Polynomial time parsing of PCFGs

Christopher Manning

(some slides from Pi-Chuan Chang)
0. Chomsky Normal Form

• All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$.
• A transformation to this form doesn’t change the weak generative capacity of CFGs.
 • With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
 • Unaries/empties are removed recursively
 • n-ary rules introduce new nonterminals ($n > 2$)
 • $VP \rightarrow V \ NP \ PP$ becomes $VP \rightarrow V \ @VP-V$ and $@VP-V \rightarrow NP \ PP$
• In practice it’s a pain
 • Reconstructing n-aries is easy
 • Reconstructing unaries can be trickier
• But it makes parsing easier/more efficient
An example: before binarization...

```
ROOT
  S
    NP
      N
        cats
    VP
      V
        scratch
      NP
        people
      PP
        P
          with
        NP
          N
            claws
```
After binarization…
Treebank: empties and unaries

PTB Tree NoFuncTags NoEmpty

High Low NoUnaries
Constituency Parsing

PCFG

Rule Probs θ_i

$\theta_0: S \rightarrow NP \ VP$

$\theta_1: NP \rightarrow NN \ NNS$

$\theta_{42}: NN\rightarrow Factory$

$\theta_{43}: NNS\rightarrow payrolls$

*$\theta_0, \theta_1, \theta_{42}, \theta_{43}$ are examples of rule probabilities in the PCFG.
Factory payrolls fell in September
Viterbi (Max) Scores

NP→NN NNS 0.13
i_{NP} = (0.13)(0.0023) \cdot (0.0014)
= 1.87 \times 10^{-7}

NP→NNP NNS 0.056
i_{NP} = (0.056)(0.001) \cdot (0.0014)
= 7.84 \times 10^{-8}
Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn’t increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn’t increase complexity; essentially like unaries

- Binarization is *vital*
 - Without binarization, you don’t get parsing cubic in the length of the sentence
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it’s always there.
The CKY algorithm (1960/1965)
... generalized

function CKY(words, grammar) returns most probable parse/prob
score = new double[#(words)+1][#(words)+1][#(nonterms)]
back = new Pair[#(words)+1][#(words)+1][#(nonterms)]
for i=0; i<#(words); i++
 for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i])
 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 if score[i][i+1][B] > 0 && A->B in grammar
 prob = P(A->B)*score[i][i+1][B]
 if(prob > score[i][i+1][A])
 score[i][i+1][A] = prob
 back[i][i+1] [A] = B
 added = true
The CKY algorithm (1960/1965)
... generalized

for span = 2 to #(words)
 for begin = 0 to #(words)- span
 end = begin + span
 for split = begin+1 to end-1
 for A,B,C in nonterms
 prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
 if(prob > score[begin][end][A])
 score[begin][end][A] = prob
 back[begin][end][A] = new Triple(split,B,C)
 //handle unaries
 boolean added = true
 while added
 added = false
 for A, B in nonterms
 prob = P(A->B)*score[begin][end][B];
 if(prob > score[begin][end][A])
 score[begin][end][A] = prob
 back[begin][end][A] = B
 added = true
 return buildTree(score, back)
cats	scratch	walls	with	claws
0 | score[0][1] | score[0][2] | score[0][3] | score[0][4] | score[0][5]
1 | score[1][2] | score[1][3] | score[1][4] | score[1][5]
3 | score[3][4] | score[3][5]
4 | score[4][5]
5
for i=0; i<#(words); i++
for A in nonterms
 if A -> words[i] in grammar
 score[i][i+1][A] = P(A -> words[i]);
<table>
<thead>
<tr>
<th></th>
<th>cats</th>
<th>scratch</th>
<th>walls</th>
<th>with</th>
<th>claws</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N→cats</td>
<td>P→cats</td>
<td>V→cats</td>
<td>NP→N</td>
<td>@VP→V→NP</td>
</tr>
<tr>
<td>1</td>
<td>N→scratch</td>
<td>P→scratch</td>
<td>V→scratch</td>
<td>NP→N</td>
<td>@VP→V→NP</td>
</tr>
<tr>
<td>2</td>
<td>N→walls</td>
<td>P→walls</td>
<td>V→walls</td>
<td>NP→N</td>
<td>@VP→V→NP</td>
</tr>
<tr>
<td>3</td>
<td>N→with</td>
<td>P→with</td>
<td>V→with</td>
<td>NP→N</td>
<td>@VP→V→NP</td>
</tr>
<tr>
<td>4</td>
<td>N→claws</td>
<td>P→claws</td>
<td>V→claws</td>
<td>NP→N</td>
<td>@VP→V→NP</td>
</tr>
</tbody>
</table>

// handle unaries
For each A, only keep the “A->BC” with highest prob.

\[
\text{prob} = \text{score[begin]} \times \text{score[split]} \times \text{score[end]} \times P(A->BC)
\]

\[
\text{prob} = \text{score[0]} \times \text{score[1][P]} \times \text{score[1][2]} \times P(PP->P) \times P(PP->P)
\]
Call buildTree(score, back) to get the best parse
Unary rules: alchemy in the land of treebanks
Same-Span Reachability

- ADJP ADVP FRAG INTJ NP PP PRN QP S SBAR UCP VP WHNP
 - NX
 - SQ
 - X
 - RRC
 - SINV
 - WHADJP
 - SBARQ
 - WHPP
 - PRT
 - WHADVP
 - NoEmpties
 - LST
 - CONJP
 - NAC
Efficient CKY parsing

• CKY parsing can be made very fast (!), partly due to the simplicity of the structures used.
 • But that means a lot of the speed comes from engineering details
 • And a little from cleverer filtering

• Store chart as (ragged) 3 dimensional array of float (log probabilities)
 • score[start][end][category]
 • For treebank grammars the load is high enough that you don’t really gain from lists of things that were possible
 • 50 wds: \((50 \times 50)/2 \times (1000 \text{ to } 20000) \times 4 \text{ bytes} = 5-100MB\) for parse triangle. Large. (Can move to beam for \text{span}[i][j].)

• Use int to represent categories/words (Index)
Efficient CKY parsing

- Provide efficient grammar/lexicon accessors:
 - E.g., return list of rules with this left child category
 - Iterate over left child, check for zero (Neg. inf.) prob of X:[i,j] (abort loop), otherwise get rules with X on left

- Some X:[i,j] can be filtered based on the input string
 - Not enough space to complete a long flat rule?
 - No word in the string can be a CC?
 - Using a lexicon of possible POS for words gives a lot of constraint rather than allowing all POS for words
 - Cf. later discussion of figures-of-merit/A* heuristics
Quiz Question!

What constituents (with what probability can you make?)

- PP \rightarrow IN $\quad 0.002$
- NP \rightarrow NNS NNS $\quad 0.01$
- NP \rightarrow NNS NP $\quad 0.005$
- NP \rightarrow NNS PP $\quad 0.01$
- VP \rightarrow VB PP $\quad 0.045$
- VP \rightarrow VB NP $\quad 0.015$
3. Evaluating Parsing Accuracy

- Most sentences are not given a completely correct parse by any currently existing parser.
- For Penn Treebank parsing, the standard evaluation is over the number of correct constituents (labeled spans).

 \[\text{[label, start, finish]} \]

- A constituent is a triple, which must be exact in the true parse for the constituent to be marked correct.
- The LP/LR F_1 is the micro-averaged harmonic mean of labeled constituent precision and recall.
- This isn’t necessarily a great measure ... me and many other people think dependency accuracy would be better.
Evaluation

(a)

S

NP

NNS NNS VBD VP

Sales executives were VBG

NP

VP

NP

NP

NN

NP

NP

NP

NN

ROOT

(b) Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7,9), *NP-(9:10)

(c) Brackets in candidate parse:
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6:10), NP-(7,10)

(d) Precision: 3/8 = 37.5% Crossing Brackets: 0
Recall: 3/8 = 37.5% Crossing Accuracy: 100%
Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%
Labeled Recall: 3/8 = 37.5%
How good are PCFGs?

- Robust (usually admit everything, but with low probability)
- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence
- But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in a simple case it performs worse than a trigram model
- WSJ parsing accuracy: about 73% LP/LR F1
- The problem seems to be that PCFGs lack the lexicalization of a trigram model
Putting words into PCFGs

• A PCFG uses the actual words only to determine the probability of parts-of-speech (the preterminals)
• In many cases we need to know about words to choose a parse
• The head word of a phrase gives a good representation of the phrase’s structure and meaning
 • Attachment ambiguities
 The astronomer saw the moon with the telescope
 • Coordination
 the dogs in the house and the cats
 • Subcategorization frames
 put versus like
(Head) Lexicalization

- *put* takes both an NP and a VP
 - *Sue put [the book]_{NP} [on the table]_{PP}*
 - *Sue put [the book]_{NP}*
 - *Sue put [on the table]_{PP}*

- *like* usually takes an NP and not a PP
 - *Sue likes [the book]_{NP}*
 - *Sue likes [on the table]_{PP}*

- We can’t tell this if we just have a VP with a verb, but we can if we know *what* verb it is
4. Accurate Unlexicalized Parsing: PCFGs and Independence

- The symbols in a PCFG define independence assumptions:

\[
S \rightarrow NP \ VP \\
NP \rightarrow DT \ NN
\]

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.
- Any information that statistically connects behavior inside and outside a node must flow through that node.
Non-Independence I

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
Michael Collins (2003, COLT)

- PCFGs

- Lexicalized PCFGs

Independence Assumptions

73% accuracy

88% accuracy
Non-Independence II

- Who cares?
 - NB, HMMs, all make false assumptions!
 - For generation/LMs, consequences would be obvious.
 - For parsing, does it impact accuracy?

- Symptoms of overly strong assumptions:
 - Rewrites get used where they don’t belong.
 - Rewrites get used too often or too rarely.

In the PTB, this construction is for possessives
We can relax independence assumptions by encoding dependencies into the PCFG symbols:

- **Parent annotation** [Johnson 98]
 - S'\text{ROOT}
 - NP'S
 - PRP
 - VBD
 - ADVP\text{^\text{VP}}
 - He
 - was
 - right
 - VP'S
 - ADVP\text{^\text{VP}}

- **Marking possessive NPs**
 - NP
 - NP-POS
 - NNP
 - JJ
 - NN
 - POS
 - new
 - ad
 - New
 - Fidelity
 - 's
Annotations

- Annotations split the grammar categories into sub-categories.

- Conditioning on history vs. annotating
 - $P(\text{NP}^S \rightarrow \text{PRP})$ is a lot like $P(\text{NP} \rightarrow \text{PRP} | \text{S})$
 - $P(\text{NP-POS} \rightarrow \text{NNP POS})$ isn’t history conditioning.

- Feature grammars vs. annotation
 - Can think of a symbol like $\text{NP}^\text{NP-POS}$ as $\text{NP} [\text{parent:NP, +POS}]

- After parsing with an annotated grammar, the annotations are then stripped for evaluation.
Experimental Setup

- **Corpus**: Penn Treebank, WSJ

<table>
<thead>
<tr>
<th>Training: sections</th>
<th>02-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development: section</td>
<td>22 (first 20 files)</td>
</tr>
<tr>
<td>Test: section</td>
<td>23</td>
</tr>
</tbody>
</table>

- **Accuracy** – F1: harmonic mean of per-node labeled precision and recall.
- **Size** – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC
Experimental Process

• We’ll take a highly conservative approach:
 • Annotate as sparingly as possible
 • Highest accuracy with fewest symbols
 • Error-driven, manual hill-climb, adding one annotation type at a time
Lexicalization

- Lexical heads are important for certain classes of ambiguities (e.g., PP attachment):
 - Lexicalizing grammar creates a much larger grammar.
 - Sophisticated smoothing needed
 - Smarter parsing algorithms needed
 - More data needed

- How necessary is lexicalization?
 - Bilexical vs. monolexical selection
 - Closed vs. open class lexicalization
Unlexicalized PCFGs

• What do we mean by an “unlexicalized” PCFG?
 • Grammar rules are not systematically specified down to the level of lexical items
 • NP-stocks is not allowed
 • NP^S-CC is fine
 • Closed vs. open class words (NP^S-the)
 • Long tradition in linguistics of using function words as features or markers for selection
 • Contrary to the bilexical idea of semantic heads
 • Open-class selection really a proxy for semantics

• Honesty checks:
 • Number of symbols: keep the grammar very small
 • No smoothing: over-annotating is a real danger
Horizontal Markovization

- Horizontal Markovization: Merges States

Symbols

Horizontal Markov Order

Horizontal Markov Order

Merged
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes.
 (cf. parent annotation)
Vertical and Horizontal

Examples:
- Raw treebank: \(v=1, h=\infty \)
- Johnson 98: \(v=2, h=\infty \)
- Collins 99: \(v=2, h=2 \)
- Best F1: \(v=3, h=2v \)

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: (v=h=2v)</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

- Solution: Mark unary rewrite sites with -U

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
<tr>
<td>UNARY</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
</tbody>
</table>
Tag Splits

- **Problem:** Treebank tags are too coarse.

- **Example:** Sentential, PP, and other prepositions are all marked IN.

- **Partial Solution:**
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

- **UNARY-DT**: mark demonstratives as DT^U (“the X” vs. “those”)
- **UNARY-RB**: mark phrasal adverbs as RB^U (“quickly” vs. “very”)
- **TAG-PA**: mark tags with non-canonical parents (“not” is an RB^VP)
- **SPLIT-AUX**: mark auxiliary verbs with –AUX [cf. Charniak 97]
- **SPLIT-CC**: separate “but” and “&” from other conjunctions
- **SPLIT-%**: “%” gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
Yield Splits

- Problem: sometimes the behavior of a category depends on something inside its future yield.

- Examples:
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!

- Solution: annotate future elements into nodes.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>82.3</td>
<td>9.7K</td>
</tr>
<tr>
<td>POSS-NP</td>
<td>83.1</td>
<td>9.8K</td>
</tr>
<tr>
<td>SPLIT-VP</td>
<td>85.7</td>
<td>10.5K</td>
</tr>
</tbody>
</table>
Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.

- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>85.7</td>
<td>10.5K</td>
</tr>
<tr>
<td>BASE-NP</td>
<td>86.0</td>
<td>11.7K</td>
</tr>
<tr>
<td>DOMINATES-V</td>
<td>86.9</td>
<td>14.1K</td>
</tr>
<tr>
<td>RIGHT-REC-NP</td>
<td>87.0</td>
<td>15.2K</td>
</tr>
</tbody>
</table>
A Fully Annotated Tree

```
ROOT
   |____S^ROOT-v
      |____^S
         |____NP^S-B
            |____""S
               |____DT-U^NP
                  |____This

   |____VP^S-VBF-v
      |____^S
         |____!""S
               |____NP^VP-B
                  |____is
                     |____NN^NP
                        |____panic

```
Final Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
<th>CB</th>
<th>0 CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
<td>1.26</td>
<td>56.6</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
<td>1.14</td>
<td>59.9</td>
</tr>
<tr>
<td>Klein & M 03</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
<td>1.10</td>
<td>60.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
<td>1.00</td>
<td>62.1</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
<td>0.90</td>
<td>67.1</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.