Speech Recognition: Acoustic Waves

- Human speech generates a wave
 - like a loudspeaker moving

- A wave for the words "speech lab" looks like:

Acoustic Sampling

- 10 ms frame (ms = millisecond = 1/1000 second)
- ~25 ms window around frame [wide band] to allow/smooth signal processing – it let’s you see formants

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)
- Fourier transform of wave displayed as a spectrogram
 - darkness indicates energy at each frequency
 - hundreds to thousands of frequency samples

The Speech Recognition Problem

- The Recognition Problem: Noisy channel model
 - Build generative model of encoding: We started with English words, they were encoded as an audio signal, and we now wish to decode.
 - Find most likely sequence w of “words” given the sequence of acoustic observation vectors a
 - Use Bayes’ rule to create a generative model and then decode
 $$ \text{ArgMax}_w P(w|a) = \text{ArgMax}_w P(a|w) P(w)/P(a) $$
 $$ = \text{ArgMax}_w P(a|w) P(w) $$

- Acoustic Model: $P(a|w)$
- Language Model: $P(w)$

- Why is this progress?

MT: Just a Code?

- “Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: ‘This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.’ ”
- Warren Weaver (1955:18, quoting a letter he wrote in 1947)
MT System Components

Language Model

Translation Model

source

P(e)

channel

P(fe)

decoder

observed

f

argmax P(e|f) = argmax P(f|e)P(e)

Other Noisy-Channel Processes

- Handwriting recognition
 \[P(\text{text} \mid \text{strokes}) = P(\text{text})P(\text{strokes} \mid \text{text}) \]
- OCR
 \[P(\text{text} \mid \text{pixels}) = P(\text{text})P(\text{pixels} \mid \text{text}) \]
- Spelling Correction
 \[P(\text{text} \mid \text{typos}) = P(\text{text})P(\text{typos} \mid \text{text}) \]

Questions that linguistics should answer

- What kinds of things do people say?
- What do these things say/ask/request about the world?
 - Example: In addition to this, she insisted that women were regarded as a different existence from men unfairly.
- Text corpora give us data with which to answer these questions
- They are an externalization of linguistic knowledge
- What words, rules, statistical facts do we find?
- How can we build programs that learn effectively from this data, and can then do NLP tasks?

Probabilistic Language Models

- Want to build models which assign scores to sentences.
 - Example: \(P(\text{I saw a van}) >> P(\text{eyes awe of an}) \)
 - Not really grammaticality: \(P(\text{artichokes intimidate zippers}) \approx 0 \)
- One option: empirical distribution over sentences?
 - Problem: doesn’t generalize (at all)
- Two major components of generalization
 - Backoff: sentences generated in small steps which can be recombined in other ways
 - Discounting: allow for the possibility of unseen events

N-Gram Language Models

- No loss of generality to break sentence probability down with the chain rule
 \[P(w_1w_2 \ldots w_n) = \prod P(w_i \mid w_{i-1} \ldots w_1) \]
- Too many histories!
 - \(P(??? \mid \text{no loss of generality to break sentence}) \)?
 - \(P(??? \mid \text{the water is so transparent that}) \)?
- N-gram solution: assume each word depends only on a short linear history (Markov assumption)
 \[P(w_1w_2 \ldots w_n) = \prod P(w_i \mid w_{i-1} \ldots w_{i-1}) \]

Unigram Models

- Simplest case: unigrams
 \[P(w_1w_2 \ldots w_n) = \prod P(w_i) \]
- Generative process: pick a word, pick a word, ...
- As a graphical model:

 \[\begin{array}{c}
 w_1 \\
 w_2 \\
 \vdots \\
 w_n \\
 \text{STOP}\end{array} \]

 - To make this a proper distribution over sentences, we have to generate a special \(\text{STOP} \) symbol last. (Why?)

Examples:

- Two in 1984, was incorporated, is, the, inflation, most, dollars, quarter, in, is, mass.
- That, or, limited, the
- After, any, on, consistently, hospital, of, other, factors, raised, analyst, too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a
- Details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, half, between, nasdaq
Bigram Models

- Big problem with unigrams: \(P(\text{the the the the}) \gg P(\text{I like ice cream})! \)
- Condition on previous word:
 \[
P(w_i | w_{i-1}) = \prod_{i} P(w_i | w_{i-1})
\]
- Any better?
 - (textaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen)
 - (outside, new, car, parking, lot, of, the, agreement, reached)
 - (although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believes, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, teaching)
 - (this, would, be, a, record, november)

Regular Languages?

- N-gram models are (weighted) regular languages
- You can extend to trigrams, fourgrams, ...
- Why can’t we model language like this?
 - Linguists have many arguments why language can’t be regular.
 - Long-distance effects:
 - “The computer which I had just put into the machine room on the fifth floor crashed.”
 - Why CAN we often get away with n-gram models?
 - PCFG language models do model tree structure (later):
 - “This, quarter, ’s, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices.”
 - “It, could, be, announced, sometime.”
 - “Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks.”

Estimating bigram probabilities: The maximum likelihood estimate

- \(P(\text{I am Sam}) = \frac{5}{827} \)
- \(P(\text{Sam I am}) = \frac{9}{827} \)
- \(P(\text{I do not like green eggs and ham}) = \frac{67}{5} \)

\[
P(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1}w_{i-1})}
\]

- This is the Maximum Likelihood Estimate, because it is the one which maximizes \(P(\text{Training set} | \text{Model}) \)

Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what I'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- I'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Raw bigram probabilities

- Normalize by unigrams:

<table>
<thead>
<tr>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.002</td>
<td>0.033</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>want</td>
<td>0.0022</td>
<td>0.66</td>
<td>0.0011</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0054</td>
<td>0.0011</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0.0017</td>
<td>0.28</td>
<td>0.00038</td>
<td>0.0025</td>
<td>0.0072</td>
<td>0.0077</td>
</tr>
<tr>
<td>Chinese</td>
<td>0.0036</td>
<td>0.0027</td>
<td>0.021</td>
<td>0.0075</td>
<td>0.0056</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>food</td>
<td>0.0014</td>
<td>0.014</td>
<td>0</td>
<td>0.00092</td>
<td>0.0037</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0.0009</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.0036</td>
<td>0.0036</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Evaluation

- What we want to know is:
 - Will our model prefer good sentences to bad ones?
 - That is, does it assign higher probability to "real" or "frequently observed" sentences than "ungrammatical" or "rarely observed" sentences?
 - As a component of Bayesian inference, will it help us discriminate correct utterances from noisy inputs?
- We train parameters of our model on a training set.
- To evaluate how well our model works, we look at the model’s performance on some new data.
- This is what happens in the real world; we want to know how our model performs on data we haven’t seen.
- So a test set. A dataset which is different from our training set. Preferably totally unseen/unused.

Measuring Model Quality

- For Speech: Word Error Rate (WER) – *insertions + deletions + substitutions* / *true sentence size*.
- Correct answer: Andy saw a part of the movie.
- Recognizer output: And he saw a part of the movie.
- The "right" measure:
 - Task error driven
 - For speech recognition
 - For a specific recognizer
- Extrinsic, task-based evaluation is in principle best, but …
- For general evaluation, we want a measure which references only good text, not mistake text.

Measuring Model Quality

- Problem with entropy:
 - 0.1 bits of improvement doesn’t sound so good
- Solution: perplexity
 - Intrinsic measure: may not reflect task performance (but is helpful as a first thing to measure and optimize on)
- Note: Even though our models require a stop step, people typically don’t count it as a symbol when taking these averages.
- E.g.,
 - N-gram Order
 - Perplexity
 - Unigram
 - Bigram
 - Trigram
 - Perplexity
 - 982
 - 170
 - 109

The Shannon Visualization Method

- Generate random sentences:
- Choose a random bigram <s>, w according to its probability
- Now choose a random bigram (w, x) according to its probability
- And so on until we choose </s>
- Then string the words together
- etc.

What’s in our text corpora

- Common words in *Tom Sawyer* (71,370 words)
 - the: 3332, and: 1775, to: 1725, of: 1440, was: 1161, it: 1027, that: 896, he: 686, Tom: 679
 - Word Frequency of Frequency
 - 1 3993
 - 2 1292
 - 3 1164
 - 5 410
 - 6 243
 - 8 119
 - 9 172
 - 10 131
 - 11–50 1540
 - >50 99
 - >100 102
Sparsity

- Problems with n-gram models:
 - New words appear regularly:
 - Synaptitude
 - 132,701.03
 - New bigrams: even more often
 - Trigrams or more – still worse!

- Zipf’s Law
 - Types (words) vs. tokens (word occurrences)
 - Broadly: most word types are rare ones
 - Specifically:
 - Rank word types by token frequency
 - Frequency inversely proportional to rank: \(f \propto \frac{1}{r} \)
 - Statistically: word distributions are heavy-tailed
 - Not special to language: randomly generated character strings have this property (try it?)

Zipf’s Law (on the Brown corpus)

Smoothing

- We often want to make estimates from sparse statistics:
 - \(P(w | \text{denied the}) \)
 - 3 allegations
 - 2 reports
 - 1 claim
 - 1 request
 - 7 total

Smoothing: Add-One, Add-\(\delta \) (for bigram models)

- Estimating multinomials
 - We want to know what words follow some history \(h \)
 - We saw some small sample of \(N \) words from \(P(w | h) \)
 - Counts of events we didn’t see are always too low (0 < \(N P(w | h) \))
 - Counts of events we did see are in aggregate too high

- Example:
 - \(P(w | \text{denied the}) \)
 - 3 allegations
 - 2 reports
 - 1 claim
 - 1 request
 - 7 total

 - \(P(w | \text{affirmed the}) \)
 - 1 award

- Two issues:
 - Discounting: how to reserve mass what we haven’t seen
 - Interpolation: how to allocate that mass amongst unseen events

Five types of smoothing

- Today we’ll cover
 - Add-\(\delta \) smoothing (Laplace)
 - Simple interpolation
 - Good-Turing smoothing
 - Katz smoothing
 - Kneser-Ney smoothing

- Or less if we run out of time … and then you’ll just have to read the textbook!
Add-One Estimation

- Idea: pretend we saw every word once more than we actually did [Laplace]
 \[P(w|h) = \frac{c(w,h) + 1}{c(h) + V} \]
 - Think of it as taking items with observed count \(r > 1 \) and treating them as having count \(r^* = r - 1 \)
 - Holds out \(V/(N+V) \) for "fake" events
 - \(N \) of which is distributed back to seen words
 - Actually tells us not only how much to hold out, but where to put it
 - Works astonishingly poorly in practice
- Quick fix: add some small \(\delta \) instead of 1 [Lidstone, Jefferys]
 - Slightly better, holds out less mass, still a bad idea

Laplace-smoothed bigrams

- Reconstituted counts
 \[c^*(w_{n-1}w_n) = \frac{C(w_{n-1}w_n + 1) \times C(w_n)}{C(w_{n-1}) + V} \]

Quiz Question!

- Suppose I'm making a language model with a vocabulary size of 20,000 words
- In my training data, I saw the bigram "comes across" 10 times
 - 5 times it was followed by as
 - 5 times it was followed by other words (like, less, again, most, in)

 - What is the MLE of \(P(as|comes across) \)?
 - What is the add-1 estimate of \(P(as|comes across) \)?

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

<table>
<thead>
<tr>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>609</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>to</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>687</td>
<td>3</td>
<td>7</td>
<td>212</td>
</tr>
<tr>
<td>eat</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>chinese</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>83</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>food</td>
<td>16</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>lunch</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>spend</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

How Much Mass to Withhold?

- Remember the key discounting problem:
 - What count should \(r^* \) should we use for an event that occurred \(r \) times in \(N \) samples?
 - \(r \) is too big
 - Idea: held-out data [Jelinek and Mercer]
 - Get another \(N \) samples
 - See what the average count of items occurring \(r \) times is (e.g., doubletons on average might occur 1.78 times)
 - Use those averages as \(r^* \)

- Works better than fixing counts to add in advance
Backoff and Interpolation

- **Discounting** says, “I saw event X n times, but I will really treat it as if I saw it fewer than n times.
- **Backoff (and interpolation)** says, “In certain cases, I will condition on less of my context than in other cases.”
 - The sensible thing is to condition on less in contexts that you haven’t learned much about.
- **Backoff**: use trigram if you have it, otherwise bigram, otherwise unigram
- **Interpolation**: mix all three

Linear Interpolation

- One way to ease the sparsity problem for n-grams is to use less-sparse n-1-gram estimates
- General linear interpolation:
 \[P(w|w_{-j}) = [1 - \lambda(w_j)]P(w|w_{-j}) + \lambda j P(w) \]
 - Having a single global mixing constant is generally not ideal:
 \[P(w|w_{-j}) = [1 - \lambda]P(w|w_{-j}) + \lambda P(w) \]
 - But it actually works surprisingly well – simplest competent approach
 - A better yet still simple alternative is to vary the mixing constant as a function of the conditioning context
 \[P(w|w_{-j}) = [1 - \lambda(w_j)]P(w|w_{-j}) + \lambda(w_j)P(w) \]

Held-Out Data

- Important tool for getting models to generalize:
- When we have a small number of parameters that control the degree of smoothing, we set them to maximize the log-likelihood of held-out data
 \[LL = \sum \log P_{\text{held-out}}(w_{-j} | w_{-i}) \]
 - Can use any optimization technique (line search or EM usually easiest)
 - Example:
 \[P(w|w_{-j}) = [1 - \lambda]P(w|w_{-j}) + \lambda P(w) \]

Good-Turing Reweighting I

- We’d like to not need held-out data (why?)
- Idea: leave-one-out validation
 - Take each of the c training words out in turn
 - c training sets of size c-1, hold-out of size 1
- What fraction of held-out words are unseen k times in training?
 - \(N_k \)
 - What fraction of held-out words are seen k times?
 - \(\hat{N}_k \)
- So in the future we expect \((k+1)\hat{N}_k / c \)
- There are \(N_k \) words with training count k
- Each should occur with probability:
 - \((k+1)\hat{N}_k / c \)
 - \(\hat{N}_k \)

Good-Turing Reweighting II

- Problem: what about “the”?
 - (say c=4417)
- For small \(k, N_k > \hat{N}_k \)
- For large \(k, \) too jumpy, zeros wreck estimates
- Simple Good-Turing [Gale and Sampson] replace empirical \(\hat{N}_k \) with a best-fit power law once count counts get unavailable

Good-Turing smoothing intuition

- Imagine you are fishing
 - You have caught
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
 - How likely is it that next species is new (i.e. catfish or bass)
 - 3/18
 - Assuming so, how likely is it that next species is trout?
 - Must be less than 1/18

[Slide adapted from Josh Goodman]
Good Turing calculations

<table>
<thead>
<tr>
<th>unseen (bass or catfish)</th>
<th>trout</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>MLE p</td>
<td>(\frac{\text{Count}}{N} = 0)</td>
</tr>
<tr>
<td>c*</td>
<td>(\frac{\text{Count}}{N} = \frac{1}{2})</td>
</tr>
</tbody>
</table>

\[\text{GT: } p_{\text{GT}}(\text{unseen}) = \frac{\text{Count}}{N} = \frac{1}{2} = 0.17 \]

\[\text{Katz: } p_{\text{Katz}}(\text{trout}) = \frac{\text{Count} + 1}{N + 1} = \frac{1}{3} = 0.33 \]

Good-Turing Reweighting III

- Hypothesis: counts of \(k \) should be \(k^* = \frac{(k+1)N}{k} \)

Katz Smoothing

- Extends G-T smoothing into a backoff model from higher to lower order contexts
- Use G-T discounted bigram counts (roughly – Katz left large counts alone)
- Whatever mass is left goes to empirical unigram

\[P_{\text{Katz}}(w | w_{-1}) = \frac{\sum \alpha(c(w, w_{-1})) + \alpha(w_{-1}) \hat{P}(w)}{\sum c(w, w_{-1})} \]

Intuition of Katz backoff + discounting

- How much probability to assign to all the zero trigrams?
- Use GT or some other discounting algorithm to tell us
- How do we divide that probability mass among different words in the vocabulary?
 - Use the \((n-1)\)-gram estimates to tell us
- What do we do for the unigram words not seen in training (i.e., not in our vocabulary)
 - The problem of Out Of Vocabulary = OOV words
 - Important, but messy … mentioned at end of class

Kneser-Ney Smoothing I

- Something’s been very broken all this time
 - Shannon game: There was an unexpected ___?
 - Francisco?
 - “Francisco” is more common than “delay”
- Solution: Kneser-Ney smoothing
 - In the back-off model, we don’t want the unigram probability of \(w \)
- Instead, probability given that we are observing a novel continuation
- Every bigram type was a novel continuation the first time it was seen

\[P(w | w_{-1}) = \frac{\sum c(w, w_{-1}) \alpha(w_{-1}) \hat{P}(w)}{c(w, w_{-1})} \]

Kneser-Ney Smoothing II

- One more aspect to Kneser-Ney:
 - Look at the GT counts:

<table>
<thead>
<tr>
<th>Count in 22M Words</th>
<th>Actual c* (Next 22M)</th>
<th>GT’s c*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.448</td>
<td>0.446</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.24</td>
</tr>
<tr>
<td>3</td>
<td>2.23</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
<td>3.24</td>
</tr>
</tbody>
</table>

- Absolute Discounting
 - Save ourselves some time and just subtract 0.75 (or some \(d \))
 - Maybe have a separate value of \(d \) for very low counts

\[P_{\text{KNS}}(w | w_{-1}) = \frac{c(w, w_{-1}) - D}{\sum c(w', w_{-1})} + \alpha(w_{-1}) \hat{P}(w) \]

What Actually Works?

- Trigrams:
 - Unigrams, bigrams too little context
 - Trigrams much better (when there’s enough data)
 - 4-, 5-grams usually not worth the cost (which is more than it seems, due to how speech recognizers are constructed)
- Good-Turing-like methods for count adjustment
 - Absolute discounting, Good-Turing, held-out estimation, Witten-Bell
- Kneser-Ney equalization for lower-order models
 - See [Chen+Goodman] reading for tons of graphs!
Data >> Method?

- Having more data is always good...
- ... but so is picking a better smoothing mechanism!
- $N > 3$ often not worth the cost (greater than you’d think)

Google N-Gram Release

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 233
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensable 40
- serve as the individual 234

Beyond N-Gram LMs

- Caching Models
 - Recent words more likely to appear again
 - $P_{\text{cache}}(w|\text{history}) = \lambda P(w|\text{w}_{-1:2}) \times (1-\lambda)^{-1}(\text{w} \in \text{history})$
 - Can be disastrous in practice for speech (why?)

- Skipping Models
 - $P_{\text{skip}}(w|\text{w}_{-1:2}) = \lambda P(w|\text{w}_{-1:2}) + \lambda P(w|\text{w}_{-1:2})$

- Clustering Models: condition on word classes when words are too sparse
 - Trigger Models: condition on bag of history words (e.g., sentence)

- Structured Models: use parse structure (we’ll see these later)

- Language Modeling toolkits
 - SRILM
 - CMU-Cambridge LM Toolkit
 - IRST LM Toolkit

Unknown words: Open versus closed vocabulary tasks

- If we know all the words in advance
 - Vocabulary V is fixed
 - Closed vocabulary task: Easy
 - Continue in speech recognition
- Often we don’t know the set of all words
 - Out Of Vocabulary = OOV words
- Open vocabulary task
- Instead: create an unknown word token <UNK>
 - Training of <UNK> probabilities
 - Create a fixed lexicon, L, of size V [Can we work out right size for it?]
 - At test normalization phase, any training word not in L changed to <UNK>
- There may be no such instance if L covers the training data
- Now we train its probabilities
 - If few counts are mapped to <UNK>, we may treat it like a normal word
 - Otherwise, techniques like Good-Turing estimation are applicable
- At decoding time
 - If test input: Use UNK probabilities for any word not in training

Practical Considerations

- The unknown word symbol <UNK>
 - In many cases, open vocabularies use multiple types of OOVs (e.g., numbers & proper names)
 - For the programming assignment:
 - OK to assume there is only one unknown word type, UNK
 - UNK be quite common in new text!
 - OK to assume there is only one unknown word type, UNK
 - UNK stands for all unknown word types (define probability event model thus – it is a union of basic outcomes)
 - To model the probability of individual new words occurring, you can use spelling models for them, but people usually don’t

- Numerical computations
 - We usually do everything in log space (log probabilities)
 - Avoid underflow
 - (also adding is faster than multiplying)
 - $p_1 \times p_2 \times p_3 \times p_4 = \exp(\log p_1 + \log p_2 + \log p_3 + \log p_4)$