
4/7/08 

1 

CS224N NLP

Christopher Manning
Spring 2008

Borrows many slides from Bob Carpenter, Dan Klein,
Roger Levy, Josh Goodman, Dan Jurafsky

Questions that linguistics should answer

  What kinds of things do people say?
  What do these things say/ask/request about the

world?
  Example: In addition to this, she insisted that women were

regarded as a different existence from men unfairly.

  Text corpora give us data with which to answer
these questions

  They are an externalization of linguistic knowledge
  What words, rules, statistical facts do we find?
  How can we build programs that learn effectively

from this data, and can then do NLP tasks?

 s p ee ch l a b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

“l” to “a”
transition:

Speech Recognition: Acoustic Waves

•  Human speech generates a wave
–  like a loudspeaker moving

•  A wave for the words “speech lab” looks like:

Acoustic Sampling

•  10 ms frame (ms = millisecond = 1/1000 second)
•  ~25 ms window around frame [wide band] to allow/smooth

signal processing – it let’s you see formants

25 ms

10ms

. . .

a1 a2 a3

Result:
Acoustic Feature Vectors
(after transformation,
numbers in roughly R14)

Spectral Analysis

•  Frequency gives pitch; amplitude gives volume
–  sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

•  Fourier transform of wave displayed as a spectrogram
–  darkness indicates energy at each frequency
–  hundreds to thousands of frequency samples

 s p ee ch l a b

fre
qu

en
cy

am

pl
itu

de

The Speech Recognition Problem

•  The Recognition Problem: Noisy channel model
–  Build generative model of encoding: We started with English words,

they were encoded as an audio signal, and we now wish to decode.
–  Find most likely sequence w of “words” given the sequence of

acoustic observation vectors a

–  Use Bayes’ rule to create a generative model and then decode
–  ArgMaxw P(w|a) = ArgMaxw P(a|w) P(w) / P(a)
 = ArgMaxw P(a|w) P(w)

•  Acoustic Model: P(a|w)
•  Language Model: P(w)

•  Why is this progress?

A probabilistic theory
of a language

4/7/08 

2 

MT: Just a Code?

  “Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which I believe succeed
even when one does not know what language has been coded
—one naturally wonders if the problem of translation could
conceivably be treated as a problem in cryptography. When I
look at an article in Russian, I say: ‘This is really written in
English, but it has been coded in some strange symbols. I will
now proceed to decode.’ ”

  Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

Other Noisy-Channel Processes

  Handwriting recognition

  OCR

  Spelling Correction

)|()()|(textstrokesPtextPstrokestextP ∝

)|()()|(textpixelsPtextPpixelstextP ∝

)|()()|(texttyposPtextPtypostextP ∝

Probabilistic Language Models

  Want to build models which assign scores to sentences.
  P(I saw a van) >> P(eyes awe of an)
  Not really grammaticality: P(artichokes intimidate zippers) ≈ 0

  One option: empirical distribution over sentences?
  Problem: doesn’t generalize (at all)

  Two major components of generalization
  Backoff: sentences generated in small steps which can be

recombined in other ways
  Discounting: allow for the possibility of unseen events

N-Gram Language Models
  No loss of generality to break sentence probability down with

the chain rule

  Too many histories!
  P(??? | No loss of generality to break sentence) ?
  P(??? | the water is so transparent that) ?

  N-gram solution: assume each word depends only on a short
linear history (a Markov assumption)

∏ −=
i

iin wwwwPwwwP)|()(12121 ……

∏ −−=
i

ikiin wwwPwwwP)|()(121 ……

Unigram Models
  Simplest case: unigrams

  Generative process: pick a word, pick a word, …
  As a graphical model:

  To make this a proper distribution over sentences, we have to generate a special
STOP symbol last. (Why?)

  Examples:
  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
  [thrift, did, eighty, said, hard, 'm, july, bullish]
  [that, or, limited, the]
  []
  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico,

never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a,
details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, they, three,
edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, however, said,
possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, half, between,
nasdaq]

∏=
i

in wPwwwP)()(21 …

w1 w2 wn-1 STOP ………….

4/7/08 

3 

Bigram Models
  Big problem with unigrams: P(the the the the) >> P(I like ice cream)!
  Condition on previous word:

  Any better?
  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

  [outside, new, car, parking, lot, of, the, agreement, reached]
  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out,
of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated,
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to,
conscientious, teaching]

  [this, would, be, a, record, november]

∏ −=
i

iin wwPwwwP)|()(121 …

w1 w2 wn-1 STOP START

Regular Languages?
  N-gram models are (weighted) regular processes

  You can extend to trigrams, fourgrams, …
  Why can’t we model language like this?

  Linguists have many arguments why language can’t be regular.
  Long-distance effects:
 “The computer which I had just put into the machine room on

the fifth floor crashed.”
  Why CAN we often get away with n-gram models?

  PCFG language models do model tree structure (later):
  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk,

involving, IRS, leaders, and, transportation, prices, .]
  [It, could, be, announced, sometime, .]
  [Mr., Toseland, believes, the, average, defense, economy, is, drafted,

from, slightly, more, than, 12, stocks, .]

Estimating bigram probabilities:
The maximum likelihood estimate

  <s> I am Sam </s>
  <s> Sam I am </s>
  <s> I do not like green eggs and ham </s>

  This is the Maximum Likelihood Estimate, because it is the one
which maximizes P(Training set|Model)

Berkeley Restaurant Project
sentences

  can you tell me about any good cantonese
restaurants close by

  mid priced thai food is what i’m looking for
  tell me about chez panisse
  can you give me a listing of the kinds of food

that are available
  i’m looking for a good place to eat breakfast
  when is caffe venezia open during the day

Raw bigram counts

  Out of 9222 sentences

Raw bigram probabilities

  Normalize by unigrams:

  Result:

4/7/08 

4 

Evaluation

  What we want to know is:
  Will our model prefer good sentences to bad ones?

  That is, does it assign higher probability to “real” or “frequently
observed” sentences than “ungrammatical” or “rarely observed”
sentences?

  As a component of Bayesian inference, will it help us
discriminate correct utterances from noisy inputs?

  We train parameters of our model on a training set.
  To evaluate how well our model works, we look at the

models performance on some new data
  This is what happens in the real world; we want to know

how our model performs on data we haven’t seen
  So a test set. A dataset which is different than our

training set. Preferably totally unseen/unused.

Measuring Model Quality
  For Speech: Word Error Rate (WER)

  The “right” measure:
  Task error driven
  For speech recognition
  For a specific recognizer!

  Extrinsic, task-based evaluation is in principle best, but …
  For general evaluation and fast experimentation, we want a

measure which references only good text, not mistake text

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

Measuring Model Quality
  The Shannon Game:

  How well can we predict the next word?

  Unigrams are terrible at this game. (Why?)

  The “Entropy” Measure
  Really: average cross-entropy of a text according to a model

When I order pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

∑
∑

==

i
i

i
iM

M

s

sP

S
SPMSH

||

)(log

||
)(log)|(

2
2

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

∑ −
j

jjM wwP)|(log 12

Measuring Model Quality

  Problems with entropy:
  0.1 bits of improvement doesn’t sound so good
  Solution: perplexity

  Intrinsic measure: may not reflect task performance (but is
helpful as a first thing to measure and optimize on)

  Minor technical note: even though our models require a
stop step, people typically don’t count it as a symbol when
taking these averages.

n
n

i
iM

MSH

hwP
MSP

∏
=

==

1

)|(

)|(

12)|(

What’s in our text corpora

  Common words in
Tom Sawyer
(71,370 words)

  the: 3332, and:
2972, a: 1775, to:
1725, of: 1440,
was: 1161, it:
1027, in: 906, that:
877, he: 877, I:
783, his: 772, you:
686, Tom: 679

  Word Frequency
Frequency of Frequency

  1 3993
  2 1292
  3 664
  4 410
  5 243
  6 199
  7 172
  8 131
  9 82
  10 91
  11–50 540
  51–100 99
  >100 102

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

S
ee

n

Unigrams

Bigrams

Rules

Sparsity
  Problems with n-gram models:

  New words appear regularly:
  Synaptitute
  132,701.03
  fuzzificational

  New bigrams: even more often
  Trigrams or more – still worse!

  Zipf’s Law
  Types (words) vs. tokens (word occurences)
  Broadly: most word types are rare ones
  Specifically:

  Rank word types by token frequency
  Frequency inversely proportional to rank: f = k/r
  Statistically: word distributions are heavy tailed

  Not special to language: randomly generated character strings have
this property (try it!)

4/7/08 

5 

Zipf’s Law (on the Brown corpus) Smoothing
  We often want to make estimates from sparse statistics:

  Smoothing flattens spiky distributions so they generalize better

  Very important all over NLP, but easy to do badly!
  Illustration with bigrams (h = previous word, could be anything).

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

Smoothing
  Estimating multinomials

  We want to know what words follow some history h
  There’s some true distribution P(w | h)
  We saw some small sample of N words from P(w | h)
  We want to reconstruct a useful approximation of P(w | h)
  Counts of events we didn’t see are always too low (0 < N P(w | h))
  Counts of events we did see are in aggregate to high

  Example:

  Two issues:
  Discounting: how to reserve mass what we haven’t seen
  Interpolation: how to allocate that mass amongst unseen events

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 speculation
 …
 1 request
 13 total

P(w | affirmed the)
 1 award

Five types of smoothing

  We’ll cover
  Add-δ smoothing (Laplace)
  Simple interpolation
  Good-Turing smoothing
  Katz smoothing
  Kneser-Ney smoothing

  Or less if we run out of time … and then you’ll
just have to read the textbook!

Smoothing: Add-One, Etc.

  One class of smoothing/discounting functions:
  Add-one / delta: assumes a uniform prior

δ
δ

δ +
+

=
−

−
−−)(

)/1(),()|(
1

1
1 wc

VwwcwwPADD

c number of word tokens in training data

c(w) count of word w in training data

c(w,w-1) count of word w following word w-1

V total vocabulary size (assumed known)

Nk number of word types with count k

Add-One Estimation
  Idea: pretend we saw every word once more than we actually did

[Laplace]

  Corresponds to a uniform Dirichlet prior over vocabulary
  Think of it as taking items with observed count r > 1 and treating them

as having count r* < r
  V/(c+V) of the probability space is from “fake” events

  N1+/(c+V) of which is distributed back to seen words
  N0/(c+V) actually passed on to unseen words (nearly all!)
  Actually tells us not only how much to hold out, but where to put it

  Works astonishingly poorly in practice

  Quick fix: add some small δ instead of 1 [Lidstone, Jefferys]
  Slightly better, holds out less mass, still a bad idea

Vhc
hwchwP
+
+

=
)(

1),()|(

4/7/08 

6 

Berkeley Restaurant Corpus
Laplace smoothed bigram counts Laplace-smoothed bigrams

Reconstituted counts How Much Mass to Withhold?
  Remember the key discounting problem:

  What count should r* should we use for an event that occurred r times
in c samples?

  r is too big

  Idea: estimate empirically using held-out data [Jelinek and Mercer]
  Get another c samples
  See what the average count of items occurring r times is (e.g.

doubletons on average might occur 1.78 times)
  Use those averages as r*

  Works better than fixing counts to add in advance

Backoff and Interpolation

  Discounting says, “I saw event X n times, but I
will really treat it as if I saw it fewer than n times

  Backoff (and interpolation) says, “In certain
cases, I will condition on less of my context than
in other cases”
  The sensible thing is to condition on less in

contexts that you haven’t learned much about

  Backoff: use trigram if you have it, otherwise
bigram, otherwise unigram

  Interpolation: mix all three

Linear Interpolation
  One way to ease the sparsity problem for n-grams is to use

less-sparse n-1-gram estimates
  General linear interpolation:

  Having a single global mixing constant is generally not ideal:

  [But actually works surprisingly well – simplest competent approach]

  A better yet still simple alternative is to vary the mixing constant
as a function of the conditioning context

1 1 1 1
ˆ(|) [1 (,)] (|) [(,)] ()P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

€

P(w | w−1) = [1− λ(w−1)] ˆ P (w | w−1) +λ(w−1)P(w)

4/7/08 

7 

Held-Out Data
  Important tool for getting models to generalize:

  When we have a small number of parameters that control the degree of
smoothing, we set them to maximize the (log-)likelihood of held-out data

  Can use any optimization technique (line search or EM usually easiest)

  Example:

Training Data Held-Out
Data

Test
Data

∑ −=
i

iiMkn wwPMwwLL
k

)|(log))...(|...(1)...(11 1 λλλλ

λ

LL
1 1

ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

€

λ

Good-Turing smoothing intuition

  Imagine you are fishing
  You have caught

  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1
eel = 18 fish

  How likely is it that next species is new
  3/18

  Assuming so, how likely is it that the next
species is a trout?
  Must be less than 1/18

Good-Turing Reweighting I
  We’d like to not need held-out data (why?)
  Idea: leave-one-out validation

  Take each of the c training words out in turn
  c training sets of size c-1, held-out of size 1
  What fraction of held-out words are unseen

in training?
  N1/c

  What fraction of held-out words are seen k
times in training?
  (k+1)Nk+1/c

  So in the future we expect (k+1)Nk+1/c of the
words to be those with training count k

  There are Nk words with training count k
  Each should occur with probability:

  (k+1)Nk+1/c/Nk
  …or expected count (k+1)Nk+1/Nk

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

Good-Turing Reweighting II
  Problem: what about “the”? (say c=4417)

  For small k, Nk > Nk+1
  For large k, too jumpy, zeros wreck estimates

  Simple Good-Turing [Gale and Sampson]: replace
empirical Nk with a best-fit regression (e.g., power
law) once count counts get unreliable

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

N1
N2 N3

N1
N2

Good Turing calculations Good-Turing Reweighting III
  Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

  Katz Smoothing
  Extends G-T smoothing into a backoff model using higher order contexts
  Use GT discounted bigram counts (roughly – Katz left large counts alone)
  Whatever mass is left goes to empirical unigram

)(ˆ)(
),(
),(*)|(1
1

1
1 wPw

wwc
wwcwwP

w

KATZ −
−

−
− +=

∑
α

Count in 22M Words Actual c* (Next 22M) GT’s c*

1 0.448 0.446

2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

Mass on New 9.2% 9.2%

4/7/08 

8 

Intuition of Katz backoff + discounting

  How much probability to assign to all the zero
trigrams?
  Use GT or other discounting algorithm to tell us

  How to divide that probability mass among
different contexts?
  Use the n-1 gram estimates to tell us

  What do we do for the unigram words not seen
in training?
  Out Of Vocabulary = OOV words

Kneser-Ney Smoothing I
  Something’s been very broken all this time

  Shannon game: There was an unexpected ____?
  delay?
  Francisco?

  “Francisco” is more common than “delay”
  … but “Francisco” always follows “San”

  Solution: Kneser-Ney smoothing
  In the back-off model, we don’t want the unigram probability of w
  Instead, probability given that we are observing a novel continuation
  Every bigram type was a novel continuation the first time it was seen

|0),(:),(|
|}0),(:{|)(

11

11

>
>

=
−−

−−

wwcww
wwcwwP ONCONTINUATI

Kneser-Ney Smoothing II
  One more aspect to Kneser-Ney:

  Look at the GT counts:

  Absolute Discounting
  Save ourselves some time and just subtract 0.75 (or some d)
  Maybe have a separate value of d for very low counts

Count in 22M Words Actual c* (Next 22M) GT’s c*

1 0.448 0.446

2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

€

PKN (w |w−1) =
c(w,w−1) − d
c(w',w−1)

w'
∑

+α(w−1)PCONTINUATION (w)

What Actually Works?
  Trigrams:

  Unigrams, bigrams too little
context

  Trigrams much better (when
there’s enough data)

  4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)

  Good-Turing-like methods for
count adjustment
  Absolute discounting, Good-

Turing, held-out estimation,
Witten-Bell

  Kneser-Ney equalization for
lower-order models

  See [Chen+Goodman] reading
for tons of graphs!

[Graph from
Joshua Goodman]

Data >> Method?
  Having more data is always good…

  … but so is picking a better smoothing mechanism!
  N > 3 often not worth the cost (though 4-grams begin to look good)

5.5
6

6.5

7
7.5

8

8.5
9

9.5

10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
nt

ro
py

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Google N-Gram Release

4/7/08 

9 

Google N-Gram Release
  serve as the incoming 92
  serve as the incubator 99
  serve as the independent 794
  serve as the index 223
  serve as the indication 72
  serve as the indicator 120
  serve as the indicators 45
  serve as the indispensable 111
  serve as the indispensible 40
  serve as the individual 234

Beyond N-Gram LMs
  Caching Models

  Recent words more likely to appear again

  Can be disastrous in practice for speech (why?)

  Skipping Models

  Clustering Models: condition on word classes when words are too sparse
  Trigger Models: condition on bag of history words (e.g., maxent)
  Structured Models: use parse structure (we’ll see these later)

||
)()1()|()|(21 history

historywcwwwPhistorywPCACHE
∈

−+= −− λλ

)__|(__)|()|(ˆ)|(231221121 −−−−−− ++= wwPwwPwwwPwwwPSKIP λλλ

Unknown words: Open versus
closed vocabulary tasks

  If we know all the words in advance
  Vocabulary V is fixed
  Closed vocabulary task. Easy.

  Often we don’t know this
  Out Of Vocabulary = OOV words
  Open vocabulary task

  Instead: create an unknown word token <UNK>
  Training of <UNK> probabilities

  Create a fixed lexicon L of size V
  At text normalization phase, any training word not in L changed to <UNK>

  There may be no such instances if L covers the training data
  Now we train its probabilities

  If low counts are mapped to <UNK>, may train it like a normal word
  Otherwise, techniques like Good-Turing estimation are applicable

  At decoding time
  If text input: Use UNK probabilities for any word not in training

Practical Considerations
  The unknown word symbol <UNK>:

  In many cases, open vocabularies use multiple types of OOVs
(e.g., numbers & proper names)

  For the programming assignment:
  OK to assume there is only one unknown word type, UNK
  UNK will be quite common in new text!
  UNK stands for all unknown word types (define probability event

model thus)
  To model the probability of individual new words occurring, you

can use spelling models for them, but people usually don’t
  Numerical computations

  We usually do everything in log space (log probabilities)
  Avoid underflow
  (also adding is faster than multiplying)

