Goal of the section today (4/28/2006)

Run through a concrete example of maximum entropy (maxent) models. You should be able to understand these things at the end of the section:

- What are "features"
- What is being adjusted in the training process
- How to compute the objective function that's being optimized
- How to compute the derivative (used in optimization process)

This mini task is to classify animals to the category of cats, or bears. $c \in C = \{cat, bear\}$

We have seen 3 animals. The first animal (d1) is fuzzy. It has claws and it's small.

 $d_1 = [fuzzy, claws, small]$

We know it's a cat.

 $c_1 = cat$

The second animal (d2) is fuzzy. It also has claws, but it's big.

 $d_2 = [fuzzy, claws, big]$

We know it's a bear.

 $c_2 = bear$

The third animal (d3) we've seen has claws, and its size is medium.

 $d_3 = [claws, medium]$

We know it's a cat.

```
c_3 = cat
```

Question:

Here we have 5 characteristics that can be used to describe our data: being fuzzy, have claws, small size, big size, or medium size. And we have 2 classes: **cat** or **bear**.

How many (basic) feature functions do we have, and what are they?

Feature Sets:

In this example, we have 10 features:

$f_1(c, d) = 1$	if c is cat and d is fuzzy
$f_2(c, d) = 1$	if c is bear and d is fuzzy
$f_3(c, d) = 1$	if c is cat and d has claws
$f_4(c, d) = 1$	if c is bear and d has claws
$f_5(c, d) = 1$	if c is cat and d is small
$f_6(c, d) = 1$	if c is bear and d is small
$f_7(c, d) = 1$	if c is cat and d is big
$f_8(c, d) = 1$	if c is bear and d is big
$f_9(c, d) = 1$	if c is cat and d is medium
$f_{10}(c, d) = 1$	if ${\bf c}$ is bear and ${\bf d}$ is medium

Parameters:

We have 10 λ_i 's, each of them indicates how important each feature is. <u>Definition 1</u>: vote(**c**) = $\sum_i \lambda_i f_i(\mathbf{c}, \mathbf{d})$

In our example...

Suppose we already have a set of λ_1 's. (see the tables below) For the first animal $d_1 = [fuzzy, claws, small]$ vote(cat) = $\sum_{i=1}^{n} \lambda_i f(cat d_i) = -0.2$

$vote(cat) = \sum_{i=1to10} \lambda_i f_i(cat, O_1) = -0.2$						
$\lambda_1 =$	-1	$f_1(cat, d_1) =$	1	$\lambda_1 f_1(\mathbf{cat}, \mathbf{d}_1) =$	-1	
$\lambda_2 =$	1	$f_2(cat, d_1) =$	0	$\lambda_2 f_2(\mathbf{cat}, \mathbf{d}_1) =$	0	
$\lambda_3 =$	0.5	$f_3(cat, d_1) =$	1	$\lambda_3 f_3(\mathbf{cat}, \mathbf{d}_1) =$	0.5	
$\lambda_4 =$	-0.5	$f_4(cat, d_1) =$	0	$\lambda_4 f_4(\mathbf{cat}, \mathbf{d}_1) =$	0	
$\lambda_5 =$	0.3	$f_5(cat, d_1) =$	1	$\lambda_5 f_5(\mathbf{cat}, \mathbf{d}_1) =$	0.3	
$\lambda_6 =$	-0.3	$f_6(cat, d_1) =$	0	$\lambda_6 f_6(\mathbf{cat}, \mathbf{d}_1) =$	0	
$\lambda_7 =$	-0.6	$f_7(cat, d_1) =$	0	$\lambda_7 f_7(\mathbf{cat}, \mathbf{d}_1) =$	0	
$\lambda_8 =$	0.6	$f_8(cat, d_1) =$	0	$\lambda_8 f_8(\mathbf{cat}, \mathbf{d}_1) =$	0	
$\lambda_9=$	0.8	$f_9(cat, d_1) =$	0	$\lambda_9 f_9(\mathbf{cat}, \mathbf{d}_1) =$	0	
$\lambda_{10}=$	-0.8	$f_{10}(cat, d_1) =$	0	$\lambda_{10} f_{10}(cat, d_1) =$	0	
				vote(cat)=	-0.2	

vote(bear) = $\sum_{i=1to10} \lambda_i f_i($ bear , d_1) = 0.2							
$\lambda_1 =$	-1	$f_1(bear, d_1) =$	0	λ_1 f ₁ (bear ,d ₁) =	0		
$\lambda_2 =$	1	$f_2(bear, d_1) =$	1	λ_2 f ₂ (bear ,d ₁) =	1		
$\lambda_3 =$	0.5	$f_3(\mathbf{bear}, \mathbf{d}_1) =$	0	$\lambda_3 f_3(\mathbf{bear}, \mathbf{d}_1) =$	0		
$\lambda_4=$	-0.5	$f_4(\mathbf{bear}, \mathbf{d}_1) =$	1	$\lambda_4 f_4(\mathbf{bear}, \mathbf{d}_1) =$	-0.5		
$\lambda_5 =$	0.3	$f_5(\mathbf{bear}, \mathbf{d}_1) =$	0	$\lambda_5 f_5(\mathbf{bear}, \mathbf{d}_1) =$	0		
$\lambda_6 =$	-0.3	$f_6(\mathbf{bear}, \mathbf{d}_1) =$	1	$\lambda_6 f_6(\mathbf{bear}, \mathbf{d}_1) =$	-0.3		
$\lambda_7 =$	-0.6	$f_7(\mathbf{bear}, d_1) =$	0	$\lambda_7 f_7(\mathbf{bear}, \mathbf{d}_1) =$	0		
$\lambda_8 =$	0.6	$f_8(\mathbf{bear}, \mathbf{d}_1) =$	0	$\lambda_8 f_8(\mathbf{bear}, \mathbf{d}_1) =$	0		
$\lambda_9 =$	0.8	$f_9(\mathbf{bear}, \mathbf{d}_1) =$	0	$\lambda_9 f_9(\mathbf{bear}, \mathbf{d}_1) =$	0		
$\lambda_{10} =$	-0.8	$f_{10}(bear, d_1) =$	0	$\lambda_{10} f_{10}(bear, d_1) =$	0		
				vote(bear)=	0.2		

The vote for the other class, bear, is: vote(**bear**) = $\sum_{i=1to10} \lambda_i f_i(\text{bear}, d_1) = 0.2$

Definition 2: probabilistic model

$$P(\mathbf{c} \mid \mathbf{d}, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(\mathbf{c}, \mathbf{d})}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(\mathbf{c'}, \mathbf{d})} = \frac{\exp(\operatorname{vote}(\mathbf{c}))}{\sum_{c'} \exp(\operatorname{vote}(\mathbf{c'}))}$$

In our example...

$$P(\mathbf{cat}|d_1,\lambda) = \frac{\exp(\operatorname{vote}(\mathbf{cat}))}{\exp(\operatorname{vote}(\mathbf{cat})) + \exp(\operatorname{vote}(\mathbf{bear}))} = \frac{\exp(-0.2)}{\exp(-0.2) + \exp(0.2)} = \mathbf{0.4013}$$
$$P(\mathbf{bear}|d_1,\lambda) = \frac{\exp(\operatorname{vote}(\mathbf{bear}))}{\exp(\operatorname{vote}(\mathbf{cat})) + \exp(\operatorname{vote}(\mathbf{bear}))} = \frac{\exp(0.2)}{\exp(-0.2) + \exp(0.2)} = \mathbf{0.5987}$$

Interpretation from this example:

Given the set of λ_i 's in the table, and given that we see an animal with the features [fuzzy, claws, small], we'll conclude the probability of it being a cat is **0.4013**, being a bear is **0.5987**. So we'll say it's a bear.

If we go back to our first page, we'll see that this animal is in our training data, and it's actually a cat, not a bear!

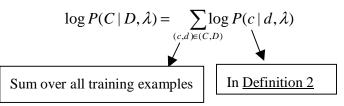
Question: Intuitively, how do we adjust the λ_i 's so that we can correctly predict this example?

What are we optimizing?

When we're adjusting the λ_i 's, we're aiming at maximizing the (conditional) likelihood of our training data.

$$P(C \mid D, \lambda) = \prod_{(c,d) \in (C,D)} P(c \mid d, \lambda)$$

It's equivalent to maximizing the log conditional likelihood.



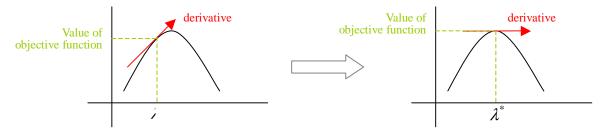
What's necessary for doing the optimization?

Give a set of λ_i 's, calculate

- 1. <u>Objective</u> : the conditional likelihood of the data $\rightarrow \log P(C \mid D, \lambda)$
- 2. <u>Derivatives</u> :

$$\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i} = \operatorname{actual count}(f_i, C) \operatorname{-predicted count}(f_i, \lambda)$$
$$= \sum_{(c,d) \in (C,D)} f_i(c, d) - \sum_{(c,d) \in (C,D)} \sum_{c'} P(c' \mid d, \lambda) f_i(c', d)$$

A simple intuition here: (in one-dimensional space):



See the excel file for a detailed example of how to compute the value of the objective function and derivatives, and how to adjust λ_1 's.