
4/7/08 

1 

CS224N NLP

Christopher Manning
Spring 2008

Borrows many slides from Bob Carpenter, Dan Klein,
Roger Levy, Josh Goodman, Dan Jurafsky

Questions that linguistics should answer

  What kinds of things do people say?
  What do these things say/ask/request about the

world?
  Example: In addition to this, she insisted that women were

regarded as a different existence from men unfairly.

  Text corpora give us data with which to answer
these questions

  They are an externalization of linguistic knowledge
  What words, rules, statistical facts do we find?
  How can we build programs that learn effectively

from this data, and can then do NLP tasks?

 s p ee ch l a b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

“l” to “a”
transition:

Speech Recognition: Acoustic Waves

•  Human speech generates a wave
–  like a loudspeaker moving

•  A wave for the words “speech lab” looks like:

Acoustic Sampling

•  10 ms frame (ms = millisecond = 1/1000 second)
•  ~25 ms window around frame [wide band] to allow/smooth

signal processing – it let’s you see formants

25 ms

10ms

. . .

a1 a2 a3

Result:
Acoustic Feature Vectors
(after transformation,
numbers in roughly R14)

Spectral Analysis

•  Frequency gives pitch; amplitude gives volume
–  sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

•  Fourier transform of wave displayed as a spectrogram
–  darkness indicates energy at each frequency
–  hundreds to thousands of frequency samples

 s p ee ch l a b

fre
qu

en
cy

am

pl
itu

de

The Speech Recognition Problem

•  The Recognition Problem: Noisy channel model
–  Build generative model of encoding: We started with English words,

they were encoded as an audio signal, and we now wish to decode.
–  Find most likely sequence w of “words” given the sequence of

acoustic observation vectors a

–  Use Bayes’ rule to create a generative model and then decode
–  ArgMaxw P(w|a) = ArgMaxw P(a|w) P(w) / P(a)
 = ArgMaxw P(a|w) P(w)

•  Acoustic Model: P(a|w)
•  Language Model: P(w)

•  Why is this progress?

A probabilistic theory
of a language

4/7/08 

2 

MT: Just a Code?

  “Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which I believe succeed
even when one does not know what language has been coded
—one naturally wonders if the problem of translation could
conceivably be treated as a problem in cryptography. When I
look at an article in Russian, I say: ‘This is really written in
English, but it has been coded in some strange symbols. I will
now proceed to decode.’ ”

  Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

Other Noisy-Channel Processes

  Handwriting recognition

  OCR

  Spelling Correction

)|()()|(textstrokesPtextPstrokestextP ∝

)|()()|(textpixelsPtextPpixelstextP ∝

)|()()|(texttyposPtextPtypostextP ∝

Probabilistic Language Models

  Want to build models which assign scores to sentences.
  P(I saw a van) >> P(eyes awe of an)
  Not really grammaticality: P(artichokes intimidate zippers) ≈ 0

  One option: empirical distribution over sentences?
  Problem: doesn’t generalize (at all)

  Two major components of generalization
  Backoff: sentences generated in small steps which can be

recombined in other ways
  Discounting: allow for the possibility of unseen events

N-Gram Language Models
  No loss of generality to break sentence probability down with

the chain rule

  Too many histories!
  P(??? | No loss of generality to break sentence) ?
  P(??? | the water is so transparent that) ?

  N-gram solution: assume each word depends only on a short
linear history (a Markov assumption)

∏ −=
i

iin wwwwPwwwP)|()(12121 ……

∏ −−=
i

ikiin wwwPwwwP)|()(121 ……

Unigram Models
  Simplest case: unigrams

  Generative process: pick a word, pick a word, …
  As a graphical model:

  To make this a proper distribution over sentences, we have to generate a special
STOP symbol last. (Why?)

  Examples:
  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
  [thrift, did, eighty, said, hard, 'm, july, bullish]
  [that, or, limited, the]
  []
  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico,

never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a,
details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, they, three,
edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, however, said,
possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, half, between,
nasdaq]

∏=
i

in wPwwwP)()(21 …

w1 w2 wn-1 STOP ………….

4/7/08 

3 

Bigram Models
  Big problem with unigrams: P(the the the the) >> P(I like ice cream)!
  Condition on previous word:

  Any better?
  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

  [outside, new, car, parking, lot, of, the, agreement, reached]
  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out,
of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated,
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to,
conscientious, teaching]

  [this, would, be, a, record, november]

∏ −=
i

iin wwPwwwP)|()(121 …

w1 w2 wn-1 STOP START

Regular Languages?
  N-gram models are (weighted) regular processes

  You can extend to trigrams, fourgrams, …
  Why can’t we model language like this?

  Linguists have many arguments why language can’t be regular.
  Long-distance effects:
 “The computer which I had just put into the machine room on

the fifth floor crashed.”
  Why CAN we often get away with n-gram models?

  PCFG language models do model tree structure (later):
  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk,

involving, IRS, leaders, and, transportation, prices, .]
  [It, could, be, announced, sometime, .]
  [Mr., Toseland, believes, the, average, defense, economy, is, drafted,

from, slightly, more, than, 12, stocks, .]

Estimating bigram probabilities:
The maximum likelihood estimate

  <s> I am Sam </s>
  <s> Sam I am </s>
  <s> I do not like green eggs and ham </s>

  This is the Maximum Likelihood Estimate, because it is the one
which maximizes P(Training set|Model)

Berkeley Restaurant Project
sentences

  can you tell me about any good cantonese
restaurants close by

  mid priced thai food is what i’m looking for
  tell me about chez panisse
  can you give me a listing of the kinds of food

that are available
  i’m looking for a good place to eat breakfast
  when is caffe venezia open during the day

Raw bigram counts

  Out of 9222 sentences

Raw bigram probabilities

  Normalize by unigrams:

  Result:

4/7/08 

4 

Evaluation

  What we want to know is:
  Will our model prefer good sentences to bad ones?

  That is, does it assign higher probability to “real” or “frequently
observed” sentences than “ungrammatical” or “rarely observed”
sentences?

  As a component of Bayesian inference, will it help us
discriminate correct utterances from noisy inputs?

  We train parameters of our model on a training set.
  To evaluate how well our model works, we look at the

models performance on some new data
  This is what happens in the real world; we want to know

how our model performs on data we haven’t seen
  So a test set. A dataset which is different than our

training set. Preferably totally unseen/unused.

Measuring Model Quality
  For Speech: Word Error Rate (WER)

  The “right” measure:
  Task error driven
  For speech recognition
  For a specific recognizer!

  Extrinsic, task-based evaluation is in principle best, but …
  For general evaluation and fast experimentation, we want a

measure which references only good text, not mistake text

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

Measuring Model Quality
  The Shannon Game:

  How well can we predict the next word?

  Unigrams are terrible at this game. (Why?)

  The “Entropy” Measure
  Really: average cross-entropy of a text according to a model

When I order pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

∑
∑

==

i
i

i
iM

M

s

sP

S
SPMSH

||

)(log

||
)(log)|(

2
2

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

∑ −
j

jjM wwP)|(log 12

Measuring Model Quality

  Problems with entropy:
  0.1 bits of improvement doesn’t sound so good
  Solution: perplexity

  Intrinsic measure: may not reflect task performance (but is
helpful as a first thing to measure and optimize on)

  Minor technical note: even though our models require a
stop step, people typically don’t count it as a symbol when
taking these averages.

n
n

i
iM

MSH

hwP
MSP

∏
=

==

1

)|(

)|(

12)|(

What’s in our text corpora

  Common words in
Tom Sawyer
(71,370 words)

  the: 3332, and:
2972, a: 1775, to:
1725, of: 1440,
was: 1161, it:
1027, in: 906, that:
877, he: 877, I:
783, his: 772, you:
686, Tom: 679

  Word Frequency
Frequency of Frequency

  1 3993
  2 1292
  3 664
  4 410
  5 243
  6 199
  7 172
  8 131
  9 82
  10 91
  11–50 540
  51–100 99
  >100 102

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

S
ee

n

Unigrams

Bigrams

Rules

Sparsity
  Problems with n-gram models:

  New words appear regularly:
  Synaptitute
  132,701.03
  fuzzificational

  New bigrams: even more often
  Trigrams or more – still worse!

  Zipf’s Law
  Types (words) vs. tokens (word occurences)
  Broadly: most word types are rare ones
  Specifically:

  Rank word types by token frequency
  Frequency inversely proportional to rank: f = k/r
  Statistically: word distributions are heavy tailed

  Not special to language: randomly generated character strings have
this property (try it!)

4/7/08 

5 

Zipf’s Law (on the Brown corpus) Smoothing
  We often want to make estimates from sparse statistics:

  Smoothing flattens spiky distributions so they generalize better

  Very important all over NLP, but easy to do badly!
  Illustration with bigrams (h = previous word, could be anything).

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

Smoothing
  Estimating multinomials

  We want to know what words follow some history h
  There’s some true distribution P(w | h)
  We saw some small sample of N words from P(w | h)
  We want to reconstruct a useful approximation of P(w | h)
  Counts of events we didn’t see are always too low (0 < N P(w | h))
  Counts of events we did see are in aggregate to high

  Example:

  Two issues:
  Discounting: how to reserve mass what we haven’t seen
  Interpolation: how to allocate that mass amongst unseen events

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 speculation
 …
 1 request
 13 total

P(w | affirmed the)
 1 award

Five types of smoothing

  We’ll cover
  Add-δ smoothing (Laplace)
  Simple interpolation
  Good-Turing smoothing
  Katz smoothing
  Kneser-Ney smoothing

  Or less if we run out of time … and then you’ll
just have to read the textbook!

Smoothing: Add-One, Etc.

  One class of smoothing/discounting functions:
  Add-one / delta: assumes a uniform prior

δ
δ

δ +
+

=
−

−
−−)(

)/1(),()|(
1

1
1 wc

VwwcwwPADD

c number of word tokens in training data

c(w) count of word w in training data

c(w,w-1) count of word w following word w-1

V total vocabulary size (assumed known)

Nk number of word types with count k

Add-One Estimation
  Idea: pretend we saw every word once more than we actually did

[Laplace]

  Corresponds to a uniform Dirichlet prior over vocabulary
  Think of it as taking items with observed count r > 1 and treating them

as having count r* < r
  V/(c+V) of the probability space is from “fake” events

  N1+/(c+V) of which is distributed back to seen words
  N0/(c+V) actually passed on to unseen words (nearly all!)
  Actually tells us not only how much to hold out, but where to put it

  Works astonishingly poorly in practice

  Quick fix: add some small δ instead of 1 [Lidstone, Jefferys]
  Slightly better, holds out less mass, still a bad idea

Vhc
hwchwP
+
+

=
)(

1),()|(

4/7/08 

6 

Berkeley Restaurant Corpus
Laplace smoothed bigram counts Laplace-smoothed bigrams

Reconstituted counts How Much Mass to Withhold?
  Remember the key discounting problem:

  What count should r* should we use for an event that occurred r times
in c samples?

  r is too big

  Idea: estimate empirically using held-out data [Jelinek and Mercer]
  Get another c samples
  See what the average count of items occurring r times is (e.g.

doubletons on average might occur 1.78 times)
  Use those averages as r*

  Works better than fixing counts to add in advance

Backoff and Interpolation

  Discounting says, “I saw event X n times, but I
will really treat it as if I saw it fewer than n times

  Backoff (and interpolation) says, “In certain
cases, I will condition on less of my context than
in other cases”
  The sensible thing is to condition on less in

contexts that you haven’t learned much about

  Backoff: use trigram if you have it, otherwise
bigram, otherwise unigram

  Interpolation: mix all three

Linear Interpolation
  One way to ease the sparsity problem for n-grams is to use

less-sparse n-1-gram estimates
  General linear interpolation:

  Having a single global mixing constant is generally not ideal:

  [But actually works surprisingly well – simplest competent approach]

  A better yet still simple alternative is to vary the mixing constant
as a function of the conditioning context

1 1 1 1
ˆ(|) [1 (,)] (|) [(,)] ()P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

€

P(w | w−1) = [1− λ(w−1)] ˆ P (w | w−1) +λ(w−1)P(w)

4/7/08 

7 

Held-Out Data
  Important tool for getting models to generalize:

  When we have a small number of parameters that control the degree of
smoothing, we set them to maximize the (log-)likelihood of held-out data

  Can use any optimization technique (line search or EM usually easiest)

  Example:

Training Data Held-Out
Data

Test
Data

∑ −=
i

iiMkn wwPMwwLL
k

)|(log))...(|...(1)...(11 1 λλλλ

λ

LL
1 1

ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

€

λ

Good-Turing smoothing intuition

  Imagine you are fishing
  You have caught

  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1
eel = 18 fish

  How likely is it that next species is new
  3/18

  Assuming so, how likely is it that the next
species is a trout?
  Must be less than 1/18

Good-Turing Reweighting I
  We’d like to not need held-out data (why?)
  Idea: leave-one-out validation

  Take each of the c training words out in turn
  c training sets of size c-1, held-out of size 1
  What fraction of held-out words are unseen

in training?
  N1/c

  What fraction of held-out words are seen k
times in training?
  (k+1)Nk+1/c

  So in the future we expect (k+1)Nk+1/c of the
words to be those with training count k

  There are Nk words with training count k
  Each should occur with probability:

  (k+1)Nk+1/c/Nk
  …or expected count (k+1)Nk+1/Nk

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

Good-Turing Reweighting II
  Problem: what about “the”? (say c=4417)

  For small k, Nk > Nk+1
  For large k, too jumpy, zeros wreck estimates

  Simple Good-Turing [Gale and Sampson]: replace
empirical Nk with a best-fit regression (e.g., power
law) once count counts get unreliable

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

N1
N2 N3

N1
N2

Good Turing calculations Good-Turing Reweighting III
  Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

  Katz Smoothing
  Extends G-T smoothing into a backoff model using higher order contexts
  Use GT discounted bigram counts (roughly – Katz left large counts alone)
  Whatever mass is left goes to empirical unigram

)(ˆ)(
),(
),(*)|(1
1

1
1 wPw

wwc
wwcwwP

w

KATZ −
−

−
− +=

∑
α

Count in 22M Words Actual c* (Next 22M) GT’s c*

1 0.448 0.446

2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

Mass on New 9.2% 9.2%

4/7/08 

8 

Intuition of Katz backoff + discounting

  How much probability to assign to all the zero
trigrams?
  Use GT or other discounting algorithm to tell us

  How to divide that probability mass among
different contexts?
  Use the n-1 gram estimates to tell us

  What do we do for the unigram words not seen
in training?
  Out Of Vocabulary = OOV words

Kneser-Ney Smoothing I
  Something’s been very broken all this time

  Shannon game: There was an unexpected ____?
  delay?
  Francisco?

  “Francisco” is more common than “delay”
  … but “Francisco” always follows “San”

  Solution: Kneser-Ney smoothing
  In the back-off model, we don’t want the unigram probability of w
  Instead, probability given that we are observing a novel continuation
  Every bigram type was a novel continuation the first time it was seen

|0),(:),(|
|}0),(:{|)(

11

11

>
>

=
−−

−−

wwcww
wwcwwP ONCONTINUATI

Kneser-Ney Smoothing II
  One more aspect to Kneser-Ney:

  Look at the GT counts:

  Absolute Discounting
  Save ourselves some time and just subtract 0.75 (or some d)
  Maybe have a separate value of d for very low counts

Count in 22M Words Actual c* (Next 22M) GT’s c*

1 0.448 0.446

2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

€

PKN (w |w−1) =
c(w,w−1) − d
c(w',w−1)

w'
∑

+α(w−1)PCONTINUATION (w)

What Actually Works?
  Trigrams:

  Unigrams, bigrams too little
context

  Trigrams much better (when
there’s enough data)

  4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)

  Good-Turing-like methods for
count adjustment
  Absolute discounting, Good-

Turing, held-out estimation,
Witten-Bell

  Kneser-Ney equalization for
lower-order models

  See [Chen+Goodman] reading
for tons of graphs!

[Graph from
Joshua Goodman]

Data >> Method?
  Having more data is always good…

  … but so is picking a better smoothing mechanism!
  N > 3 often not worth the cost (though 4-grams begin to look good)

5.5
6

6.5

7
7.5

8

8.5
9

9.5

10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
nt

ro
py

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Google N-Gram Release

4/7/08 

9 

Google N-Gram Release
  serve as the incoming 92

  serve as the incubator 99

  serve as the independent 794

  serve as the index 223

  serve as the indication 72

  serve as the indicator 120

  serve as the indicators 45

  serve as the indispensable 111

  serve as the indispensible 40

  serve as the individual 234

Beyond N-Gram LMs
  Caching Models

  Recent words more likely to appear again

  Can be disastrous in practice for speech (why?)

  Skipping Models

  Clustering Models: condition on word classes when words are too sparse
  Trigger Models: condition on bag of history words (e.g., maxent)
  Structured Models: use parse structure (we’ll see these later)

||
)()1()|()|(21 history

historywcwwwPhistorywPCACHE
∈

−+= −− λλ

)__|(__)|()|(ˆ)|(231221121 −−−−−− ++= wwPwwPwwwPwwwPSKIP λλλ

Unknown words: Open versus
closed vocabulary tasks

  If we know all the words in advance
  Vocabulary V is fixed
  Closed vocabulary task. Easy.

  Often we don’t know this
  Out Of Vocabulary = OOV words
  Open vocabulary task

  Instead: create an unknown word token <UNK>
  Training of <UNK> probabilities

  Create a fixed lexicon L of size V
  At text normalization phase, any training word not in L changed to <UNK>

  There may be no such instances if L covers the training data
  Now we train its probabilities

  If low counts are mapped to <UNK>, may train it like a normal word
  Otherwise, techniques like Good-Turing estimation are applicable

  At decoding time
  If text input: Use UNK probabilities for any word not in training

Practical Considerations
  The unknown word symbol <UNK>:

  In many cases, open vocabularies use multiple types of OOVs
(e.g., numbers & proper names)

  For the programming assignment:
  OK to assume there is only one unknown word type, UNK
  UNK will be quite common in new text!
  UNK stands for all unknown word types (define probability event

model thus)
  To model the probability of individual new words occurring, you

can use spelling models for them, but people usually don’t
  Numerical computations

  We usually do everything in log space (log probabilities)
  Avoid underflow
  (also adding is faster than multiplying)

