4/7/08

Questions that linguistics should answer

CS224N NLP

= What kinds of things do people say?

= What do these things say/ask/request about the
world?

= Example: In addition to this, she insisted that women were
regarded as a different existence from men unfairly.

= Text corpora give us data with which to answer
these questions

= They are an externalization of linguistic knowledge

Christopher Manning

Spring 2008
pring = What words, rules, statistical facts do we find?
Borrows many slides from Bob Carpenter, Dan Klein, = How can we build programs that learn effectively
Roger Levy, Josh Goodman, Dan Jurafsky from this data, and can then do NLP tasks?
Speech Recognition: Acoustic Waves Acoustic Sampling
* Human speech generates a wave * 10 ms frame (ms = millisecond = 1/1000 second)
— like a loudspeaker moving « ~25ms window around frame [wide band] to allow/smooth

signal processing — it let's you see formants
« A wave for the words “speech lab” looks like:
s p ee ch | a b

. T T T T 4 ™ 1 25 ms

o] \ \
0fe0 .00 Tl 1.40 1.60 1.80 200 2.20

— L .
1o " 4NWMAWNMN4N\WMN/WWW’%M 10ms
transition: Result:

Acoustic Feature Vectors

Graphs from Simon Amnfield's web tutorial on speech, Sheffield: a2 (after transformation,
htp://www.psyc.leeds.ac. numbers in roughly R'4)
Spectral Analysis The Speech Recognition Problem
« Frequency gives pitch; amplitude gives volume * The Recognition Problem: Noisy channel model
— sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec) — Build generative model of encoding: We started with English words,
s P ee ch | a b they were encoded as an audio signal, and we now wish to decode.
8 oonf T T T T T T] — Find most likely sequence w of “words” given the sequence of
% - U oo W N acoustic observation vectors a
R — Use Bayes' rule to create a generative model and then decode
« Fourier transform of wave displayed as a spectrogram - ArgMax,, P(w|a) = ArgMax,, P(alw) P(w)/P(a)
— darkness indicates energy at each frequency =ArgMax,, P(alw) P(w)
— hundreds to thousands of frequency samples
. TR T T T T « Acoustic Model: P(a|w)
3
g + |- i 1 + Language Model: P(w) <umm
T of a language
S PSRN TN RN S
’ ’ « Why is this progress?

MT: Just a Code?

“Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which | believe succeed
even when one does not know what language has been coded
—one naturally wonders if the problem of translation could
conceivably be treated as a problem in cryptography. When |
look at an article in Russian, | say: ‘This is really written in
English, but it has been coded in some strange symbols. | will
now proceed to decode.’ ”

= Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

Language Model Translation Model

source e channel

P(e) Ple) [f
best observed

e T decoder |— £

argmax P(e|f) = argmax P(f|e)P(e)
e e

Other Noisy-Channel Processes

Handwriting recognition

P(text | strokes) o P(text)P(strokes | text)
OCR

P(text | pixels) o« P(text)P(pixels | text)
Spelling Correction

P(text |typos) o« P(text)P(typos | text)

Probabilistic Language Models

= Want to build models which assign scores to sentences.
= P(I saw a van) >> P(eyes awe of an)
= Not really grammaticality: P(artichokes intimidate zippers) ~ 0

= One option: empirical distribution over sentences?
= Problem: doesn’t generalize (at all)

= Two major components of generalization
= Backoff. sentences generated in small steps which can be
recombined in other ways
= Discounting: allow for the possibility of unseen events

N-Gram Language Models

No loss of generality to break sentence probability down with
the chain rule

P(ww,...w,) = HP(W, [wiw, ... w_y)

Too many histories!
= P(???| No loss of generality to break sentence) ?
= P(??? | the water is so transparent that) ?

N-gram solution: assume each word depends only on a short
linear history (a Markov assumption)

PO,y oow,) = [2OV o)

Simplest case: unigrams
P(ww,.. w)I]Hw

Generative process: pick a word, pick a word, .
As a graphical model:

o0 () Grop

To make this a proper distribution over sentences, we have to generate a special

STOP symbol last. (Why?)

Examples
{fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]

= [thrift, did, eighty, said, hard, 'm, july, bullish]

. [that, or, limited, the]
0

= [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico,
never, consider, fall, bungled, davison, that, obtain, price, lines, th, to, sass, the, the, urther, board, a,
details, machinists, the, comp: R fivals, af, because, longer. oakes, percen, , they. thr reé
o amter 2w i et wibte B you, s., longer, institute, dentistry, pay, however, said,
possible, o, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, haN between,
nasdag]

4/7/08

Bigram Models

Regular Languages?

» Big problem with unigrams: P(the the the the) >> P(l like ice cream)!
= Condition on previous word:

P(ww,...w,) = HP(Wi [wy)

= Any better?

[texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,
gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

[outside, new, car, parking, lot, of, the, agreement, reached]

[although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,
seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out,
of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated,
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to,
conscientious, teaching]

[this, would, be, a, record, november]

= N-gram models are (weighted) regular processes
= You can extend to trigrams, fourgrams, ...
= Why can’t we model language like this?
= Linguists have many arguments why language can't be regular.
= Long-distance effects:
“The computer which | had just put into the machine room on
the fifth floor crashed.”
= Why CAN we often get away with n-gram models?

= PCFG language models do model tree structure (later):
= [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk,
involving, IRS, leaders, and, transportation, prices, .]
= [It, could, be, announced, sometime, .]
= [Mr, Toseland, believes, the, average, defense, economy, is, drafted,
from, slightly, more, than, 12, stocks, .]

&)

Estimating bigram probabilities:
The maximum likelihood estimate

<s>|am Sam </s>
<s> Sam | am </s>
<s> | do not like green eggs and ham </s>

P(I|<s>)=%=.67 P(sam|<s>)=1=33 Plam|I)=3=.67
P(</s>|sam)=41=0.5 P(sam|am)=4%=.5 P(do|1)=1%=.33
n—1
C(er~N+lW”)

-1
P(WII‘W;;—N-‘—l): C(Wn—l)
- \Wn—-N+1

This is the Maximum Likelihood Estimate, because it is the one
which maximizes P(Training set|Model)

Berkeley Restaurant Project
sentences

= can you tell me about any good cantonese
restaurants close by

= mid priced thai food is what i'm looking for
= tell me about chez panisse

= can you give me a listing of the kinds of food
that are available

= i'm looking for a good place to eat breakfast
= when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

i want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 1510 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

= Normalize by unigrams:

‘ i ‘ want to ‘ eat chinese ‘ food ‘ lunch | spend |

[2533 [927 2417 [746 | 158 | 1093 [341 | 278 |
= Result:

i want | to eat chinese | food | lunch | spend

i 0.002 033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | 0 0.0025 | 0.087
cat 0 0 0.0027 | 0 0.021 0.0027 | 0.056 |0
chinese || 0.0063 |0 0 0 0 0.52 0.0063 | 0
food 0.014 0 0.014 |0 0.00092 | 0.0037 | O 0
lunch 0.0059 |0 0 0 0 0.0029 | 0 0
spend || 0.0036 | 0 0.0036 | 0 0 0 0 0

4/7/08

Evaluation

Measuring Model Quality

= What we want to know is:
= Will our model prefer good sentences to bad ones?
= Thatis, does it assign higher probability to “real” or “frequently
observed” sentences than “ungrammatical” or “rarely observed”
sentences?

= As a component of Bayesian inference, will it help us
discriminate correct utterances from noisy inputs?

= We train parameters of our model on a training set.

= To evaluate how well our model works, we look at the
models performance on some new data

= This is what happens in the real world; we want to know
how our model performs on data we haven’t seen

= So a test set. A dataset which is different than our
training set. Preferably totally unseen/unused.

- For Speech' Word Error Rate (WER) insertions + deletions + substitutions
true sentence size

Correct answer: Andy saw a part of the movie

‘

Recognizer output: And he saw apart of the movie

= The “right” measure: ﬁ

= Task error driven .
= For speech recognition WEF' 4ﬁ7
= For a specific recognizer! =57%

= Extrinsic, task-based evaluation is in principle best, but ...
= For general evaluation and fast experimentation, we want a
measure which references only good text, not mistake text

Measuring Model Quality

= The Shannon Game: grease 0.5
= How well can we predict the next word? sauce 0.4
When | order pizza, | wipe off the dust 0.05
Many children are allergic to
Isawa___ mice 0.0001
= Unigrams are terrible at this game. (Why?)
the 1e-100

= The “Entropy” Measure
= Really: average cross-entropy of a text according to a model

log, P, (s.
log, B, (S) _ Z o8 £ (5)

S| DL

H(S|M)=
Dlog, Py (w, [w,,)

Measuring Model Quality

= Problems with entropy:
= 0.1 bits of improvement doesn’t sound so good
= Solution: perplexity

P(S|M)=2"C" =

n

I S
HPM(m [7)

= Intrinsic measure: may not reflect task performance (but is
helpful as a first thing to measure and optimize on)

= Minor technical note: even though our models require a
stop step, people typically don’t count it as a symbol when
taking these averages.

= Common words in - Word Frequency
Frequency of Frequency
Tom Sawyer . 3993
(71,370 words) .2 1292
= 3 664
= the: 3332, and: . 4 210
2972, a: 1775, to: - 5 243
1725, of: 1440, * 6 199
was: 1161, it: ; gf
1027, in: 906, that: . o 82

877, he: 877, I: = 10 91

. .+ 1150 540
783, his: 772, you: ' 51100 99

686, Tom: 679 . >100 102

= Problems with n-gram models:
= New words appear regularly:
= Synaptitute

= 132,701.03
= fuzzificational gl
= New bigrams: even more often o4
L] Trigrams or more — still worse! 0 200000 400000 600000 800000 1000000
Number o Words
= Zipf's Law

Types (words) vs. tokens (word occurences)
= Broadly: most word types are rare ones
= Specifically:
= Rank word types by token frequency
= Frequency inversely proportional to rank: f = kir
= Statistically: word distributions are heavy tailed

= Not special to language: randomly generated character strings have
this property (try it!)

4/7/08

Zipf’s Law (on the Brown corpus)

100000

10000

1000

frequency
100

1 10 100 1000 10000 100000
rank

Smoothing

We often want to make from sparse statistics:
P(w | denied the)]
3 allegations

2 reports

1 claims

1 request
7 total
Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request c
2 other g

]
7 total Bl

allegations

reports
attack
man
outcome

allegations |:|

reports
attack
outcome

€

[claims|

Very important all over NLP, but easy to do badly!
lllustration with bigrams (h = previous word, could be anything).

Smoothing

= Estimating multinomials
We want to know what words follow some history h
There’s some true distribution P(w | h)
We saw some small sample of N words from P(w | h)
We want to reconstruct a useful approximation of P(w | h)
Counts of events we didn’t see are always too low (0 < N P(w | h))
Counts of events we did see are in aggregate to high
= Example: P(w | denied the) P(w | affirmed the)
3 allegations 1 award
2 reports
1 claims
1 speculation

1 request

. 13 total
= Two issues:

= Discounting: how to reserve mass what we haven’t seen
= Interpolation: how to allocate that mass amongst unseen events

Five types of smoothing

We'll cover

= Add-6 smoothing (Laplace)
= Simple interpolation

= Good-Turing smoothing

= Katz smoothing

= Kneser-Ney smoothing

Or less if we run out of time ... and then you'll
just have to read the textbook!

Smoothing: Add-One, Etc.

c number of word tokens in training data

c(w) count of word w in training data

c(w,w,,) | count of word w following word w,

A% total vocabulary size (assumed known)

N, number of word types with count &

= One class of smoothing/discounting functions:
= Add-one / delta: assumes a uniform prior

_cww)+ (1Y)
T o(w)+6

Pipp_s(Wlw,,

Add-One Estimation

Idea: pretend we saw every word once more than we actually did
[Laplace]
P(wh) = c(w,h)+1
c(hy+V
= Corresponds to a uniform Dirichlet prior over vocabulary
= Think of it as taking items with observed count r > 1 and treating them
as having count r* <r
= V/(c+V) of the probability space is from “fake” events
= Ny, /(c+V) of which is distributed back to seen words
= Ny/(c+V) actually passed on to unseen words (nearly all!)
= Actually tells us not only how much to hold out, but where to put it
= Works astonishingly poorly in practice

Quick fix: add some small § instead of 1 [Lidstone, Jefferys]
= Slightly better, holds out less mass, still a bad idea

4/7/08

Berkeley Restaurant Corpus
Laplace smoothed bigram counts

i want | to eat chinese | food | lunch | spend
i 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed bigrams

C(Wu_1wy) +1

P*(M7”|W”_l): C(W 1)+V
. n—

i want to eat chinese | food Tunch spend
i 0.0015 0.21 0.00025 | 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078 | 0.00026 | 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046 | 0.0078 0.0014 0.02 0.00046
chinese | 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039 | 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058| 0.0012 0.00058 | 0.00058| 0.00058 | 0.00058| 0.00058

Reconstituted counts

[C(wn—lwn) + 1] X C(Wll—l)

cF(Wpiwy) = o)1V
(W

i want to eat chinese| food| lunch| spend
i 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 23 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34] 034 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 22 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

How Much Mass to Withhold?

= Remember the key discounting problem:
= What count should r* should we use for an event that occurred r times
in ¢ samples?
= ris too big

= |dea: estimate empirically using held-out data [Jelinek and Mercer]
= Get another ¢ samples

= See what the average count of items occurring r times is (e.g.
doubletons on average might occur 1.78 times)

= Use those averages as r*

= Works better than fixing counts to add in advance

Backoff and Interpolation

Linear Interpolation

= Discounting says, “l| saw event X n times, but |
will really treat it as if | saw it fewer than n times
= Backoff (and interpolation) says, “In certain
cases, | will condition on less of my context than
in other cases”
= The sensible thing is to condition on less in
contexts that you haven’t learned much about

= Backoff: use trigram if you have it, otherwise
bigram, otherwise unigram
= Interpolation: mix all three

= One way to ease the sparsity problem for n-grams is to use
less-sparse n-1-gram estimates

= General linear interpolation:
P(wlw_y) =[1-A(w,w_)]P(w[w_) +[A(w, w_)]P(w)

= Having a single global mixing constant is generally not ideal:
Pw|w,) =[1-A1P(w|w_)+[A]P(W)
= [But actually works surprisingly well — simplest competent approach]

= Abetter yet still simple alternative is to vary the mixing constant
as a function of the conditioning context

Pwlw_)=[1- A(wil)]i’(w lw_) +A(w_)P(w)

Held-Out Data

. Important tool for getting models to generalize:

Held-Out Test

Training Data Data Data

. When we have a small number of parameters that control the degree of
smoothing, we set them to maximi%e the (log-)likelihood of held-out data

LL(w,..w, | M (A..2,)) = ElogPM(l‘w}u,‘)(wl [w,_)

T
= Can use any optimization technique (line search or EM usually easiest)
. Example:

Pw|w_)=[1- A]f’(w| w_,) +[A]P(w)

Good-Turing smoothing intuition

= Imagine you are fishing
= You have caught
= 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1

eel = 18 fish
= How likely is it that next species is new
= 3/18

= Assuming so, how likely is it that the next
species is a trout?
= Must be less than 1/18

Good-Turing Reweighting |

= We'd like to not need held-out data (why?)
= Idea: leave-one-out validation
= Take each of the c training words out in turn
= ctraining sets of size c-1, held-out of size 1
= What fraction of held-out words are unseen
in training?
= N/c
= What fraction of held-out words are seen k
times in training?
= (k+1)Nq/c
= Soin the future we expect (k+1)N,,,/c of the
words to be those with training count k
= There are N, words with training count k
= Each should occur with probability:
= (k1N /e/N,
= ...or expected count (k+1)N,, /N,

Ny

il =

Good-Turing Reweighting |l

= Problem: what about “the™? (say c=4417)
= Forsmallk, N, > Ny,
. For large k, too jumpy, zeros wreck estimates

1

N,
['

. Simple Good-Turing [Gale and Sampson]: replace
empirical N, with a best-fit regression (e.g., power
law) once count counts get i

N,
[

ff - E=EEN

B BEE

Good Turing calculations

unseen (bass or catfish) trout
c 0 1
MLE =%=0 L
P |P=m ®
c* c¥(trout)=2 x % =2x4=.67
GT pgr || PGr(unseen) = %1 = 13_8 = .17 | pgp(trout) = % = % =.037

Good-Turing Reweighting I

= Hypothesis: counts of k should be k* = (k+1)N,, /N,

Countin 22M Words | Actual ¢* (Next 22M) | GT's ¢*
1 0.448 0446
2 1.25 1.26

3 2.24 2.24

4 3.23 3.24
Mass on New 9.2% 9.2%

= Katz Smoothing
. Extends G-T smoothing into a backoff model using higher order contexts
= Use GT discounted bigram counts (roughly — Katz left large counts alone)
= Whatever mass is left goes to empirical unigram

I AT
Pz (w|w,) = EC(W, 5

+a(w.)P(w)

W

4/7/08

Intuition of Katz backoff + discounting

= How much probability to assign to all the zero
trigrams?
= Use GT or other discounting algorithm to tell us
= How to divide that probability mass among
different contexts?
= Use the n-1 gram estimates to tell us
= What do we do for the unigram words not seen
in training?
= Out Of Vocabulary = OOV words

Kneser-Ney Smoothing |

. Something’s been very broken all this time
= Shannon game: There was an unexpected ____?
= delay?
= Francisco?
= “Francisco” is more common than “delay”
- ... but “Francisco” always follows “San”

. Solution: Kneser-Ney smoothing
. In the back-off model, we don’t want the unigram probability of w
. Instead, probability given that we are observing a novel continuation
= Every bigram type was a novel continuation the first time it was seen

[{w, se(w,w) >0}

Feovmuarion (W) =
o [(w,w_):e(w,w) > 0|

Kneser-Ney Smoothing Il

= One more aspect to Kneser-Ney:
= Look at the GT counts:

Countin 22M Words | Actual ¢* (Next 22M) | GT's ¢c*
1 0.448 0.446
2 1.25 1.26

3 224 224

4 3.23 3.24

= Absolute Discounting
= Save ourselves some time and just subtract 0.75 (or some d)
= Maybe have a separate value of d for very low counts
cww_)-d

Poy(wlw_)= E ’ +a(w_)Peoymuarion(W)
c(w',w_

w'

(&) What Actually Works?

. Trigrams:

. Unigrams, bigrams too little
context

- Trigrams much better (when
there's enough data)

. 4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)

. Good-Turing-like methods for
count adjustment

. Absolute discounting, Good-
Turing, held-out estimation, . . .
Witten-Bell El 100 1000 10000 100000 1406 1¢+07

= Kneser-Ney equalization for e st e fentencey
lower-order models

. See [Chen+Goodman] reading
for tons of graphs!

relative performance of algorithms on WSINAB corpus, 3-gram
o absedisérinterp " witien-bel-backoft
005

0 s jelinek-mercer-bascline

0.05 N

from bascline (bits/token)

01T jm

015 ©.kneser-ney — katz

Kneser-ney-mot,

[Graph from
Joshua Goodman]

= Having more data is always good...

10
9.5 ~-100,000 Katz
9 -+ 100,000 KN
85 1,000,000 Katz
? 8 1,000,000 KN
275 10,000,000 Katz
7 -+~ 10,000,000 KN
6.5 ——allKatz
6 E— T
55 |

12 3 4 5 6 7 8 910 2
n-gram order
= ... butsois picking a better smoothing mechanism!
= N> 3 often not worth the cost (though 4-grams begin to look good)

Google N-Gram Release

All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a

variety of R&D projects, such as machine speech
recognition, spelling , entity detection, information extraction,

and others. While such models have usually been estimated from training

10 share this enormous aataset with everyone. We processed
1,024,908,267,229 words of running text and are publishing the counts
for all 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear
less than 200 times.

4/7/08

Google N-Gram Release

= serve as the incoming 92

= serve as the incubator 99

= serve as the independent 794

= serve as the index 223

*= serve as the indication 72

= serve as the indicator 120

= serve as the indicators 45

= serve as the indispensable 111
= serve as the indispensible 40
= serve as the individual 234

Beyond N-Gram LMs

Caching Models
. Recent words more likely to appear again

Peyens 0] history) = 2P(w) + (1 - 1) SCLERS0R)

| history |
= Can be disastrous in practice for speech (why?)
Skipping Models
Poap(WIw_w_y) = W POw | ww,) + L P(wlw,)+ AP(w|_w.)

Clustering Models: condition on word classes when words are too sparse
Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we'll see these later)

Unknown words: Open versus
closed vocabulary tasks

= If we know all the words in advance
. Vocabulary V is fixed
. Closed vocabulary task. Easy.
= Often we don’t know this
= Out Of Vocabulary = OOV words
- Open vocabulary task
= Instead: create an unknown word token <UNK>
- Training of <UNK> probabilities
= Create a fixed lexicon L of size V
= Attextnormalization phase, any training word not in L changed to <UNK>
There may be no such instances if L covers the training data
= Now we train its probabilities
If low counts are mapped to <UNK>, may train it like a normal word
+ Otherwise, techniques like Good-Turing estimation are applicable

. At decoding time
= Iftextinput: Use UNK probabilties for any word not in training

Practical Considerations

The unknown word symbol <UNK>:

= In many cases, open vocabularies use multiple types of OOVs
(e.g., numbers & proper names)

= For the programming assignment:
= OKto assume there is only one unknown word type, UNK
= UNK will be quite common in new text!

= UNK stands for all unknown word types (define probability event
model thus)

= To model the probability of individual new words occurring, you
can use spelling models for them, but people usually don't
Numerical computations
= We usually do everything in log space (log probabilities)
= Avoid underflow
= (also adding is faster than multiplving)
P1% P2 % p3 % py = exp(log p1 +log pa +log p3 + log p4)

4/7/08

