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Borrows many slides from Bob Carpenter, Dan Klein, 
Roger Levy, Josh Goodman, Dan Jurafsky 

Questions that linguistics should answer 

  What kinds of things do people say? 
  What do these things say/ask/request about the 

world? 
  Example: In addition to this, she insisted that women were 

regarded as a different existence from men unfairly. 

  Text corpora give us data with which to answer 
these questions 

  They are an externalization of linguistic knowledge 
  What words, rules, statistical facts do we find? 
  How can we build programs that learn effectively 

from this data, and can then do NLP tasks?  
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Graphs from Simon Arnfield’s web tutorial on speech, Sheffield: 
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/ 

“l” to “a” 
transition: 

Speech Recognition: Acoustic Waves 

•  Human speech generates a wave  
–  like a loudspeaker moving 

•  A wave for the words “speech lab” looks like: 

Acoustic Sampling 

•  10 ms frame (ms = millisecond = 1/1000 second) 
•  ~25 ms window around frame [wide band] to allow/smooth 

signal processing – it let’s you see formants 

25 ms 

10ms 

. . . 

a1      a2      a3 

Result: 
Acoustic Feature Vectors 
(after transformation, 
numbers in roughly R14) 

Spectral Analysis 

•  Frequency gives pitch; amplitude gives volume 
–  sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec) 

•  Fourier transform of wave displayed as a spectrogram 
–  darkness indicates energy at each frequency 
–  hundreds to thousands of frequency samples 

   s             p       ee         ch           l     a          b 

fre
qu

en
cy

 
am

pl
itu

de
 

The Speech Recognition Problem 

•  The Recognition Problem: Noisy channel model 
–  Build generative model of encoding: We started with English words, 

they were encoded as an audio signal, and we now wish to decode. 
–  Find most likely sequence w of “words” given the sequence of 

acoustic observation vectors a  

–  Use Bayes’ rule to create a generative model and then decode 
–  ArgMaxw  P(w|a) = ArgMaxw  P(a|w) P(w) / P(a) 
                                 = ArgMaxw  P(a|w) P(w)  

•  Acoustic Model:      P(a|w) 
•  Language Model:    P(w) 

•  Why is this progress?   

A probabilistic theory 
of a language 
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MT: Just a Code? 

  “Also knowing nothing official about, but having guessed and 
inferred considerable about, the powerful new mechanized 
methods in cryptography—methods which I believe succeed 
even when one does not know what language has been coded
—one naturally wonders if the problem of translation could 
conceivably be treated as a problem in cryptography.  When I 
look at an article in Russian, I say: ‘This is really written in 
English, but it has been coded in some strange symbols. I will 
now proceed to decode.’  ”  

  Warren Weaver (1955:18, quoting a letter he wrote in 1947) 

MT System Components 

source 
P(e) 

e f 

decoder 
observed      

argmax P(e|f) = argmax P(f|e)P(e) 
e e 

e f 
best 

channel 
P(f|e) 

Language Model Translation Model 

Other Noisy-Channel Processes 

  Handwriting recognition 

  OCR 

  Spelling Correction 

)|()()|( textstrokesPtextPstrokestextP ∝

)|()()|( textpixelsPtextPpixelstextP ∝

)|()()|( texttyposPtextPtypostextP ∝

Probabilistic Language Models 

  Want to build models which assign scores to sentences. 
  P(I saw a van) >> P(eyes awe of an) 
  Not really grammaticality: P(artichokes intimidate zippers) ≈ 0 

  One option: empirical distribution over sentences? 
  Problem: doesn’t generalize (at all) 

  Two major components of generalization 
  Backoff: sentences generated in small steps which can be 

recombined in other ways 
  Discounting: allow for the possibility of unseen events 

N-Gram Language Models 
  No loss of generality to break sentence probability down with 

the chain rule 

  Too many histories! 
  P(??? | No loss of generality to break sentence) ? 
  P(??? | the water is so transparent that) ? 

  N-gram solution: assume each word depends only on a short 
linear history (a Markov assumption) 
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Unigram Models 
  Simplest case: unigrams 

  Generative process: pick a word, pick a word, … 
  As a graphical model: 

  To make this a proper distribution over sentences, we have to generate a special 
STOP symbol last.  (Why?) 

  Examples: 
  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.] 
  [thrift, did, eighty, said, hard, 'm, july, bullish] 
  [that, or, limited, the] 
  [] 
  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico, 

never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a, 
details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, they, three, 
edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, however, said, 
possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, half, between, 
nasdaq] 
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Bigram Models 
  Big problem with unigrams: P(the the the the) >> P(I like ice cream)! 
  Condition on previous word: 

  Any better? 
  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., 

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, 
fifty, five, yen] 

  [outside, new, car, parking, lot, of, the, agreement, reached] 
  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, 

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, 
of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated, 
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, 
conscientious, teaching] 

  [this, would, be, a, record, november] 
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Regular Languages? 
  N-gram models are (weighted) regular processes 

  You can extend to trigrams, fourgrams, … 
  Why can’t we model language like this? 

  Linguists have many arguments why language can’t be regular. 
  Long-distance effects: 
 “The computer which I had just put into the machine room on 

the fifth floor crashed.” 
  Why CAN we often get away with n-gram models? 

  PCFG language models do model tree structure (later): 
  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk, 

involving, IRS, leaders, and, transportation, prices, .] 
  [It, could, be, announced, sometime, .] 
  [Mr., Toseland, believes, the, average, defense, economy, is, drafted, 

from, slightly, more, than, 12, stocks, .] 

Estimating bigram probabilities: 
The maximum likelihood estimate 

  <s> I am Sam </s> 
  <s> Sam I am </s> 
  <s> I do not like green eggs and ham </s> 

  This is the Maximum Likelihood Estimate, because it is the one 
which maximizes P(Training set|Model) 

Berkeley Restaurant Project 
sentences 

  can you tell me about any good cantonese 
restaurants close by 

  mid priced thai food is what i’m looking for 
  tell me about chez panisse 
  can you give me a listing of the kinds of food 

that are available 
  i’m looking for a good place to eat breakfast 
  when is caffe venezia open during the day 

Raw bigram counts 

  Out of 9222 sentences 

Raw bigram probabilities 

  Normalize by unigrams: 

  Result: 
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Evaluation 

  What we want to know is: 
  Will our model prefer good sentences to bad ones? 

  That is, does it assign higher probability to “real” or “frequently 
observed” sentences than “ungrammatical” or “rarely observed” 
sentences? 

  As a component of Bayesian inference, will it help us 
discriminate correct utterances from noisy inputs? 

  We train parameters of our model on a training set. 
  To evaluate how well our model works, we look at the 

models performance on some new data 
  This is what happens in the real world; we want to know 

how our model performs on data we haven’t seen 
  So a test set. A dataset which is different than our 

training set. Preferably totally unseen/unused. 

Measuring Model Quality 
  For Speech: Word Error Rate (WER) 

  The “right” measure: 
  Task error driven 
  For speech recognition 
  For a specific recognizer! 

  Extrinsic, task-based evaluation is in principle best, but … 
  For general evaluation and fast experimentation, we want a 

measure which references only good text, not mistake text 

Correct answer:          Andy saw a part of the movie 

Recognizer output:     And he saw apart of the movie 

insertions + deletions + substitutions 
true sentence size 

WER: 4/7 
= 57% 

Measuring Model Quality 
  The Shannon Game: 

  How well can we predict the next word? 

  Unigrams are terrible at this game.  (Why?) 

  The “Entropy” Measure 
  Really: average cross-entropy of a text according to a model 

When I order pizza, I wipe off the ____ 

Many children are allergic to ____ 

I saw a ____ 
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Measuring Model Quality 

  Problems with entropy: 
  0.1 bits of improvement doesn’t sound so good 
  Solution: perplexity 

  Intrinsic measure: may not reflect task performance (but is 
helpful as a first thing to measure and optimize on) 

  Minor technical note: even though our models require a 
stop step, people typically don’t count it as a symbol when 
taking these averages. 
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What’s in our text corpora 

  Common words in 
Tom Sawyer 
(71,370 words) 

  the: 3332, and: 
2972, a: 1775, to: 
1725, of: 1440, 
was: 1161, it: 
1027, in: 906, that: 
877, he: 877, I: 
783, his: 772, you: 
686, Tom: 679  

  Word Frequency 
Frequency of Frequency 

  1   3993 
  2  1292 
  3  664 
  4  410 
  5  243 
  6  199 
  7  172 
  8  131 
  9  82 
  10  91 
  11–50 540 
  51–100 99 
  >100 102 
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Rules

Sparsity 
  Problems with n-gram models: 

  New words appear regularly: 
  Synaptitute 
  132,701.03 
  fuzzificational 

  New bigrams: even more often 
  Trigrams or more – still worse! 

  Zipf’s Law 
  Types (words) vs. tokens (word occurences) 
  Broadly: most word types are rare ones 
  Specifically:  

  Rank word types by token frequency 
  Frequency inversely proportional to rank: f = k/r 
  Statistically: word distributions are heavy tailed 

  Not special to language: randomly generated character strings have 
this property (try it!) 
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Zipf’s Law (on the Brown corpus) Smoothing 
  We often want to make estimates from sparse statistics: 

  Smoothing flattens spiky distributions so they generalize better 

  Very important all over NLP, but easy to do badly! 
  Illustration with bigrams (h = previous word, could be anything). 

P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 request 
  7 total 
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P(w | denied the) 
  2.5 allegations 
  1.5 reports 
  0.5 claims 
  0.5 request 
  2 other 
  7 total 

Smoothing 
  Estimating multinomials 

  We want to know what words follow some history h 
  There’s some true distribution P(w | h) 
  We saw some small sample of N words from P(w | h) 
  We want to reconstruct a useful approximation of P(w | h) 
  Counts of events we didn’t see are always too low (0 < N P(w | h)) 
  Counts of events we did see are in aggregate to high 

  Example: 

  Two issues: 
  Discounting: how to reserve mass what we haven’t seen 
  Interpolation: how to allocate that mass amongst unseen events 

P(w | denied the) 
  3 allegations 
  2 reports 
  1 claims 
  1 speculation 
  … 
  1 request 
  13 total 

P(w | affirmed the) 
  1 award 

Five types of smoothing 

  We’ll cover 
  Add-δ smoothing (Laplace) 
  Simple interpolation 
  Good-Turing smoothing 
  Katz smoothing 
  Kneser-Ney smoothing 

  Or less if we run out of time … and then you’ll 
just have to read the textbook! 

Smoothing: Add-One, Etc. 

  One class of smoothing/discounting functions: 
  Add-one / delta: assumes a uniform prior 

δ
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c number of word tokens in training data 

c(w) count of word w in training data 

c(w,w-1) count of word w following word w-1 

V total vocabulary size (assumed known) 

Nk number of word types with count k 

Add-One Estimation 
  Idea: pretend we saw every word once more than we actually did 

[Laplace] 

  Corresponds to a uniform Dirichlet prior over vocabulary 
  Think of it as taking items with observed count r > 1 and treating them 

as having count r* < r 
  V/(c+V) of the probability space is from “fake” events 

  N1+/(c+V) of which is distributed back to seen words 
  N0/(c+V) actually passed on to unseen words (nearly all!) 
  Actually tells us not only how much to hold out, but where to put it 

  Works astonishingly poorly in practice 

  Quick fix: add some small δ instead of 1 [Lidstone, Jefferys] 
  Slightly better, holds out less mass, still a bad idea 
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Berkeley Restaurant Corpus 
Laplace smoothed bigram counts Laplace-smoothed bigrams 

Reconstituted counts How Much Mass to Withhold? 
  Remember the key discounting problem: 

  What count should r* should we use for an event that occurred r times 
in c samples? 

  r is too big 

  Idea: estimate empirically using held-out data [Jelinek and Mercer] 
  Get another c samples 
  See what the average count of items occurring r times is (e.g. 

doubletons on average might occur 1.78 times) 
  Use those averages as r* 

  Works better than fixing counts to add in advance 

Backoff and Interpolation 

  Discounting says, “I saw event X n times, but I 
will really treat it as if I saw it fewer than n times 

  Backoff (and interpolation) says, “In certain 
cases, I will condition on less of my context than 
in other cases” 
  The sensible thing is to condition on less in 

contexts that you haven’t learned much about 

  Backoff: use trigram if you have it, otherwise 
bigram, otherwise unigram 

  Interpolation: mix all three  

Linear Interpolation 
  One way to ease the sparsity problem for n-grams is to use 

less-sparse n-1-gram estimates 
  General linear interpolation: 

  Having a single global mixing constant is generally not ideal: 

  [But actually works surprisingly well – simplest competent approach] 

  A better yet still simple alternative is to vary the mixing constant 
as a function of the conditioning context 

1 1 1 1
ˆ( | ) [1 ( , )] ( | ) [ ( , )] ( )P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ( | ) [1 ] ( | ) [ ] ( )P w w P w w P wλ λ− −= − +

€ 

P(w | w−1) = [1− λ(w−1)] ˆ P (w | w−1) +λ(w−1)P(w)
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Held-Out Data 
  Important tool for getting models to generalize: 

  When we have a small number of parameters that control the degree of 
smoothing, we set them to maximize the (log-)likelihood of held-out data 

  Can use any optimization technique (line search or EM usually easiest) 

  Example: 

Training Data Held-Out 
Data 

Test 
Data 
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Good-Turing smoothing intuition 

  Imagine you are fishing 
  You have caught  

  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 
eel = 18 fish 

  How likely is it that next species is new 
  3/18 

  Assuming so, how likely is it that the next 
species is a trout? 
  Must be less than 1/18 

Good-Turing Reweighting I 
  We’d like to not need held-out data (why?) 
  Idea: leave-one-out validation 

  Take each of the c training words out in turn 
  c training sets of size c-1, held-out of size 1 
  What fraction of held-out words are unseen 

in training?  
  N1/c 

  What fraction of held-out words are seen k 
times in training? 
  (k+1)Nk+1/c 

  So in the future we expect (k+1)Nk+1/c of the 
words to be those with training count k 

  There are Nk words with training count k 
  Each should occur with probability: 

  (k+1)Nk+1/c/Nk 
  …or expected count (k+1)Nk+1/Nk 

N1 

N2 

N3 

N4417 

N3511 

. .
 . 

. 

N0 

N1 

N2 

N4416 

N3510 

. .
 . 

. 

Good-Turing Reweighting II 
  Problem: what about “the”?  (say c=4417) 

  For small k, Nk > Nk+1 
  For large k, too jumpy, zeros wreck estimates 

  Simple Good-Turing [Gale and Sampson]: replace 
empirical Nk with a best-fit regression (e.g., power 
law) once count counts get unreliable 

N1 

N2 

N3 

N4417 

N3511 

. .
 . 

. 

N0 

N1 

N2 

N4416 

N3510 

. .
 . 

. 

N1 
N2 N3 

N1 
N2 

Good Turing calculations Good-Turing Reweighting III 
  Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk 

  Katz Smoothing 
  Extends G-T smoothing into a backoff model using higher order contexts 
  Use GT discounted bigram counts (roughly – Katz left large counts alone) 
  Whatever mass is left goes to empirical unigram 
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1 0.448 0.446 

2 1.25 1.26 

3 2.24 2.24 

4 3.23 3.24 

Mass on New  9.2% 9.2% 
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Intuition of Katz backoff + discounting 

  How much probability to assign to all the zero 
trigrams? 
  Use GT or other discounting algorithm to tell us 

  How to divide that probability mass among 
different contexts? 
  Use the n-1 gram estimates to tell us 

  What do we do for the unigram words not seen 
in training? 
  Out Of Vocabulary = OOV words 

Kneser-Ney Smoothing I 
  Something’s been very broken all this time 

  Shannon game:  There was an unexpected ____? 
  delay? 
  Francisco? 

  “Francisco” is more common than “delay” 
  … but “Francisco” always follows “San” 

  Solution: Kneser-Ney smoothing 
  In the back-off model, we don’t want the unigram probability of w 
  Instead, probability given that we are observing a novel continuation 
  Every bigram type was a novel continuation the first time it was seen 
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Kneser-Ney Smoothing II 
  One more aspect to Kneser-Ney: 

  Look at the GT counts: 

  Absolute Discounting 
  Save ourselves some time and just subtract 0.75 (or some d) 
  Maybe have a separate value of d for very low counts 

Count in 22M Words Actual c* (Next 22M) GT’s c* 

1 0.448 0.446 

2 1.25 1.26 

3 2.24 2.24 

4 3.23 3.24 
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What Actually Works? 
  Trigrams: 

  Unigrams, bigrams too little 
context 

  Trigrams much better (when 
there’s enough data) 

  4-, 5-grams usually not 
worth the cost (which is 
more than it seems, due to 
how speech recognizers are 
constructed) 

  Good-Turing-like methods for 
count adjustment 
  Absolute discounting, Good-

Turing, held-out estimation, 
Witten-Bell 

  Kneser-Ney equalization for 
lower-order models 

  See [Chen+Goodman] reading 
for tons of graphs! 

[Graph from 
Joshua Goodman] 

Data >> Method? 
  Having more data is always good… 

  … but so is picking a better smoothing mechanism! 
  N > 3 often not worth the cost (though 4-grams begin to look good) 
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Google N-Gram Release 
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Google N-Gram Release 
  serve as the incoming 92
  serve as the incubator 99
  serve as the independent 794
  serve as the index 223
  serve as the indication 72
  serve as the indicator 120
  serve as the indicators 45
  serve as the indispensable 111
  serve as the indispensible 40
  serve as the individual 234

Beyond N-Gram LMs 
  Caching Models 

  Recent words more likely to appear again 

  Can be disastrous in practice for speech (why?) 

  Skipping Models 

  Clustering Models: condition on word classes when words are too sparse 
  Trigger Models: condition on bag of history words (e.g., maxent) 
  Structured Models: use parse structure (we’ll see these later) 
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Unknown words: Open versus 
closed vocabulary tasks 

  If we know all the words in advance 
  Vocabulary V is fixed 
  Closed vocabulary task. Easy. 

  Often we don’t know this 
  Out Of Vocabulary = OOV words 
  Open vocabulary task 

  Instead: create an unknown word token <UNK> 
  Training of <UNK> probabilities 

  Create a fixed lexicon L of size V 
  At text normalization phase, any training word not in L changed to  <UNK> 

  There may be no such instances if L covers the training data 
  Now we train its probabilities 

  If low counts are mapped to <UNK>, may train it like a normal word 
  Otherwise, techniques like Good-Turing estimation are applicable 

  At decoding time 
  If text input: Use UNK probabilities for any word not in training 

Practical Considerations 
  The unknown word symbol <UNK>: 

  In many cases, open vocabularies use multiple types of OOVs 
(e.g., numbers & proper names) 

  For the programming assignment: 
  OK to assume there is only one unknown word type, UNK 
  UNK will be quite common in new text! 
  UNK stands for all unknown word types (define probability event 

model thus) 
  To model the probability of individual new words occurring, you 

can use spelling models for them, but people usually don’t 
  Numerical computations 

  We usually do everything in log space (log probabilities) 
  Avoid underflow 
  (also adding is faster than multiplying) 


