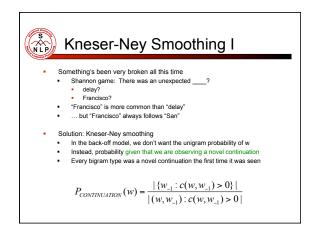


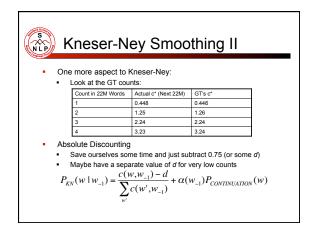
S	Good Turing cal	
	unseen (bass or catfish)	trout
С	0	1
MLE p	$p = \frac{0}{18} = 0$	1/18
<i>c</i> *		$c^*(\text{trout}) = 2 \times \frac{N_2}{N_1} = 2 \times \frac{1}{3} = .67$
GT $p^*_{\rm GT}$	p_{GT}^* (unseen) = $\frac{N_1}{N} = \frac{3}{18} = .17$	$p_{\text{GT}}^*(\text{trout}) = \frac{.67}{18} = \frac{1}{27} = .037$

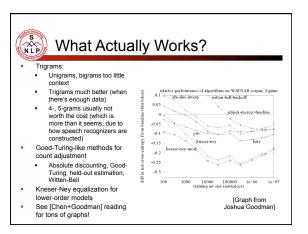


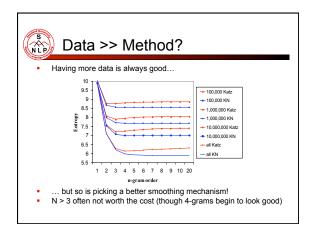
Intuition of Katz backoff + discounting

- How much probability to assign to all the zero trigrams?
 - Use GT or other discounting algorithm to tell us
- How to divide that probability mass among different contexts?
 - Use the n-1 gram estimates to tell us
- What do we do for the unigram words not seen in training?
 - Out Of Vocabulary = OOV words









S NLP	Go	oq	gle	N-Gram Release
	serve	as	the	incoming 92
•	serve	as	the	incubator 99
	serve	as	the	independent 794
•	serve	as	the	index 223
•	serve	as	the	indication 72
	serve	as	the	indicator 120
· · · ·	serve	as	the	indicators 45
	serve	as	the	indispensable 111
	serve	as	the	indispensible 40
•	serve	as	the	individual 234

