A first example

Lexicon

- **Kathy, NP:** kathy
- **Fong, NP:** fong
- **respects, V:** $\lambda y. \lambda x. \text{respect}(x, y)$
- **runs, V:** $\lambda x. \text{run}(x)$

Grammar

- **S:** $\beta(\alpha) \rightarrow NP: \alpha \quad VP: \beta$
- **VP:** $\beta(\alpha) \rightarrow V: \beta \quad NP: \alpha$
- **VP:** $\beta \rightarrow V: \beta$
A first example

• \(S : \text{respect}(\text{kathy}, \text{fong}) \)

• \([\text{VP respects Fong}] : \left[\lambda y.\lambda x.\text{respect}(x, y) \right] (\text{fong})\)
 \[= \lambda x.\text{respect}(x, \text{fong}) \quad [\beta \text{ red.}]\]

• \([S \text{ Kathy respects Fong}] : \left[\lambda x.\text{respect}(x, \text{fong}) \right] (\text{kathy})\)
 \[= \text{respect}(\text{kathy}, \text{fong})\]
Database/knowledgebase interfaces

• Assume that \textit{respect} is a table Respect with two fields respecter and respected
• Assume that \textit{kathy} and \textit{fong} are IDs in the database: \textit{k} and \textit{f}
• If we assert \textit{Kathy respects Fong} we might evaluate the form \textit{respect}(fong)(kathy) by doing an insert operation:

 \texttt{insert into Respects(respecter, respected) values (k, f)}
Database/knowledgebase interfaces

• Below we focus on questions like *Does Kathy respect Fong* for which we will use the relation to ask:

 select ‘yes’ from Respects where Respects.respecter = k and Respects.respected = f

• We interpret “no rows returned” as ‘no’ = 0.
Typed λ calculus (Church 1940)

- Everything has a type (like Java!)
- **Bool** truth values (0 and 1)
 - **Ind** individuals
 - **Ind → Bool** properties
 - **Ind → Ind → Bool** binary relations
- **kathy** and **fong** are **Ind**
 - **run** is **Ind → Bool**
 - **respect** is **Ind → Ind → Bool**
- Types are interpreted right associatively.
 - **respect** is **Ind → (Ind → Bool)**
- We convert a several argument function into embedded unary functions. Referred to as **currying**.
Typed \(\lambda \) calculus (Church 1940)

- Once we have types, we don’t need \(\lambda \) variables just to show what arguments something takes, and so we can introduce another operation of the \(\lambda \) calculus:
 \(\eta \) reduction [abstractions can be contracted]

 \[
 \lambda x.(P(x)) \Rightarrow P
 \]

- This means that instead of writing:

 \[
 \lambda y.\lambda x.\text{respect}(x, y)
 \]

we can just write:

 \text{respect}
Typed λ calculus (Church 1940)

- λ extraction allowed over any type (not just first-order)
- β reduction [application]
 \[(\lambda x. P(\cdots, x, \cdots))(Z) \Rightarrow P(\cdots, Z, \cdots)\]
- η reduction [abstractions can be contracted]
 \[\lambda x. (P(x)) \Rightarrow P\]
- α reduction [renaming of variables]
Typed λ calculus (Church 1940)

- The first form we introduced is called the β, η long form, and the second more compact representation (which we use quite a bit below) is called the β, η normal form. Here are some examples:

<table>
<thead>
<tr>
<th>β, η normal form</th>
<th>β, η long form</th>
</tr>
</thead>
<tbody>
<tr>
<td>run</td>
<td>$\lambda x. \text{run}(x)$</td>
</tr>
<tr>
<td>every2(kid, run)</td>
<td>every$^2((\lambda x. \text{kid}(x)), (\lambda x. \text{run}(x)))$</td>
</tr>
<tr>
<td>yesterday(run)</td>
<td>$\lambda y. \text{yesterday}(\lambda x. \text{run}(x))(y)$</td>
</tr>
</tbody>
</table>
Types of major syntactic categories

- nouns and verb phrases will be properties ($\text{Ind} \rightarrow \text{Bool}$)
- noun phrases are $\text{Ind} - $ though they are commonly
 type-raised to ($\text{Ind} \rightarrow \text{Bool}) \rightarrow \text{Bool}$
- adjectives are ($\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})$
 This is because adjectives modify noun meanings,
 that is properties.
- Intensifiers modify adjectives: e.g, very in a very happy camper, so they’re (($\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})) \rightarrow
 ((\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})) [honest!].
A grammar fragment

- $S : \beta(\alpha) \rightarrow NP : \alpha$ $VP : \beta$
 $NP : \beta(\alpha) \rightarrow Det : \beta$ $N' : \alpha$
 $N' : \beta(\alpha) \rightarrow Adj : \beta$ $N' : \alpha$
 $N' : \beta(\alpha) \rightarrow N' : \alpha$ $PP : \beta$
 $N' : \beta \rightarrow N : \beta$
 $VP : \beta(\alpha) \rightarrow V : \beta$ $NP : \alpha$
 $VP : \beta(\gamma)(\alpha) \rightarrow V : \beta$ $NP : \alpha$ $NP : \gamma$
 $VP : \beta(\alpha) \rightarrow VP : \alpha$ $PP : \beta$
 $VP : \beta \rightarrow V : \beta$
 $PP : \beta(\alpha) \rightarrow P : \beta$ $NP : \alpha$
A grammar fragment

- Kathy, NP: $kathy_{\text{Ind}}$
- Fong, NP: $fong_{\text{Ind}}$
- Palo Alto, NP: $paloalto_{\text{Ind}}$
- car, N: $\text{car}_{\text{Ind}} \rightarrow \text{Bool}$
- overpriced, Adj: $\text{overpriced}_{\text{Ind} \rightarrow \text{Bool} \rightarrow \text{Ind} \rightarrow \text{Bool}}$
- outside, PP: $\text{outside}_{\text{Ind} \rightarrow \text{Bool} \rightarrow \text{Ind} \rightarrow \text{Bool}}$
- red, Adj: $\lambda P. (\lambda x. P(x) \land \text{red}'(x))$
- in, P: $\lambda y. \lambda P. \lambda x. (P(x) \land \text{in}'(y)(x))$
- the, Det: ι
- a, Det: $\text{some}^2_{\text{Ind} \rightarrow \text{Bool} \rightarrow \text{Ind} \rightarrow \text{Bool} \rightarrow \text{Bool}}$
- runs, V: $\text{run}_{\text{Ind} \rightarrow \text{Bool}}$
- respects, V: $\text{respect}_{\text{Ind} \rightarrow \text{Ind} \rightarrow \text{Bool}}$
- likes, V: $\text{like}_{\text{Ind} \rightarrow \text{Ind} \rightarrow \text{Bool}}$
A grammar fragment

- in' is $\text{Ind} \rightarrow \text{Ind} \rightarrow \text{Bool}$
- $\text{in} \triangleq \lambda y.\lambda P.\lambda x.(P(x) \land \text{in}'(y)(x))$ is $\text{Ind} \rightarrow (\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})$
- red' is $\text{Ind} \rightarrow \text{Bool}$
- $\text{red} \triangleq \lambda P. (\lambda x.(P(x) \land \text{red}'(x)))$ is $(\text{Ind} \rightarrow \text{Bool}) \rightarrow (\text{Ind} \rightarrow \text{Bool})$
Model theory –
A formalization of a “database”

Properties

Stanford University
Natural Language Processing
Curried multi-argument functions

\[
\llbracket \text{respect} \rrbracket = \llbracket \lambda y. \lambda x. \text{respect}(x, y) \rrbracket = \begin{bmatrix}
 f & \rightarrow & 0 \\
 f & \rightarrow & k & \rightarrow & 1 \\
 b & \rightarrow & 0 \\
 f & \rightarrow & 1 \\
 k & \rightarrow & 1 \\
 b & \rightarrow & 0 \\
 f & \rightarrow & 1 \\
 b & \rightarrow & k & \rightarrow & 0 \\
 b & \rightarrow & 0
\end{bmatrix}
\]

\[
\llbracket \lambda x. \lambda y. \text{respect}(y)(x)(b)(f) \rrbracket = 1
\]
Adjective and PP modification

- \(N' : \lambda x.\text{car}(x) \land \text{in}'(\text{paloalto})(x) \land \text{red}'(x) \)

 \[
 \text{Adj} : \lambda P. (\lambda x. P(x) \land \text{red}'(x)) \\
 \text{N' : } \lambda x. (\text{car}(x) \land \text{in}'(\text{paloalto})(x)) \\
 \text{red} \\
 \text{N' : car} \\
 \text{PP : } \lambda P. \lambda x. (P(x) \land \text{in}'(\text{paloalto})(x)) \\
 \text{N : car} \\
 \text{P : } \lambda y. \lambda P. \lambda x. (P(x) \land \text{in}'(y)(x)) \\
 \text{NP : paloalto} \\
 \text{in} \\
 \text{Palo Alto}
 \]

- \(N' : \lambda x.\text{car}(x) \land \text{in}'(\text{paloalto})(x) \land \text{red}'(x) \)

 \[
 \text{Adj} : \lambda P. (\lambda x. P(x) \land \text{red}'(x)) \\
 \text{N' : } \lambda x. (\text{car}(x) \land \text{red}'(x)) \\
 \text{PP : } \lambda P. \lambda x. (P(x) \land \text{in}'(\text{paloalto})(x)) \\
 \text{N : car} \\
 \text{P : } \lambda y. \lambda P. \lambda x. (P(x) \land \text{in}'(y)(x)) \\
 \text{NP : paloalto} \\
 \text{in} \\
 \text{Palo Alto}
 \]
Intersective adjectives

• Syntactic ambiguity is spurious: you get the same semantics either way
• Database evaluation is possible via a table join

Non-intersective adjectives

• For non-intersective adjectives get different semantics depending on what they modify
 • overpriced(in(paloalto)(house))
 • in(paloalto)(overpriced(house))
• But probably won’t be able to evaluate it on database!
Adding more complex NPs

NP: A man $\rightarrow \exists x.\text{man}(x)$
S: A man loves Mary
$\rightarrow * \text{love}(\exists x.\text{man}(x),\text{mary})$

• How to fix this?
A disappointment

Our first idea for NPs with determiner didn’t work out:

“A man” \(\rightarrow\) \(\exists z.\text{man}(z)\)

“A man loves Mary” \(\rightarrow\) * \(\text{love}(\exists z.\text{man}(z),\text{mary})\)

But what was the idea after all?
Nothing!
\(\exists z.\text{man}(z)\) just isn’t the meaning of “a man”.

If anything, it translates the complete sentence
“There is a man”

Let’s try again, systematically…
A solution for quantifiers

What we want is:

“A man loves Mary” \(\rightarrow \exists z (\text{man}(z) \land \text{love}(z, \text{mary})) \)

What we have is:

“man” \(\rightarrow \lambda y. \text{man}(y) \)

“loves Mary” \(\rightarrow \lambda x. \text{love}(x, \text{mary}) \)

How about: \(\exists z (\lambda y. \text{man}(y)(z) \land \lambda x. \text{love}(x, \text{mary})(z)) \)

Remember: We can use variables for any kind of term.

So next:

\(\lambda P (\lambda Q. \exists z (P(z) \land Q(z))) \) \(\langle \sim \) “A”
Why things get more complex

• When doing predicate logic did you wonder why:
 - *Kathy runs* is \(\text{run}(\text{kathy}) \)
 - *no kid runs* is \(\neg (\exists x)(\text{kid}(x) \land \text{run}(x)) \)

• Somehow the NP’s meaning is wrapped around the predicate

• Or consider why this argument doesn’t hold:
 - Nothing is better than a life of peace and prosperity.
 A cold egg salad sandwich is better than nothing.
 A cold egg salad sandwich is better than a life of peace and prosperity.

• The problem is that *nothing* is a quantifier
Generalized Quantifiers

- We have a reasonable semantics for *red car in Palo Alto* as a property from $\text{Ind} \rightarrow \text{Bool}$
- How do we represent noun phrases like *the red car in Palo Alto* or *every red car in Palo Alto*?
- $\llbracket \iota \rrbracket(P) = a$ if $(P(b) = 1$ iff $b = a)$ undefined, otherwise
- The semantics for *the* following Bertrand Russell, for whom *the* x meant the unique item satisfying a certain description
Generalized Quantifiers

- *red car in Palo Alto*

 select Cars.obj from Cars, Locations, Red where
 Cars.obj = Locations.obj AND
 Locations.place = 'paloalto' AND Cars.obj = Red.obj

 (here we assume the unary relations have one field, obj).
Generalized Quantifiers

• *the red car in Palo Alto*

• NP : ι(λx.car(x) ∧ in′(paloalto)(x) ∧ red′(x))

```
<table>
<thead>
<tr>
<th>Det : ι</th>
<th>N' : λx.car(x) ∧ in'(paloalto)(x) ∧ red'(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>red car in Palo Alto</td>
</tr>
</tbody>
</table>
```

• *the red car in Palo Alto*

```sql
select Cars.obj from Cars, Locations, Red where
Cars.obj = Locations.obj AND
Locations.place = 'paloalto' AND Cars.obj = Red.obj
having count(*) = 1
```
Generalized Quantifiers

• What then of every red car in Palo Alto?

• A generalized determiner is a relation between two properties, one contributed by the restriction from the N′, and one contributed by the predicate quantified over:

\[(\text{Ind} \to \text{Bool}) \to (\text{Ind} \to \text{Bool}) \to \text{Bool}\]

• Here are some determiners

\[\text{some}^2(kid)(run) \equiv \text{some}(\lambda x.\text{kid}(x) \land \text{run}(x))\]

\[\text{every}^2(kid)(run) \equiv \text{every}(\lambda x.\text{kid}(x) \to \text{run}(x))\]
Generalized Quantifiers

- Generalized determiners are implemented via the quantifiers:

\[\text{every}(P) = 1 \text{ iff } (\forall x)P(x) = 1; \]

i.e., if \(P = \text{Dom}_{\text{Ind}} \)

\[\text{some}(P) = 1 \text{ iff } (\exists x)P(x) = 1; \text{ i.e., if } P \neq \emptyset \]
Generalized Quantifiers

- Every student likes the red car
- $S : \text{every}^2(\text{student})(\text{like}(\lambda x.\text{car}(x) \land \text{red}'(x)))$

\begin{align*}
\text{NP} : \text{every}^2(\text{student}) & \quad \text{VP : like}(\lambda x.\text{car}(x) \land \text{red}'(x)) \\
\text{Det : every}^2 & \quad \text{N' : student} \\
\text{every} & \quad \text{student} \\
\text{V : like} & \quad \text{Det : } t \\
\text{likes} & \quad \text{N' : } \lambda x.\text{(car}(x) \land \text{red}'(x)) \\
\text{the} & \quad \text{Adj : } \lambda P.\text{(car}(x) \land \text{red}'(x)) \\
\text{red} & \quad \text{N : car} \\
\text{car} &
\end{align*}
Questions with answers!

- A yes/no question (*Is Kathy running?*) will be something of type **Bool**, checked on database
- A content question (*Who likes Kathy?*) will be an *open proposition*, that is something semantically of the type *property* (**Ind** → **Bool**), and operationally we will consult the database to see what individuals will make the statement true.
- We use a grammar with a simple form of gap-threading for question words
Syntax/semantics for questions

• \(S' : \beta(\alpha) \rightarrow NP[wh] : \beta \) \(\text{Aux} \) \(S : \alpha \)
 \(S' : \alpha \rightarrow \text{Aux} \) \(S : \alpha \)
 \(NP/NP_Z : z \rightarrow e \)
 \(S : \lambda z.F(...z...) \rightarrow S/\text{NP}_Z : F(...z...) \)
Syntax/semantics for questions

- **who**, NP[wh] : $\lambda U.\lambda x.U(x) \land \text{human}(x)$
 - **what**, NP[wh] : $\lambda U.U$
 - **which**, Det[wh] : $\lambda P.\lambda V.\lambda x.P(x) \land V(x)$
 - **how many**, Det[wh] : $\lambda P.\lambda V.|\lambda x.P(x) \land V(x)|$

- Where $|\cdot|$ is the operation that returns the cardinality of a set (count).
Question examples

- \(S' : \lambda z. \text{like}(z)(\text{kathy}) \)

 \(\text{NP}[\text{wh}] : \lambda U.U \quad \text{Aux} \quad S : \lambda z. \text{like}(z)(\text{kathy}) \)

 \(S/\text{NP}_z : \text{like}(z)(\text{kathy}) \)

 \(\text{NP} : \text{kathy} \quad \text{VP}/\text{NP}_z : \text{like}(z) \)

 \(\text{Kathy} \quad \text{V} : \text{like} \quad \text{NP}/\text{NP}_z : z \)

 \(\text{like} \quad \text{e} \)

- select liked from Likes where Likes.liker=’Kathy’
Question examples

- \(S' : \lambda x. \text{like}(x)(\text{kathy}) \land \text{human}(x) \)

 \[
 \begin{align*}
 \text{NP[wh]} : & \lambda U. \lambda x. U(x) \land \text{human}(x) \\
 \text{Aux} : & S : \lambda z. \text{like}(z)(\text{kathy}) \\
 \text{S/NP}_z : & \text{like}(z)(\text{kathy}) \\
 \text{NP :} & \text{kathy} \\
 \text{VP/NP}_z : & \text{like}(z) \\
 \text{Kathy} : & \text{like} \\
 \text{V :} & \text{like} \\
 \text{NP/NP}_z : & z \\
 \text{like} : & e
 \end{align*}
 \]

- select liked from Likes,Humans where Likes.liker='Kathy' AND Humans.obj = Likes.liked
Question examples

- \(S' : \lambda x.\text{car}(x) \land \text{like}(x)(\text{kathy}) \)

- \(\text{NP[wh]} : \lambda V.\lambda x.\text{car}(x) \land V(x) \)

- \(\text{Aux} \)

- \(\text{S} : \lambda z.\text{like}(z)(\text{kathy}) \)

- \(\text{S/NP} : \text{like}(z)(\text{kathy}) \)

- \(\text{Det} : \lambda P.\lambda V.\lambda x.P(x) \land V(x) \)

- \(\text{N} : \text{car} \)

- \(\text{N}' : \text{car} \)

- \(\text{did} \)

- \(\text{NP} : \text{car} \)

- \(\text{VP/NP}_z : \text{like}(z) \)

- \(\text{NP} : \text{kathy} \)

- \(\text{V} : \text{like} \)

- \(\text{NP/NP}_z : z \)

- \(\text{like} \)

- \(\text{e} \)

- \(\text{select liked from Cars,Likes where Cars.obj=Likes.liked AND Likes.liker='Kathy'} \)
Question examples

- $S' : \lambda x.\text{car}(x) \land \text{every}^2(\text{student})(\text{like}(x))$

 - $\text{NP[wh]} : \lambda V.\lambda x.\text{car}(x) \land V(x)$
 - $\text{Det} : \lambda P.\lambda V.\lambda x. P(x) \land V(x)$
 - $\text{N'} : \text{car}$
 - Which
 - $\text{N} : \text{car}$
 - cars

 - Aux
 - $\lambda z.\text{every}^2(\text{student})(\text{like}(z))$
 - VP
 - $\text{NP}_z : \text{like}(z)$
 - $\text{V} : \text{like}$
 - NP
 - $\text{NP}_z : z$
 - e
Question examples

- **How many red cars in Palo Alto does Kathy like?**

 select count(*) from Likes, Cars, Locations, Reds where Cars.obj = Likes.liked AND Likes.liker = 'Kathy' AND Red.obj = Likes.liked AND Locations.place = 'Palo Alto' AND Locations.obj = Likes.liked

- **Did Kathy see the red car in Palo Alto?**

 select ‘yes’ where Seeings.seer = k AND Seeings.seen = (select Cars.obj from Cars, Locations, Red where Cars.obj = Locations.obj AND Locations.place = ‘paloalto’ AND Cars.obj = Red.obj having count(*) = 1)
How many red cars in Palo Alto does Kathy like?
Did Kathy see the red car in Palo Alto?

S' : see(ι(λx.car(x) ∧ in'(paloalto)(x) ∧ red'(x)))(kathy)

Aux S : see(ι(λx.car(x) ∧ in'(paloalto)(x) ∧ red'(x)))(kathy)

Did NP : kathy VP : see(ι(λx.car(x) ∧ in'(paloalto)(x) ∧ red'(x)))

Kathy V : see NP : ι(λx.car(x) ∧ in'(paloalto)(x) ∧ red'(x))

see Det : ι N' : λx.car(x) ∧ in'(paloalto)(x) ∧ red'(x)

the Adj : λP.(λx.P(x) ∧ red'(x)) N' : λx.(car)

red N : car P : λx.
How could we learn such representations?

- After disengagement for many years, there has started to be very interesting work in this area:
How could we learn such representations?

- General approach (ZC05): Start with initial lexicon, category templates, and paired sentences and meanings:

 What states border Texas?

 $$\lambda x. \text{state}(x) \land \text{borders}(x, \text{texas})$$

- Learn lexical syntax/semantics for other words and learn to parse to logical form (parse structure is hidden).

- They successfully do iterative refinement of a lexicon and maxent parser
How can we reason with such representations?

• Logical reasoning is practical for certain domains (business rules, legal code, etc.) and has been used (see Blackburn and Bos 2005 for background).
• But our knowledge of the world is in general incomplete and uncertain.
• There is various recent work on handling restricted fragments of first order logic in probabilistic models – Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, Benjamin Taskar. 2007. Probabilistic Relational Models. In An Introduction to Statistical Relational Learning. MIT Press.
How can we reason with such representations?

- **Undirected model:**

- A recent attempt to apply this to natural language inference:

- Logical formulae are given weights which are grounded out in an undirected Markov network.