Feature-based
Discriminative
Classifiers

Making features from text for
discriminative NLP models

Christopher Manning

Classifiers

• A classifier is a function \(g \) which assigns an input datum \(d \) to one of \(|C| \) classes, \(c \in C \): \(g: D \rightarrow C \)

• The classes might be:
 - \{PERSON, ORGANIZATION, LOCATION, O\} for named entity recognition
 - \{politics, sports, finance, technology, arts, leisure, …\} for news
 - \{spam, notspam\} for an email message
 - \{coreferent, not-coreferent\} for a coreference candidate mention pair

Example problem

• Classify a capitalized proper noun as a class:
 - LOCATION, DRUG, PERSON

• For a data example \(d \)
 - taking Zantac

• We work by considering each class \(c \) for the word:
 - (LOCATION, taking Zantac,)
 - (DRUG, taking Zantac,)
 - (PERSON, taking Zantac,)

• and using features to score each candidate classification

Features for a classifier

• Features \(f \) are elementary pieces of evidence that link aspects of what we observed \(d \) with a category \(c \) that we want to predict

• A feature is a function with a bounded real value: \(f: C \times D \rightarrow \mathbb{R} \)

 - Common special case in NLP:
 - binary features \(f: C \times D \rightarrow \{0, 1\} \)

Example binary features

• \(f_1(c, d) = [c = \text{LOCATION} \land w_1 = “in” \land \text{isCapitalized}(w)] \)
• \(f_2(c, d) = [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(v)] \)
• \(f_3(c, d) = [c = \text{DRUG} \land \text{ends}(w, “c”)] \)

• Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Binary Features

• Very commonly, a feature specifies
 1. an indicator function – a yes/no boolean matching function – of properties of the input \(\Phi \) and
 2. a particular class

 \[
 f(c, d) = [\Phi(d) \land c = c_j]
 \]
 \[\text{[Value is 0 or 1]} \]

• Each feature picks out a data subset and assigns a label for it

• The decision about a data point is based only on the values of the features active at that point.
More General Features

- Features can be more general than just binary matching:
 - Can compute a real value from input, e.g., log(word length)
 - Can match a set of values - e.g., perhaps a partial structure - across "classes"
- This leads to structured classification, which is common in NLP, for example to match parse tree candidates, etc.
 - A discriminative can have features that match a tree with a unary S to VP
 - A coreference model cannot like a cluster with different gender items

Building a Simple Discriminative Model

- We define features (indicator functions) over data points
 - Features represent sets of data points which are distinctive enough to deserve model parameters.
 - Words, but also "word contains number", "word ends with ing", POS, syntactic structure, relation between two phrases, etc.
 - We might simply encode each \(\Phi \) feature as a unique String
 - A datum will give rise to a set of Strings: the active \(\Phi \) features
 - Each feature \(f_i(c,d) \equiv [\Phi(d) \land c = c_j] \) gets a real number weight

Building a Simple Discriminative Model

- Features are normally added in big batches via feature templates
 - E.g., one feature template adds \(\forall i,j \) observed: lastWord = \(w_i \) \& \(c = c_j \)
 - Another is nextWord = \(w_i \) \& \(c = c_j \). Each may add tens of thousands of features
 - A model may be specified by the set of feature templates used
 - Features are often added during model development to target errors
 - Often, the easiest thing to think of are features that mark bad combinations

Linear classifiers at classification time

- Linear function from feature sets \(\{f\} \) to classes \(\{c\} \).
- Assign a weight \(\lambda \) to each feature \(f_i \).
- We consider each class for an observed datum \(d \)
- For a pair \((c,d) \), features vote with their weights:
 - \(\text{vote}(c) = \Sigma \lambda_i f_i(c,d) \)
 - Choose the class \(c \) which maximizes \(\Sigma \lambda_i f_i(c,d) \)
1. Feature-based softmax/maxent linear classifiers

How to put features into a classifier

Example features
- $f(c, d) = [c = \text{LOCATION} \land w_1 = "an" \land \text{iCapitalized}(w)]$
- $f(c, d) = [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$
- $f(c, d) = [c = \text{DRUG} \land \text{end}(w, "c")])$

1.8

Maxent models (softmax, multiclass logistic, exponential, conditional log-linear, Gibbs)

- Make a probabilistic model from the linear combination $\Sigma f(c, d)$:

 \[
 P(c \mid d, \lambda) = \frac{\exp \sum \lambda_i f_i(c, d)}{\exp \sum \lambda_i f_i(c', d)}
 \]

 - λ make votes positive
 - λ normalize votes

 - $P(\text{LOCATION in Quebec}) = e^{-3.2}e^{0.5} / (e^{-3.2}e^{0.5} + e^{-2}e^0)$
 - $P(\text{DRUG in Quebec}) = e^{-3} (e^{-3}e^{0.7} + e^{-3}e^{0.7})$
 - $P(\text{PERSON in Quebec}) = e^{-3} / (e^{-3} + e^{-3} + e^{-3})$

 - The weights are the parameters of the probability model, combined via a "soft max" function

2. Feature-Based Linear Classifiers

- Maxent models:

 - Given this model form, we choose parameters λ_i that
 maximize the conditional likelihood of the data according to the model (as discussed later): $\max P(D \mid c, \lambda)$

 - We construct not only classifications, but probability distributions over classifications

3. Feature-Based Linear Classifiers

There are other (good) ways to chose weights for features

- Perceptron: find a currently misclassified example, and nudge weights in the direction that corrects classification
- Margin-based methods (Support Vector Machines)
- Boosting algorithms

But these methods are not as trivial to interpret as probability distributions over classes
Feature-based
softmax/maxent
linear classifiers

How to put features into a
classifier