Goal of the section today (4/28/2006)

Run through a concrete example of maximum entropy (maxent) models.
You should be able to understand these things at the end of the section:

- What are "features"
- What is being adjusted in the training process
- How to compute the objective function that's being optimized
- How to compute the derivative (used in optimization process)

This mini task is to classify animals to the category of cats, or bears.

$$
c \in C=\{c a t, \text { bear }\}
$$

We have seen 3 animals. The first animal (d1) is fuzzy. It has claws and it's small.

$$
d_{1}=[f u z z y, \text { claws, small] }
$$

We know it's a cat.

$$
\mathrm{c}_{1}=\mathrm{cat}
$$

The second animal (d2) is fuzzy. It also has claws, but it's big.

$$
d_{2}=[\text { fuzzy, claws, big }]
$$

We know it's a bear.

$$
c_{2}=\text { bear }
$$

The third animal (d3) we' ve seen has claws, and its size is medium.

$$
d_{3}=[\text { claws, medium }]
$$

We know it's a cat.

$$
c_{3}=\mathrm{cat}
$$

Question:

Here we have 5 characteristics that can be used to describe our data: being fuzzy, have claws, small size, big size, or medium size. And we have 2 classes: cat or bear.

How many (basic) feature functions do we have, and what are they?

Feature Sets:

In this example, we have 10 features:
$f_{1}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is cat and \mathbf{d} is fuzzy
$f_{2}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is bear and \mathbf{d} is fuzzy
$f_{3}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is cat and \mathbf{d} has claws
$f_{4}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is bear and \mathbf{d} has claws
$f_{5}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is cat and \mathbf{d} is small
$f_{f}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is bear and \mathbf{d} is small
$f_{7}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is cat and \mathbf{d} is big
$f_{8}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is bear and \mathbf{d} is big
$f_{9}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is cat and \mathbf{d} is medium
$f_{10}(\mathbf{c}, \mathbf{d})=1 \quad$ if \mathbf{c} is bear and \mathbf{d} is medium

Parameters:

We have $10 \lambda_{i}$'s, each of them indicates how important each feature is.
Definition 1: $\operatorname{vote}(\mathbf{c})=\sum_{\mathrm{i}} \lambda_{\mathrm{i}} f_{\mathrm{i}}(\mathbf{c}, \mathbf{d})$
In our example..
Suppose we already have a set of λ_{i} 's. (see the tables below)
For the first animal $d_{1}=$ [fuzzy, claws, small]
$\operatorname{vote}(\boldsymbol{c a t})=\sum_{\mathrm{i}=1 \text { to10 }} \lambda_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}\left(\mathbf{c a t}, \mathrm{d}_{1}\right)=\mathbf{- 0 . 2}$

$\lambda_{1}=$	-1	$\mathrm{f}_{1}\left(\right.$ cat, $\left.\mathrm{d}_{1}\right)=1$	$\lambda_{1} \mathrm{f}_{1}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	-1
$\lambda_{2}=$	1	$\mathrm{f}_{2}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=0$	$\lambda_{2} \mathrm{f}_{2}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0
$\lambda_{3}=$	0.5	$\mathrm{f}_{3}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=1$	$\lambda_{3} \mathrm{f}_{3}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0.5
$\lambda_{4}=$	-0.5	$\mathrm{f}_{4}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=0$	$\lambda_{4} \mathrm{f}_{4}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0
$\lambda_{5}=$	0.3	$\mathrm{f}_{5}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=1$	$\lambda_{5} \mathrm{f}_{5}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0.3
$\lambda_{6}=$	-0.3	$\mathrm{f}_{6}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=0$	$\lambda_{6} \mathrm{f}_{6}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0
$\lambda_{7}=$	-0.6	$\mathrm{f}_{7}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=0$	$\lambda_{7} \mathrm{f}_{7}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0
$\lambda_{8}=$	0.6	$\mathrm{f}_{8}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=0$	$\lambda_{8} \mathrm{f}_{8}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0
$\lambda_{9}=$	0.8	$\mathrm{f}_{9}\left(\right.$ cat, $\left.\mathrm{d}_{1}\right)=0$	$\lambda_{9} \mathrm{f}_{9}\left(\mathbf{c a t}, \mathrm{~d}_{1}\right)=$	0
$\lambda_{10}=$	-0.8	$\mathrm{f}_{10}\left(\right.$ cat,, $\left.\mathrm{d}_{1}\right)=0$	$\lambda_{10} \mathrm{f}_{10}\left(\right.$ cat, $\left.\mathrm{d}_{1}\right)=$	0
			vote $(\mathbf{c a t})=$	-0.2

The vote for the other class, bear, is: $\operatorname{vote}($ bear $)=\sum_{\mathrm{i}=1 \text { to10 }} \lambda_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=0.2$

$\lambda_{1}=$	-1	$\mathrm{f}_{1}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{1} \mathrm{f}_{1}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0
$\lambda_{2}=$	1	$\mathrm{f}_{2}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	1	$\lambda_{2} \mathrm{f}_{2}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	1
$\lambda_{3}=$	0.5	$\mathrm{f}_{3}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{3} \mathrm{f}_{3}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0
$\lambda_{4}=$	-0.5	$\mathrm{f}_{4}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	1	$\lambda_{4} \mathrm{f}_{4}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	-0.5
$\lambda_{5}=$	0.3	$\mathrm{f}_{5}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{5} \mathrm{f}_{5}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0
$\lambda_{6}=$	-0.3	$\mathrm{f}_{6}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	1	$\lambda_{6} \mathrm{f}_{6}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	-0.3
$\lambda_{7}=$	-0.6	$\mathrm{f}_{7}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{7} \mathrm{f}_{7}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0
$\lambda_{8}=$	0.6	$\mathrm{f}_{8}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{8} \mathrm{f}_{8}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0
$\lambda_{9}=$	0.8	$\mathrm{f}_{9}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{9} \mathrm{f}_{9}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0
$\lambda_{10}=$	-0.8	$\mathrm{f}_{10}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0	$\lambda_{10} \mathrm{f}_{10}\left(\right.$ bear, $\left.\mathrm{d}_{1}\right)=$	0

Definition 2: probabilistic model

$$
\mathrm{P}(\mathbf{c} \mid \mathbf{d}, \lambda)=\frac{\exp \sum_{i} \lambda_{i} f_{i}(\mathbf{c}, \mathbf{d})}{\sum_{c^{\prime}} \exp \sum_{i} \lambda_{i} f_{i}\left(\mathbf{c}^{\prime}, \mathbf{d}\right)}=\frac{\exp (\operatorname{vote}(\mathbf{c}))}{\sum_{c^{\prime}} \exp \left(\operatorname{vote}\left(\mathbf{c}^{\prime}\right)\right)}
$$

In our example...

$\mathrm{P}\left(\right.$ cat $\left.\mid \mathrm{d}_{1}, \lambda\right)=\frac{\exp (\text { vote }(\text { cat }))}{\exp (\text { vote(} \mathbf{c a t}))+\exp (\text { vote }(\text { bear }))}=\frac{\exp (-0.2)}{\exp (-0.2)+\exp (0.2)} \quad=0.4013$
$\mathrm{P}\left(\right.$ bear $\left.\mid \mathrm{d}_{1}, \lambda\right)=\frac{\exp (\text { vote }(\text { bear }))}{\exp (\text { vote(} \mathbf{c a t}))+\exp (\text { vote }(\text { bear }))}=\frac{\exp (0.2)}{\exp (-0.2)+\exp (0.2)} \quad=0.5987$

Interpretation from this example:
Given the set of λ_{i} 's in the table, and given that we see an animal with the features [fuzzy, claws, small], we'll conclude the probability of it being a cat is 0.4013 , being a bear is 0.5987 . So we'll say it's a bear.
If we go back to our first page, we'll see that this animal is in our training data, and it's actually a cat, not a bear!
Question: Intuitively, how do we adjust the λ_{i} 's so that we can correctly predict this example?

What are we optimizing?

When we're adjusting the λ_{i} 's, we're aiming at maximizing the (conditional) likelihood of our training data.

$$
P(C \mid D, \lambda)=\prod_{(c, d) \in(C, D)} P(c \mid d, \lambda)
$$

It's equivalent to maximizing the \log conditional likelihood.

What's necessary for doing the optimization?

Give a set of λ_{i} 's, calculate

1. Objective : the conditional likelihood of the data $\rightarrow \log P(C \mid D, \lambda)$
2. Derivatives :

$$
\begin{aligned}
\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_{i}} & =\operatorname{actual} \operatorname{count}\left(f_{i}, \mathrm{C}\right)-\text { predicted count}\left(f_{i}, \lambda\right) \\
& =\sum_{(c, d) \in(C, D)} f_{i}(c, d)-\sum_{(c, d) \in(C, D)} \sum_{c^{\prime}} P\left(c^{\prime} \mid d, \lambda\right) f_{i}\left(c^{\prime}, d\right)
\end{aligned}
$$

A simple intuition here: (in one-dimensional space):

See the excel file for a detailed example of how to compute the value of the objective function and derivatives, and how to adjust λ_{i} 's.

