Polynomial time parsing of PCFGs

Nate Chambers

(slides from Chris Manning)
0. Chomsky Normal Form

• All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$.
• A transformation to this form doesn’t change the weak generative capacity of CFGs.
 • With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
 • Unaries/empties are removed recursively
 • n-ary rules introduce new nonterminals ($n > 2$)
 • $VP \rightarrow V \ NP \ PP$ becomes $VP \rightarrow V \ @VP-V$ and $@VP-V \rightarrow NP \ PP$
• In practice it’s a pain
 • Reconstructing n-aries is easy
 • Reconstructing unaries can be trickier
• But it makes parsing easier/more efficient
An example: before binarization…

```
ROOT
  /
S
  /
NP
  /
  N
  cats

VP
  /
  V
  scratch

  /
  NP
  people

  /
  PP
  P
    with
    claws
```
After binarization...
Treebank: empties and unaries

PTB Tree NoFuncTags NoEmpty High Low NoUnaries
Constituency Parsing

PCFG

Rule Probs θ_i

$\theta_0 : S \rightarrow NP \ VP$

$\theta_1 : NP \rightarrow NN \ NNS$

...

$\theta_{42} : NN \rightarrow Factory$

$\theta_{43} : NNS \rightarrow payrolls$

...

$\text{Factory payrolls fell in September}$
Factory payrolls fell in September.
Viterbi (Max) Scores

\[
ip_{NP} = (0.13)(0.0023) \times (0.0014) = 1.87 \times 10^{-7}
\]

\[
ip_{NP} = (0.056)(0.001) \times (0.0014) = 7.84 \times 10^{-8}
\]
Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn’t increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn’t increase complexity; essentially like unaries

- Binarization is *vital*
 - Without binarization, you don’t get parsing cubic in the length of the sentence
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it’s always there.
The CKY algorithm (1960/1965) … generalized

function CKY(words, grammar) returns most probable parse/prob
score = new double[#(words)+1][#(words)+1][#(nonterms)]
back = new Pair[#(words)+1][#(words)+1][#(nonterms)]
for i=0; i<#(words); i++
 for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i])
 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 if score[i][i+1][B] > 0 && A->B in grammar
 prob = P(A->B)*score[i][i+1][B]
 if(prob > score[i][i+1][A])
 score[i][i+1][A] = prob
 back[i][i+1][A] = B
 added = true
The CKY algorithm (1960/1965) ... generalized

```python
for span = 2 to #(words)
    for begin = 0 to #(words)- span
        end = begin + span
        for split = begin+1 to end-1
            for A,B,C in nonterms
                prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
                if(prob > score[begin][end][A])
                    score[begin][end][A] = prob
                    back[begin][end][A] = new Triple(split,B,C)
            //handle unaries
            boolean added = true
            while added
                added = false
                for A, B in nonterms
                    prob = P(A->B)*score[begin][end][B];
                    if(prob > score[begin][end][A])
                        score[begin][end][A] = prob
                        back[begin][end][A] = B
                        added = true
            return buildTree(score, back)
```
N → cats
P → cats
V → cats

N → scratch
P → scratch
V → scratch

N → walls
P → walls
V → walls

N → with
P → with
V → with

for i = 0; i < #(words); i++
for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i]);
<table>
<thead>
<tr>
<th></th>
<th>cats</th>
<th>scratch</th>
<th>walls</th>
<th>with</th>
<th>claws</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N→cats</td>
<td>P→cats</td>
<td>V→cats</td>
<td>NP→N</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N→scratch</td>
<td>P→scratch</td>
<td>V→scratch</td>
<td>NP→N</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>N→walls</td>
<td>P→walls</td>
<td>V→walls</td>
<td>NP→N</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>N→with</td>
<td>P→with</td>
<td>V→with</td>
<td>NP→N</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>N→claws</td>
<td>P→claws</td>
<td>V→claws</td>
<td>NP→N</td>
<td>4</td>
</tr>
</tbody>
</table>

prob=score[begin][split][B]*score[split][end][C]*P(A→BC)

For each A, only keep the “A→BC” with highest prob.
<table>
<thead>
<tr>
<th>cats</th>
<th>scratch</th>
<th>walls</th>
<th>with</th>
<th>claws</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>cats</td>
<td>cats</td>
<td>cats</td>
<td>cats</td>
</tr>
<tr>
<td>1</td>
<td>N-scratch</td>
<td>P-scratch</td>
<td>V-scratch</td>
<td>NP-NP</td>
</tr>
<tr>
<td>2</td>
<td>0.2829</td>
<td>0.1160</td>
<td>0.0859</td>
<td>0.0573</td>
</tr>
<tr>
<td>3</td>
<td>N-walls</td>
<td>P-walls</td>
<td>V-walls</td>
<td>NP-NP</td>
</tr>
<tr>
<td>4</td>
<td>N-with</td>
<td>P-with</td>
<td>V-with</td>
<td>NP-NP</td>
</tr>
<tr>
<td>5</td>
<td>N-claws</td>
<td>P-claws</td>
<td>V-claws</td>
<td>NP-NP</td>
</tr>
</tbody>
</table>

// handle unaries
Call buildTree(score, back) to get the best parse
Unary rules: alchemy in the land of treebanks
Same-Span Reachability

- ADJP ADVP
- FRAG INTJ NP
- PP PRN QP S
- SBAR UCP VP
- WHNP
- NX
- SQ
- X
- RRC
- SINV
- WHADJP
- SBARQ
- WHPP
- WHADVP
- LST
- CONJP
- NAC
- NoEmpty
Efficient CKY parsing

- CKY parsing can be made very fast (!), partly due to the simplicity of the structures used.
 - But that means a lot of the speed comes from engineering details
 - And a little from cleverer filtering

- Store chart as (ragged) 3 dimensional array of float (log probabilities)
 - score[start][end][category]
 - For treebank grammars the load is high enough that you don’t really gain from lists of things that were possible
 - 50 wds: (50x50)/2 x (1000 to 20000) x [4 bytes] = 5–100MB for parse triangle. Large. (Can move to beam for span[i][j].)

- Use int to represent categories/words (Index)
Efficient CKY parsing

• Provide efficient grammar/lexicon accessors:
 • E.g., return list of rules with this left child category
 • Iterate over left child, check for zero (Neg. inf.) prob of $X:[i,j]$ (abort loop), otherwise get rules with X on left

• Some $X:[i,j]$ can be filtered based on the input string
 • Not enough space to complete a long flat rule?
 • No word in the string can be a CC?
 • Using a lexicon of possible POS for words gives a lot of constraint rather than allowing all POS for words
 • Cf. later discussion of figures-of-merit/A* heuristics
2. An alternative ... memoization

- A recursive (CNF) parser:

```
bestParse(X,i,j,s)
    if (j==i+1)
        return X -> s[i]
    (X->Y Z, k) = argmax score(X-> Y Z) * 
        bestScore(Y,i,k,s) * bestScore(Z,k,j,s)
    parse.parent = X
    parse.leftChild = bestParse(Y,i,k,s)
    parse.rightChild = bestParse(Z,k,j,s)
    return parse
```
An alternative ... memoization

bestScore(X,i,j,s)
 if (j == i+1)
 return tagScore(X, s[i])
 else
 return max score(X -> Y Z) *
 bestScore(Y, i, k) * bestScore(Z,k,j)

• Call: bestParse(Start, 1, sent.length(), sent)
 • Will this parser work?
 • Memory/time requirements?
A memoized parser

• A simple change to record scores you know:

```java
bestScore(X, i, j, s)
if (scores[X][i][j] == null)
    if (j == i+1)
        score = tagScore(X, s[i])
    else
        score = max score(X -> Y Z) *
            bestScore(Y, i, k) * bestScore(Z, k, j)
scores[X][i][j] = score
return scores[X][i][j]
```

• Memory and time complexity?
Runtime in practice: super-cubic!

Best Fit Exponent: 3.47
Rule State Reachability

- Worse in practice because longer sentences “unlock” more of the grammar
- Many states are more likely to match larger spans!
- And because of various “systems” issues … cache misses, etc.

Example: NP CC . NP

Example: NP CC NP . PP
3. Evaluating Parsing Accuracy

- Most sentences are not given a completely correct parse by any currently existing parsers.
- Standardly for Penn Treebank parsing, evaluation is done in terms of the percentage of correct constituents (labeled spans).
 - \([\text{label, start, finish}] \)
- A constituent is a triple, all of which must be in the true parse for the constituent to be marked correct.
Evaluation

(a) Root tree:

[Diagram of a tree structure with the following nodes:
 - S
 - NP
 - VBD
 - VBG
 - NP
 - PP
 - NN

Nodes labeled with words:
 - Sales
 - executives
 - were
 - examining
 - the
 - figures
 - with
 - great
 - care

(b) Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)

(c) Brackets in candidate parse:
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)

(d) Precision: 3/8 = 37.5%
Recall: 3/8 = 37.5%
Labeled Precision: 3/8 = 37.5%
Labeled Recall: 3/8 = 37.5%

Crossing Brackets: 0
Crossing Accuracy: 100%
Tagging Accuracy: 10/11 = 90.9%
Evaluating Constituent Accuracy: LP/LR measure

- Let C be the number of correct constituents produced by the parser over the test set, M be the total number of constituents produced, and N be the total in the correct version [microaveraged]

- Precision = C/M
- Recall = C/N

- It is possible to artificially inflate either one.
- Thus people typically give the F-measure (harmonic mean) of the two. Not a big issue here; like average.

- This isn’t necessarily a great measure ... me and many other people think dependency accuracy would be better.
Quiz Question!

PP -> IN 0.002
NP -> NNS NNS 0.01
NP -> NNS NP 0.005
NP -> NNS PP 0.01
VP -> VB PP 0.045
VP -> VB NP 0.015
How good are PCFGs?

- Robust (usually admit everything, but with low probability)
- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence
- But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in a simple case it performs worse than a trigram model
- WSJ parsing accuracy: about 73% LP/LR F1
- The problem seems to be that PCFGs lack the lexicalization of a trigram model
Putting words into PCFGs

- A PCFG uses the actual words only to determine the probability of parts-of-speech (the preterminals).
- In many cases we need to know about words to choose a parse.
- The head word of a phrase gives a good representation of the phrase’s structure and meaning.
 - Attachment ambiguities
 - *The astronomer saw the moon with the telescope*
 - Coordination
 - *the dogs in the house and the cats*
 - Subcategorization frames
 - *put versus like*
(Head) Lexicalization

- *put* takes both an NP and a VP
 - *Sue put [the book]\textsubscript{NP} [on the table]\textsubscript{PP}
 - * Sue put [the book]\textsubscript{NP}
 - * Sue put [on the table]\textsubscript{PP}

- *like* usually takes an NP and not a PP
 - * Sue likes [the book]\textsubscript{NP}
 - * Sue likes [on the table]\textsubscript{PP}

- We can’t tell this if we just have a VP with a verb, but we can if we know *what* verb it is
4. Accurate Unlexicalized Parsing: PCFGs and Independence

- The symbols in a PCFG define independence assumptions:

 $S \rightarrow NP \ VP$
 $NP \rightarrow DT \ NN$

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.

- Any information that statistically connects behavior inside and outside a node must flow through that node.
Non-Independence I

• Independence assumptions are often too strong.

• Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
Michael Collins (2003, COLT)

Independence Assumptions

- PCFGs

```
S
  / \  /
NP  VP
  /   /
 DT   V
  |    |  /
 the  questioned
       /  /
      NP  N
         /  /
        DT  the
                  /
                    N
                    witness
```

- Lexicalized PCFGs

```
S(questioned)
  /   /
NP(lawyer)  VP(questioned)
  /   /
 DT      V
   |    |  /
 the  questioned
       /  /
      NP(witness)
         /  /
        DT  N
                  /
                    witness
```
Non-Independence II

- Who cares?
 - NB, HMMs, all make false assumptions!
 - For *generation/LMs*, consequences would be obvious.
 - For *parsing*, does it impact accuracy?

- Symptoms of overly strong assumptions:
 - Rewrites get used where they don’t belong.
 - Rewrites get used too often or too rarely.

In the PTB, this construction is for possesives
Breaking Up the Symbols

• We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation
[Johnson 98]

Marking possessive NPs

• What are the most useful features to encode?
Annotations

- Annotations split the grammar categories into sub-categories.

- Conditioning on history vs. annotating
 - \(P(NP^S \rightarrow PRP) \) is a lot like \(P(NP \rightarrow PRP | S) \)
 - \(P(NP-POS \rightarrow NNP POS) \) isn’t history conditioning.

- Feature grammars vs. annotation
 - Can think of a symbol like \(NP^NP-POS \) as \(NP[\text{parent:NP, } +POS] \)

- After parsing with an annotated grammar, the annotations are then stripped for evaluation.
Experimental Setup

- Corpus: Penn Treebank, WSJ

- **Accuracy** – F1: harmonic mean of per-node labeled precision and recall.

- **Size** – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC
Experimental Process

- We’ll take a highly conservative approach:
 - Annotate as sparingly as possible
 -Highest accuracy with fewest symbols
 -Error-driven, manual hill-climb, adding one annotation type at a time
Lexicalization

- Lexical heads are important for certain classes of ambiguities (e.g., PP attachment):
- Lexicalizing grammar creates a much larger grammar.
 - Sophisticated smoothing needed
 - Smarter parsing algorithms needed
 - More data needed
- How necessary is lexicalization?
 - Bilexical vs. monolexical selection
 - Closed vs. open class lexicalization
Unlexicalized PCFGs

• What do we mean by an “unlexicalized” PCFG?
 • Grammar rules are not systematically specified down to the level of lexical items
 • NP-stocks is not allowed
 • NP^S-CC is fine
 • Closed vs. open class words (NP^S-the)
 • Long tradition in linguistics of using function words as features or markers for selection
 • Contrary to the bilexical idea of semantic heads
 • Open-class selection really a proxy for semantics

• Honesty checks:
 • Number of symbols: keep the grammar very small
 • No smoothing: over-annotating is a real danger
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)

Order 1

Order 2

Symbols

Vertical Markov Order

Vertical Markov Order
Horizontal Markovization

- Horizontal Markovization: Merges States

Symbols

<table>
<thead>
<tr>
<th>Horizontal Markov Order</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2v 2 inf</td>
<td>0 1 2v 2 inf</td>
</tr>
</tbody>
</table>

- Horizontal Markov Order
- Symbols
Vertical and Horizontal

- Examples:
 - Raw treebank: \(v=1, h=\infty \)
 - Johnson 98: \(v=2, h=\infty \)
 - Collins 99: \(v=2, h=2 \)
 - Best F1: \(v=3, h=2v \)

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: (v=h=2v)</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

- Solution: Mark unary rewrite sites with -U
Tag Splits

- Problem: Treebank tags are too coarse.

- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

- **UNARY-DT**: mark demonstratives as DT^U (“the X” vs. “those”)
- **UNARY-RB**: mark phrasal adverbs as RB^U (“quickly” vs. “very”)
- **TAG-PA**: mark tags with non-canonical parents (“not” is an RB^VP)
- **SPLIT-AUX**: mark auxiliary verbs with – AUX [cf. Charniak 97]
- **SPLIT-CC**: separate “but” and “&” from other conjunctions
- **SPLIT-%**: “%” gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
Treebank Splits

- The treebank comes with annotations (e.g., -LOC, -SUBJ, etc).
 - Whole set together hurt the baseline.
 - Some (-SUBJ) were less effective than our equivalents.
 - One in particular was very useful (NP-TMP) when pushed down to the head tag.
- We marked gapped S nodes as well.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>81.8</td>
<td>9.3K</td>
</tr>
<tr>
<td>NP-TMP</td>
<td>82.2</td>
<td>9.6K</td>
</tr>
<tr>
<td>GAPPED-S</td>
<td>82.3</td>
<td>9.7K</td>
</tr>
</tbody>
</table>
Yield Splits

• Problem: sometimes the behavior of a category depends on something inside its future yield.

• Examples:
 • Possessive NPs
 • Finite vs. infinite VPs
 • Lexical heads!

• Solution: annotate future elements into nodes.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>82.3</td>
<td>9.7K</td>
</tr>
<tr>
<td>POSS-NP</td>
<td>83.1</td>
<td>9.8K</td>
</tr>
<tr>
<td>SPLIT-VP</td>
<td>85.7</td>
<td>10.5K</td>
</tr>
</tbody>
</table>
Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>85.7</td>
<td>10.5K</td>
</tr>
<tr>
<td>BASE-NP</td>
<td>86.0</td>
<td>11.7K</td>
</tr>
<tr>
<td>DOMINATES-V</td>
<td>86.9</td>
<td>14.1K</td>
</tr>
<tr>
<td>RIGHT-REC-NP</td>
<td>87.0</td>
<td>15.2K</td>
</tr>
</tbody>
</table>
A Fully Annotated Tree

ROOT

S^ROOT-v

``S NP^S-B VP^S-VBF-v .^S `^S``

``

DT-U^NP VBZ^BE^VP NP^VP-B

``This is panic buying``
Final Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
<th>CB</th>
<th>0 CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
<td>1.26</td>
<td>56.6</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
<td>1.14</td>
<td>59.9</td>
</tr>
<tr>
<td>Klein & M 03</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
<td>1.10</td>
<td>60.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
<td>1.00</td>
<td>62.1</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
<td>0.90</td>
<td>67.1</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.