A first example

Lexicon

Kathy, NP : kathy
Fong, NP : fong
respects, V : λy.λx. respect(x, y)
runs, V : λx. run(x)

Grammar

S : β(α) → NP : α
VP : β(α) → V : β
NP : α

1. Kathy respects Fong
 VP : respect(Fong)
 = [λx. respect(x, fong)](kathy)
 = respect(kathy, fong)

Database/knowledgebase interfaces

• Assume that respect is a table Respect with two fields respecter and respected
• Assume that kathy and fong are IDs in the database: k and f
• If we assert Kathy respects Fong we might evaluate the form respect(fong)(kathy) by doing an insert operation:
 insert into Respects(respecter, respected) values (k, f)

Typed λ calculus (Church 1940)

• Everything has a type (like Java!)
• Bool truth values (0 and 1)
 Ind individuals
 Ind → Bool properties
 Ind → Ind → Bool binary relations
• kathy and fong are Ind
• run is Ind → Bool
• respect is Ind → Ind → Bool
• Types are interpreted right associatively.
• We convert a several argument function into embedded unary functions. Referred to as currying.
Typed \(\lambda \) calculus (Church 1940)

- Once we have types, we don’t need \(\lambda \) variables just to show what arguments something takes, and so we can introduce another operation of the \(\lambda \) calculus:
 - \(\eta \) reduction [abstractions can be contracted]
 \(\lambda x. (P(x)) \Rightarrow P \)
 - This means that instead of writing:
 \(\lambda y. \lambda x. \text{respect}(x,y) \)
 - we can just write:
 \(\text{respect} \)

Types of major syntactic categories

- nouns and verb phrases will be properties (\(\text{Ind} \rightarrow \text{Bool} \))
- noun phrases are \(\text{Ind} \) – though they are commonly type-raised to (\(\text{Ind} \rightarrow \text{Bool} \)) \(\rightarrow \text{Bool} \)
- adjectives are (\(\text{Ind} \rightarrow \text{Bool} \)) \(\rightarrow \text{Ind} \rightarrow \text{Bool} \)

 This is because adjectives modify noun meanings, that is properties.
- Intensifiers modify adjectives: e.g. very in a very happy camper, so they’re ((\(\text{Ind} \rightarrow \text{Bool} \)) \(\rightarrow \text{Ind} \rightarrow \text{Bool} \)) \(\rightarrow ((\text{Ind} \rightarrow \text{Bool} \rightarrow \text{Ind} \rightarrow \text{Bool}) \) [honesti].

A grammar fragment

- \(S : \beta(\alpha) \rightarrow \text{NP} : \alpha \quad \text{VP} : \beta \)
- \(\text{NP} : \beta(\alpha) \rightarrow \text{Det} : \beta \quad \text{N'} : \alpha \)
- \(\text{N'} : \beta(\alpha) \rightarrow \text{Adj} : \beta \quad \text{N'} : \alpha \)
- \(\text{N'} : \beta(\alpha) \rightarrow \text{N} : \alpha \quad \text{PP} : \beta \)
- \(\text{N} : \beta \rightarrow \text{N} : \beta \)
- \(\text{VP} : \beta(\alpha) \rightarrow \text{V} : \beta \quad \text{NP} : \alpha \)
- \(\text{VP} : \beta(\alpha) \rightarrow \text{V} : \beta \quad \text{NP} : \alpha \quad \text{NP} : \gamma \)
- \(\text{VP} : \beta(\alpha) \rightarrow \text{VP} : \alpha \quad \text{PP} : \beta \)
- \(\text{VP} : \beta \rightarrow \text{V} : \beta \)
- \(\text{PP} : \beta(\alpha) \rightarrow \text{P} : \beta \quad \text{NP} : \alpha \)

A grammar fragment

- Kathy, NP : kathy\text{Ind}
- Fong, NP : fong\text{Ind}
- Palo Alto, NP : paloalto\text{Ind}
- car, N : car\text{Ind} \rightarrow \text{Bool}
- overpriced, Adj : overpriced(\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})
- outside, PP : outside(\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})
- red, Adj : \lambda P. ((\text{Ind} \rightarrow \text{Bool})) \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow ((\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool}))
- the, Det : \lambda
- a, Det : some(\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}
- runs, V : run\text{Ind} \rightarrow \text{Bool}
- respects, V : respect(\text{Ind} \rightarrow \text{Ind} \rightarrow \text{Bool})
- likes, V : like(\text{Ind} \rightarrow \text{Ind} \rightarrow \text{Bool})
Adjective and PP modification

- \(N' : \lambda x. (\text{car}(x) \land \text{in'}(\text{paloalto})(x) \land \text{red'}(x)) \)

- \(\text{Adj} : \lambda P. (\lambda x. (P(x) \land \text{red'}(x))) \)

- \(\text{red} N' : \lambda x. \text{car}(x) \land \text{in'}(\text{paloalto})(x) \land \text{red'}(x) \)

- \(N' : \lambda x. (\text{car}(x) \land \text{red'}(x)) \)

- \(\text{PP} : \lambda P. \lambda x. (P(x) \land \text{in'}(\text{paloalto})(x)) \)

- \(\text{Adj} : \lambda P. (\lambda x. P(x) \land \text{red'}(x)) \)

- \(\text{red} N : \text{car} \)

- \(\text{PP} : \lambda P. \lambda x. (P(x) \land \text{in'}(\text{paloalto})(x)) \)

Why things get more complex

- When doing predicate logic did you wonder why:
 - Kathy runs
 - no kid runs

- Somehow the NP's meaning is wrapped around the predicate

- Or consider why this argument doesn't hold:
 - Nothing is better than a life of peace and prosperity.

 A cold egg salad sandwich is better than nothing.

 A cold egg salad sandwich is better than a life of peace and prosperity.

 The problem is that nothing is a quantifier

Generalized Quantifiers

- We have a reasonable semantics for red car in Palo Alto as a property from \(\text{Ind} \rightarrow \text{Bool} \)

- How do we represent noun phrases like the red car in Palo Alto or every red car in Palo Alto?

 \[[[\text{the}])(P) = a \text{ if } (P(b) = 1 \text{ iff } b = a) \]

 undefined, otherwise

 The semantics for the following Bertrand Russell, for whom the \(x \) meant the unique item satisfying a certain description

Generalized Quantifiers

- red car in Palo Alto

 select Cars.obj from Cars, Locations, Red where
 Cars.obj = Locations.obj AND
 Locations.place = 'paloalto' AND Cars.obj = Red.obj
 (here we assume the unary relations have one field, obj).
Generalized Quantifiers

- **the red car in Palo Alto**
 - \(\text{NP} : \iota(\lambda x. \text{car}(x) \land \text{in}(\text{paloalto})(x) \land \text{red}'(x)) \)
 - \(\text{Det} : \iota \)

- **the red car in Palo Alto**
 - \(\text{select Cars.obj from Cars, Locations, Red where} \)
 - \(\text{Cars.obj} = \text{Locations.obj AND Locations.place} = \text{‘paloalto’ AND Cars.obj} = \text{Red.obj having count(*)} = 1 \)

Representing proper nouns with quantifiers

- The central insight of Montague’s PTQ was to treat individuals as of the same type as quantifiers (as type-raised individuals):
 - **Kathy**: \(\lambda P. P(\text{kathy}) \)
- Both good and bad
- The main alternative (which we use) is flexible *type shifting* – you raise the type of something when necessary.

Nominal type shifting

- Common patterns of nominal type shifting
 - \(\text{Q} \)
 - \(\text{Ind} \)
 - \(\text{R} \)
 - \(\text{some}^2 \)
 - \((\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool} \)
 - \(\text{R}(x) = \lambda P. P(x) \)
 - \(\text{some}^2(P) = \lambda Q. (Q \cap P) \neq \emptyset \)
 - \(Q(x) = \lambda y. x = y' \)
 - In this diagram, \(R \) is exactly this basic type-raising function for individuals.
Noun phrase scope – following Hendriks (1993)

Value raising raises a function that produces an individual to one that produces a quantifier. If $\alpha : \sigma \rightarrow \text{Ind}$ then $\lambda x.\lambda p.P(\alpha(x)) : \sigma \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}$

Argument raising replaces an argument of a boolean function with a variable and applies the quantifier semantically binding the replacing variable. If $\alpha : \sigma \rightarrow \text{Ind} \rightarrow \tau \rightarrow \text{Bool}$ then $\lambda x_1.\lambda q.\lambda x_3.Q(\lambda x_2.\alpha(x_1)(x_2)(x_3)) : \sigma \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool} \rightarrow \tau \rightarrow \text{Bool}$

Argument lowering replaces a quantifier in a boolean function with an individual argument, where the semantics is calculated by applying the original function to the type raised argument. If $\alpha : \sigma \rightarrow ((\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}) \rightarrow \tau \rightarrow \text{Bool}$ then $\lambda x_1.\lambda x_2.\alpha(x_1)(\lambda p.P(x_2))(x_3) : \sigma \rightarrow \text{Ind} \rightarrow \tau \rightarrow \text{Bool}$

Some kid broke every toy

- $S : \text{every}^2(\text{toy}((\lambda y,\text{some}^2(\text{kid})(\lambda x,\text{break}(y)(x)))))$

Every student runs

- $S : \text{every}^2(\text{student})(\lambda x,\text{run}(x))$

Some kid broke every toy

- $S : \text{some}^2(\text{kid})$

Questions with answers!

- A yes/no question (Is Kathy running?) will be something of type Bool, checked on database
- A content question (Who likes Kathy?) will be an open proposition, that is something semantically of the type $\text{property} (\text{Ind} \rightarrow \text{Bool})$, and operationally we will consult the database to see what individuals will make the statement true.
- We use a grammar with a simple form of gap-threading for question words

Syntax/semantics for questions

- $S' : \beta(\alpha) \rightarrow \text{NP}[\text{wh}] : \beta$ Aux $S : \alpha$
- $S' : \alpha \rightarrow \text{Aux} S : \alpha$
- $\text{NP}/\text{NP}_z : z \rightarrow e$
- $S : \lambda z.F(\ldots z \ldots) \rightarrow S/\text{NP}_z : F(\ldots z \ldots)$
Syntax/semantics for questions

- who, NP[wh] : A U A x U (x) \land human(x)
 what, NP[wh] : A U U

how, many, Det[wh] : A P . A V . A x . P (x) \land V (x)

- Where | | is the operation that returns the cardinality of a set (count).

Question examples

S' : λz. like(z)(kathy)
NP[wh] : M U A x U (x) \land human(x) Aux
Who does S : λz. like(z)(kathy)
S/NP : like(z)(kathy)
NP : Kathy
V : like
Which
N : car
cars
Det : λP . λV . λx . P (x) \land V (x)
Did : λP . A V . A x . P (x) \land V (x)
Which
N : car
cars

- select liked from Likes where Likes.liker='Kathy'

- select liked from Likes where Likes.liker='Kathy' AND Humans.obj = Likes.liked

- select liked from Likes where Likes.liker='Kathy'

Question examples

S' : λz. every^2(student)(like(z))
NP[wh] : M U A x U (x) \land V (x) Aux
Who does S : λz. every^2(student)(like(z))
S/NP : every^2(student)(like(z))
NP : Kathy
V : like
Which
N : car
cars
Det : λP . A V . A x . P (x) \land V (x)
Did : λP . A V . A x . P (x) \land V (x)
Which
N : car
cars

- select count(*) from Likes, Cars, Locations, Reds where Cars.obj = Likes.liked AND Likes.liker = 'Kathy' AND Red.obj = Likes.liked AND Locations.place = 'Palo Alto' AND Locations.obj = Likes.liked

- select 'yes' where Seeings.seer = k AND Seeings.seen = (select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = 'paloalto' AND Cars.obj = Red.obj having count(*) = 1)
How many red cars in Palo Alto does Kathy like?

\[S : \text{see}(\text{i}(\lambda x. \text{car}(x) \land \text{in}(\text{paloalto})(x) \land \text{red}'(x)))((\text{kathy})) \]

\[\text{Aux} \quad S \quad \text{does} \quad \text{NP} : \text{kathy} \quad NP : \text{see}(\text{i}(\lambda x. \text{car}(x) \land \text{in}(\text{paloalto})(x) \land \text{red}'(x))) \]

How could we learn such representations?

- After disengagement for many years, there has started to be very interesting work in this area:

How can we reason with such representations?

- Logical reasoning is practical for certain domains (business rules, legal code, etc.) and has been used (see Blackburn and Bos 2005 for background).

- But our knowledge of the world is in general incomplete and uncertain.

- There is various recent work on handling restricted fragments of first order logic in probabilistic models

How can we reason with such representations?

- Undirected model:

 - A recent attempt to apply this to natural language inference:

 - Logical formulae are given weights which are grounded out in an undirected markov network.