The EM algorithm

based on a presentation by Dan Klein

- A very general and well-studied algorithm
- I cover only the specific case we use in this course: maximum-likelihood estimation for models with discrete hidden variables
- (For continuous case, sums go to integrals; for MAP estimation, changes to accommodate prior)
- As an easy example we estimate parameters of an n-gram mixture model
- For all details of EM, try McLachlan and Krishnan (1996)
Maximum-Likelihood Estimation

- We have some data \(X \) and a probabilistic model \(P(X|\Theta) \) for that data.
- \(X \) is a collection of individual data items \(x \).
- \(\Theta \) is a collection of individual parameters \(\theta \).
- The *maximum-likelihood estimation* problem is, given a model \(P(X|\Theta) \) and some actual data \(X \), find the \(\Theta \) which makes the data most likely:

\[
\Theta' = \arg \max_{\Theta} P(X|\Theta)
\]

- This problem is just an optimization problem, which we could use any imaginable tool to solve.
Maximum-Likelihood Estimation

- In practice, it’s often hard to get expressions for the derivatives needed by gradient methods.
- EM is one popular and powerful way of proceeding, but not the only way.
- Remember, EM is doing MLE.
Finding parameters of a n-gram mixture model

- P may be a mixture of k pre-existing multinomials:

$$P(x_i|\Theta) = \sum_{j=1}^{k} \theta_j P_j(x_i)$$

$$\hat{P}(w_3|w_1, w_2) = \theta_3 P_3(w_3|w_1, w_2) + \theta_2 P_2(w_3|w_2) + \theta_1 P_1(w_3)$$

- We treat the P_j as fixed. We learn by EM only the θ_j.

$$P(X|\Theta) = \prod_{i=1}^{n} P(x_i|\Theta)$$

$$= \prod_{i=1}^{n} \sum_{j=1}^{k} P_j(x_i|\Theta_j)$$

- $X = [x_1 \ldots x_n]$ is a sequence of n words drawn from a vocabulary V, and $\Theta = [\theta_1 \ldots \theta_k]$ are the mixing weights
EM

- EM applies when your data is incomplete in some way
- For each data item x there is some extra information y (which we don’t know)
- The vector X is referred to as the the observed data or incomplete data
- X along with the completions Y is referred to as the complete data.
- There are two reasons why observed data might be incomplete:
 - It’s really incomplete: Some or all of the instances really have missing values.
 - It’s artificially incomplete: It simplifies the math to pretend there’s extra data.
EM and Hidden Structure

- In the first case you might be using EM to “fill in the blanks” where you have missing measurements.
- The second case is strange but standard. In our mixture model, viewed generatively, if each data point x is assigned to a single mixture component y, then the probability expression becomes:

$$P(X, Y|\Theta) = \prod_{i=1}^{n} P(x_i, y_i|\Theta)$$

$$= \prod_{i=1}^{n} P_{y_i}(x_i|\Theta)$$

Where $y_i \in \{1,\ldots,k\}$. $P(X, Y|\Theta)$ is called the complete-data likelihood.
EM and Hidden Structure

- Note:

 1. The sum over components is gone, since y_i tells us which single component x_i came from. We just don’t know what the y_i are.
 2. Our model for the observed data X involved the “unobserved” structures – the component indexes – all along. When we wanted the observed-data likelihood we summed out over indexes.
 3. There are two likelihoods floating around: the observed-data likelihood $P(X|\Theta)$ and the complete-data likelihood $P(X,Y|\Theta)$. EM is a method for maximizing $P(X|\Theta)$.
EM and Hidden Structure

■ Looking at completions is useful because finding

$$\Theta = \arg \max_{\Theta} P(X|\Theta)$$

is hard (it’s our original problem – maximizing products of sums is hard)

■ On the other hand, finding

$$\Theta = \arg \max_{\Theta} P(X, Y|\Theta)$$

would be easy – if we knew Y.

■ The general idea behind EM is to alternate between maximizing Θ with Y fixed and “filling in” the completions Y based on our best guesses given Θ.
The EM algorithm

- The actual algorithm is as follows:

 Initialize Start with a guess at Θ – it may be a very bad guess

 Until tired

 E-Step Given a current, fixed Θ', calculate completions: $P(Y|X, \Theta')$

 M-Step Given fixed completions $P(Y|X, \Theta')$, maximize

 $\sum_{Y} P(Y|X, \Theta') \log P(X, Y|\Theta)$ with respect to Θ.
The EM algorithm

- In the E-step we calculate the likelihood of the various completions with our fixed Θ'.
- In the M-stem we maximize the expected log-likelihood of the complete data. That’s not the same thing as the likelihood of the observed data, but it’s close.
- The hope is that even relatively poor guesses at Θ, when constrained by the actual data X, will still produce decent completions.
- Note that “the complete data” changes with each iteration.
EM made easy

- Want: Θ which maximizes the data likelihood

$$L(\Theta) = P(X|\Theta)$$
$$= \sum_{Y} P(X,Y|\Theta)$$

- The Y ranges over all possible completions of X. Since X and Y are vectors of independent data items,

$$L(\Theta) = \prod_x \sum_y P(x,y|\Theta)$$

- We don’t want a product of sums. It’d be easy to maximize if we had a product of products.

- Each x is a data item, which is broken into a sum of sub-possibilities, one for each completion y. We want to make each completion be like a mini data item, all multiplied together with other data items.
EM made easy

- Want: a product of products
- Arithmetic-mean-geometric-mean (AMGM) inequality says that, if $\sum_i w_i = 1$,
 $$\prod_i z_i^{w_i} \leq \sum_i w_i z_i$$
- In other words, arithmetic means are larger than geometric means (for 1 and 9, arithmetic mean is 5, geometric mean is 3)
- This equality is promising, since we have a sum and want a product
- We can use $P(x, y|\Theta)$ as the z_i, but where do the w_i come from?
EM made easy

■ The answer is to bring our previous guess at Θ into the picture.
■ Let’s assume our old guess was Θ'. Then the old likelihood was

$$L(\Theta') = \prod_x P(x|\Theta')$$

■ This is just a constant. So rather than trying to make $L(\Theta)$ large, we could try to make the relative change in likelihood

$$R(\Theta|\Theta') = \frac{L(\Theta)}{L(\Theta')}$$

large.
EM made easy

■ Then, we would have

\[
R(\Theta | \Theta') = \frac{\prod_x \sum_y P(x, y | \Theta)}{\prod_x P(x | \Theta')}
= \prod_x \frac{\sum_y P(x, y | \Theta)}{P(x | \Theta')}
= \prod_x \sum_y \frac{P(x, y | \Theta)}{P(x | \Theta')}
= \prod_x \sum_y \frac{P(x, y | \Theta) P(y | x, \Theta')}{P(x | \Theta') P(y | x, \Theta')}
= \prod_x \sum_y P(y | x, \Theta') \frac{P(x, y | \Theta)}{P(x, y | \Theta')}
\]

■ Now that’s promising: we’ve got a sum of relative likelihoods \(P(x, y | \Theta) / P(x, y | \Theta') \) weighted by \(P(y | x, \Theta') \).
EM made easy

- We can use our identity to turn the sum into a product:

\[
R(\Theta | \Theta') = \prod_x \sum_y P(y|x, \Theta') \frac{P(x, y|\Theta)}{P(x, y|\Theta')}
\]

\[
\geq \prod_x \prod_y \left[\frac{P(x, y|\Theta)}{P(x, y|\Theta')} \right] P(y|x, \Theta')
\]

- \(\Theta \), which we’re maximizing, is a variable, but \(\Theta' \) is just a constant. So we can just maximize

\[
Q(\Theta | \Theta') = \prod_x \prod_y P(x, y|\Theta) P(y|x, \Theta')
\]
EM made easy

We started trying to maximize the likelihood $L(\Theta)$ and saw that we could just as well maximize the relative likelihood $R(\Theta|\Theta') = L(\Theta)/L(\Theta')$. But $R(\Theta|\Theta')$ was still a product of sums, so we used the AMGM inequality and found a quantity $Q(\Theta|\Theta')$ which was (proportional to) a lower bound on R. That’s useful because Q is something that is easy to maximize, if we know $P(y|x, \Theta')$.
The EM Algorithm

- So here’s EM, again:
 - Start with an initial guess \(\Theta' \).
 - Iteratively do
 - E-Step Calculate \(P(y|x, \Theta') \)
 - M-Step Maximize \(Q(\Theta|\Theta') \) to find a new \(\Theta' \)

- In practice, maximizing \(Q \) is just setting parameters as relative frequencies in the complete data – these are the maximum likelihood estimates of \(\Theta \)
The EM Algorithm

- The first step is called the E-Step because we calculate the expected likelihoods of the completions.
- The second step is called the M-Step because, using those completion likelihoods, we maximize Q, which hopefully increases R and hence our original goal L.
- The expectations give the shape of a simple Q function for that iteration, which is a lower bound on L (because of AMGM). At each M-Step, we maximize that lower bound.
- This procedure increases L at every iteration until Θ' reaches a local extreme of L.
- This is because successive Q functions are better approximations, until you get to a (local) maxima.