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Today’s	plan

1. Generative	vs.	discriminative	models		[15	mins]
2. Optimizing	softmax/maxentmodel	parameters		[20	mins]
3. Named	Entity	Recognition		[10	mins]
4. Maximum	entropy	sequence	models		[10	mins]
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Introduction

• So	far	we’ve	mainly	looked	at	“generative	models”
• Language	models,	IBM	alignment	models,	PCFGs

• But	there	is	much	use	of	conditional	or	discriminative	models	in	
NLP,	Speech,	IR,	and	ML	generally

• Because:
• They	give	high	accuracy	performance
• They	make	it	easy	to	incorporate	 lots	of	linguistically	important	 features
• They	allow	easy	building	of	language	 independent,	 retargetable	 NLP	
modules
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Joint	vs.	Conditional	Models

• We	have	some	data	{(d,	c)}	of	paired	observations	
d and	hidden	classes	c.

• Joint	(generative)	models	place	probabilities	over	
both	observed	data	and	the	hidden	stuff
• They	generate	 the	observed	 data	from	the	hidden	stuff	
• All	the	classic	1990s	StatNLP models:
• n-gram	language	models,	Naive	Bayes	classifiers,	
hidden	Markov	models,	probabilistic	 context-free	
grammars,	 IBM	machine	 translation	alignment	models

P(c,d)
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Joint	vs.	Conditional	Models

• Discriminative	(conditional)	models	take	the	data	
as	given,	and	put	a	probability/score	over	hidden	
structure	given	the	data:

• Logistic	regression,	maximum	entropy	models,	
conditional	random	fields

• Also,	SVMs,	(averaged)	 perceptron,	 feed	 forward	
neural	networks,	etc.	are	discriminative	 classifiers
• but	not	directly	probabilistic

P(c|d)
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Conditional	vs.	Joint	Likelihood

• A	jointmodel	gives	probabilities	P(d,c)	=	P(c)P(d|c)	and	tries	to	
maximize	this	joint	likelihood.
• It	ends	up	trivial	to	choose	weights:	 just	count!	
• Relative	 frequencies	 give	maximum	joint	likelihood	on	categorical	data

• A	conditionalmodel	gives	probabilities	P(c|d).	It	models	only	the	
conditional	probability	of	the	class.
• We	seek	 to	maximize	conditional	likelihood.
• Harder	 to	do	(as	we’ll	see…)
• More	closely	related	 to	classification	error.
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Word	Sense	Disambiguation

• Even	with	exactly	 the	same	
features,	 changing	from	
joint	to	conditional	
estimation	 increases	
performance

• That	is,	we	use	the	same	
smoothing,	 and	the	same	
word-class	 features,	we	just	
change	the	numbers	
(parameters)	

Training Set

Objective Accuracy

Joint Like. 86.8

Cond. Like. 98.5

Test Set

Objective Accuracy

Joint Like. 73.6

Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)
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PCFGs	Maximize	Joint,	not	Conditional	
Likelihood

1. What	parse	 for
eat	rice	with	
chopsticks?

2. How	can	you	get	the	
other	parse?



Optimizing	
softmax/maxent
model	parameters

Their	likelihood	and	
derivatives
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Background:	Feature	Expectations

• We	will	crucially	make	use	of	two	expectations
• actual	and	predicted	 counts	of	a	feature	 firing:

• Empirical	expectation (count)	of	a	feature:

• Model	expectation	 of	a	feature:
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Maxent/Softmax Model	Likelihood

• Maximum	(Conditional)	Likelihood	Models
• Given	a	model	form,	we	choose	values	of	parameters	λi to	maximize	 the	
(conditional)	 likelihood	of	the	data.

• For	any	given	feature	weights,	we	can	calculate:
• Conditional	 likelihood	of	training	data

• Derivative	 of	the	likelihood	wrt each	feature	weight
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The	Likelihood	Value

• The	(log)	conditional	likelihood	of	iid* data	(C,D)	
according	to	a	maxentmodel	is	a	function	of	the	
data	and	the	parameters	λ:

• If	there	aren’t	many	values	of	c,	it’s	easy	to	
calculate:
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*A fancy statistics term meaning “independent and identically distributed”. You normally need to assume this for 
anything formal to be derivable, even though it’s never quite true in practice.
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The	Likelihood	Value

• We	can	separate	this	into	two	components:

• We	can	maximize	it	by	finding	where	the	derivative	is	0
• The	derivative	is	the	difference	between	the	derivatives	

of	each	component
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The	Derivative	I:	Numerator

Derivative	of	the	numerator	is:	the	empirical	count(fi,	c)
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The	Derivative	II:	Denominator
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The	Derivative	III

• The	optimum	parameters	 are	the	ones	for	which	each	feature’s	
predicted	 expectation	 equals	its	empirical	expectation.	 	The	optimum	
distribution	 is:
• Always	unique	(but	parameters	may	not	be	unique)
• Always	exists	 (if	feature	counts	are	from	actual	data).

• These	models	are	also	called	maximum	entropy	models	because	we	
find	the	model	having	maximum	entropy	and	satisfying	the	
constraints:
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Finding	the	optimal	parameters

• We	want	to	choose	parameters	λ1,	λ2,	λ3,	…	that	maximize	the	
conditional	log-likelihood	of	the	training	data

• To	be	able	to	do	that,	we’ve	worked	out	how	to	calculate	the	
function	value	and	its	partial	derivatives	(its	gradient)
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A	likelihood	 surface
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Finding	the	optimal	parameters

• Use	your	favorite	numerical	optimization	package….
• Commonly	(and	in	our	code),	you	minimize the	negative	 of	CLogLik

1. Gradient	descent	 (GD);	Stochastic	gradient	descent	 (SGD)
• Improved	 variants	 like	Adagrad,	Adadelta,	 RMSprop,	NAG

2. Iterative	 proportional	 fitting	methods:	Generalized	 Iterative	 Scaling	
(GIS)	and	Improved	 Iterative	 Scaling	(IIS)

3. Conjugate	gradient	 (CG),	perhaps	with	preconditioning
4. Quasi-Newton	methods	– limited	memory	variable	metric	(LMVM)	

methods,	 in	particular,	 L-BFGS
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Named	Entity	Recognition	(NER)

• A	very	important	NLP	sub-task:	find and	classify
names	in	text,	for	example:

• The	decision	by	the	independent	 MP	Andrew	Wilkie to	
withdraw	his	support	 for	the	minority	Labor	government	
sounded	dramatic	but	it	should	not	further	 threaten	 its	
stability.	When,	after	 the	2010	election,	Wilkie,	Rob	
Oakeshott,	Tony	Windsor	and	the	Greens	agreed	 to	support	
Labor,	they	gave	just	two	guarantees:	 confidence	 and	
supply.
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• A	very	important	NLP	sub-task:	find and	classify
names	in	text,	for	example:

• The	decision	by	the	independent	 MP	Andrew	Wilkie to	
withdraw	his	support	 for	the	minority	Labor government	
sounded	dramatic	but	it	should	not	further	 threaten	 its	
stability.	When,	after	 the	2010 election,	Wilkie,	Rob	
Oakeshott,	Tony	Windsor	and	the	Greens agreed	 to	support	
Labor,	they	gave	just	two	guarantees:	 confidence	 and	
supply.

Named	Entity	Recognition (NER)
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• A	very	important	NLP	sub-task:	find and	classify
names	in	text,	for	example:

• The	decision	by	the	independent	 MP	Andrew	Wilkie to	
withdraw	his	support	 for	the	minority	Labor government	
sounded	dramatic	but	it	should	not	further	 threaten	 its	
stability.	When,	after	 the	2010 election,	Wilkie,	Rob	
Oakeshott,	Tony	Windsor	and	the	Greens agreed	 to	support	
Labor,	they	gave	just	two	guarantees:	 confidence	 and	
supply.

Named	Entity	Recognition (NER)

Person
Date
Location
Organi-
zation
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Named	Entity	Recognition	(NER)

• The	uses:
• Named	entities	can	be	indexed,	 linked	off,	etc.
• Sentiment	can	be	attributed	 to	companies	or	products
• A	lot	of	relations	 (employs,	won,	born-in)	are	between	named	entities
• For	question	answering,	 answers	 are	often	named	entities.

• Concretely:
• Many	web	pages	 tag	various	entities,	 with	links	to	bio	or	topic	pages,	etc.
• Reuters’	 OpenCalais,	Evri,	AlchemyAPI,	Yahoo’s	Term	Extraction,	…

• Apple/Google/Microsoft/…	 smart	recognizers	 for	document	content
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Named	Entity	Recognition	Evaluation

Task:	Predict	entities	 in	a	text

Foreign	 ORG
Ministry	 ORG
spokesman	 O
Shen PER
Guofang PER
told	 O
Reuters	 ORG
:	 :

}
Standard
evaluation
is	per	entity,	
not per	token
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The	Named	Entity	Recognition	Task

We ORG
should	 ORG
show	 O
Neha PER
Eric PER
King PER
’s	 O
assignment	 ORG
:	 :

O
O
O
B-PER
B-PER BIO/IOB	notation
I-PER
O
O
:
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Precision/Recall/F1	for	NER

• Recall	and	precision	are	straightforward	for	tasks	like	IR	and	text	
categorization,	where	there	is	only	one	grain	size	(documents)

• The	measure	behaves	a	bit	funnily	for	IE/NER	when	there	are	
boundary	errors	(which	are	common):
• First	Bank	of	Chicago	announced	earnings	…

• This	counts	as	both	a	false	positive	and	a	false	negative
• Selecting	nothing would	have	been	better
• Some	other	metrics	(e.g.,	MUC	scorer)	give	partial	credit	

(according	to	complex	rules)



Maximum	entropy	
sequence	models

Maximum	entropy	Markov	
models	(MEMMs)	a.k.a.	

Conditional	Markov	models
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Sequence	problems

• Many	problems	in	NLP	have	data	which	is	a	sequence	of	
characters,	words,	phrases,	lines,	or	sentences	…

• We	can	think	of	our	task	as	one	of	labeling	each	item
VBG NN IN DT NN IN NN
Chasing opportunity in an age of upheaval

POS	tagging

B B I I B I B I B B

而 相 对 于 这 些 品 牌 的 价

Word	segmentation

PERS O O O ORG ORG
Murdoch discusses future of News Corp.

Named	entity	recognition

Text	
segmen-
tation

Q
A
Q
A
A
A
Q
A
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MEMM	inference	in	systems

• For	a	Conditional	Markov	Model	(CMM)	a.k.a.	a	Maximum	Entropy	
Markov	Model	(MEMM),	 the	classifier	makes	a	single	decision	at	a	time,	
conditioned	on	evidence	 from	observations	 and	previous	 decisions

• A	larger	 space	of	sequences	 is	usually	explored	 via	search

-3 -2 -1 0 +1

ORG ORG O ??? ???

Xerox Corp. fell 22.6 %

Local	Context
Features

W0 22.6

W+1 %

W-1 fell

C-1 O

C-1-C-2 ORG-O

hasDigit? true

… …(Borthwick 1999,	Klein	et	al.	2003,	etc.)

Decision	Point
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Example:	NER

• Scoring	individual	labeling	decisions	 is	no	more	complex	than	standard	
classification	decisions
• We	have	some	assumed	 labels	 to	use	for	prior	positions
• We	use	features	of	those	and	the	observed	data	(which	can	include	current,	
previous,	and	next	words)	to	predict	the	current	label

-3 -2 -1 0 +1

ORG ORG O ??? ???

Xerox Corp. fell 22.6 %

Local	Context
Features

W0 22.6

W+1 %

W-1 fell

C-1 O

C-1-C-2 ORG-O

hasDigit? true

… …

Decision	Point
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Inference	in	Systems
Sequence	Level

Local	Level

Local
Data

Feature
Extraction

Features

Label

Optimization

Smoothing

Classifier Type

Features

Label

Sequence
Data

Maximum Entropy 
Model RegularizationOptimization

Sequence Model Inference
(Search)

Local
Data

Local
Data
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Greedy	Inference

• Greedy inference:
• We just start at the left, and use our classifier at each position to assign a label
• The classifier can depend on previous labeling decisions as well as observed data

• Advantages:
• Fast, no extra memory requirements
• Very easy to implement
• With rich features including observations to the right, it can perform quite well

• Disadvantage:
• Greedy. We make commit errors we cannot recover from

Sequence Model

Inference

Best Sequence
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Beam	Inference

• Beam inference:

• At each position keep the top k complete sequences.

• Extend each sequence in each local way.

• The extensions compete for the k slots at the next position.

• Advantages:
• Fast; beam sizes of 3–5 are almost as good as exact inference in many cases.
• Easy to implement (no dynamic programming required).

• Disadvantage:
• Inexact: the globally best sequence can fall off the beam.

Sequence Model

Inference

Best Sequence
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Viterbi	Inference

• Viterbi inference:
• Dynamic programming or memoization.
• Requires small window of state influence (e.g., past two states are relevant).

• Advantage:
• Exact: the global best sequence is returned.

• Disadvantage:
• Harder to implement long-distance state-state interactions (but beam inference 

tends not to allow long-distance resurrection of sequences anyway).

Sequence Model

Inference

Best Sequence
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CRFs [Lafferty, Pereira, and McCallum 2001]

• Another sequence model: Conditional Random Fields (CRFs)

• A whole-sequence conditional model rather than a chaining of local models.

• The space of c’s is now the space of sequences
• But if the features fi remain local, the conditional sequence likelihood can be calculated 

exactly using dynamic programming

• Training is slower, but CRFs avoid causal-competition biases

• These (or a variant using a max margin criterion) are seen as the state-of-the-
art these days … but in practice they usually work much the same as MEMMs.
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CoNLL	2003	NER	shared	task	
Results	on	English	Devset

82

84

86

88

90

92

94

96

MEMM 1st CRF MMMN

Overall
Loc
Misc
Org
Person



Smoothing/Priors/	
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Smoothing:	Issues	of	Scale
• Lots	of	features:

• NLP	maxent models	can	have	ten	million	 features.
• Even	storing	a	single	array	of	parameter	values	can	have	a	

substantial	memory	cost.

• Lots	of	sparsity:
• Overfitting very	easy	– we	need	smoothing!
• Many	features	 seen	in	training	 will	never	occur	again	at	test	time.

• Optimization	problems:
• Feature	weights	can	be	infinite,	 and	iterative	solvers	can	take	a	long	

time	to	get	to	those	infinities.
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Smoothing:	Issues
• Assume the following empirical distribution:

• Features: {Heads}, {Tails}

• We’ll have the following softmax model distribution:

• Really, only one degree of freedom (λ = λH−λT)

Heads Tails

h t

TH

H

HEADS λλ

λ

ee
ep
+

=
TH

T

TAILS λλ

λ

ee
ep
+

=

pHEADS =
eλHe−λT

eλHe−λT + eλTe−λT
=

eλ

eλ + e0
=

eλ

eλ +1
pTAILS =

e0

eλ + e0
=

1
1+ eλ

λ

Logistic	
regression!
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Smoothing:	Issues

• The	data	likelihood	in	this	model	is:
TAILSHEADS loglog)|,(log ptphthP +=λ

)1(log)()|,(log λλλ ehththP ++−=

Heads Tails

2 2
Heads Tails

3 1
Heads Tails

4 0

λ λ λ

log P log P log P
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Smoothing:	Early	Stopping
• In	the	4/0	case,	there	were	two	problems:

• The	optimal	value	of	λ was	∞,	which	is	a	long	trip	for	an	
optimization	procedure

• The	learned	distribution	is	just	as	spiked	as	the	empirical	one	–
no	smoothing

• One	way	to	solve	both	issues	 is	to	just	stop	the	optimization	
early,	after	a	few	iterations:
• The	value	of	λwill	be	finite	(but	presumably	big)
• The	optimization	won’t	take	forever	(clearly)
• Commonly	used	in	early	maxent work

• Has	seen	a	revival	in	deep	learning	J

Heads Tails

4 0

Heads Tails

1 0

Input

Output

λ
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Smoothing:	Priors	(MAP)
• What	if	we	had	a	prior	expectation	 that	parameter	values	wouldn’t	

be	very	large?
• We	could	then	balance	 evidence	 suggesting	 large	parameters	 (or	

infinite)	 against	our	prior.
• The	evidence	would	never	totally	defeat	the	prior,	and	parameters	

would	be	smoothed	 (and	kept	finite!).
• We	can	do	this	explicitly	 by	changing	the	optimization	 objective	to	

maximum	posterior	 likelihood:

),|(log)(log)|,(log λλλ DCPPDCP +=

Posterior Prior Evidence
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Smoothing:	Priors
• Gaussian,	 or	quadratic,	or	L2 priors:

• Intuition:	 parameters	 shouldn’t	be	large.
• Formalization:	 prior	expectation	 that	each	parameter	will	
be	distributed	 according	to	a	gaussian with	mean	µ and	
variance	σ2.

• Penalizes	 parameters	 for	drifting	too	far	from	their	mean	
prior	value	(usually	µ=0).

• 2σ2=1	works	surprisingly	well.

They	don’t	even	
capitalize	my	
name	anymore!

!!
"

#
$$
%
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2

2
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i
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σ
µλ

πσ
λ

2σ2=
1

2σ2 = 
10

2σ2 = ∞
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Smoothing:	Priors
• If	we	use	gaussian priors	 /	L2 regularization:

• Trade	off	some	expectation-matching	for	smaller	parameters.
• When	multiple	features	can	be	recruited	to	explain	a	data	point,	the	more	common	ones	

generally	receive	more	weight.
• Accuracy	generally	goes	up!

• Change	 the	objective:

• Change	 the	derivative:

),|(log)|,(log λλ DCPDCP =
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Smoothing:	Priors
• If	we	use	gaussian priors	 /	L2 regularization	 :

• Trade	off	some	expectation-matching	for	smaller	parameters.
• When	multiple	features	can	be	recruited	to	explain	a	data	point,	the	more	common	ones	

generally	receive	more	weight.
• Accuracy	generally	goes	up!

• Change	 the	objective:

• Change	 the	derivative:

),|(log)|,(log λλ DCPDCP =
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−
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2

Taking	prior	
mean	as	0
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Example:	NER	Smoothing

Feature Type Feature PERS LOC

Previous word at -0.73 0.94

Current word Grace 0.03 0.00

Beginning bigram <G 0.45 -0.04

Current POS tag NNP 0.47 0.45

Prev and cur tags IN NNP -0.10 0.14

Previous state Other -0.70 -0.92

Current signature Xx 0.80 0.46

Prev state, cur sig O-Xx 0.68 0.37

Prev-cur-next sig x-Xx-Xx -0.69 0.37

P. state - p-cur sig O-x-Xx -0.20 0.82

…

Total: -0.58 2.68

Prev Cur Next

State Other ??? ???

Word at Grace Road

Tag IN NNP NNP

Sig x Xx Xx

Local Context

Feature Weights
Because	of	smoothing,	the	more	
common	prefix	and	single-tag	
features	have	larger	weights	even	
though	entire-word	and	tag-pair	
features	are	more	specific.
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Example:	POS	Tagging
• From	(Toutanova	et	al.,	2003):

• Smoothing	helps:
• Softens	distributions.
• Pushes	weight	onto	more	explanatory	features.
• Allows	many	features	to	be	dumped	safely	into	the	mix.
• Speeds	up	convergence	 (if	both	are	allowed	to	converge)!

Overall 
Accuracy

Unknown 
Word Acc

Without 
Smoothing

96.54 85.20

With 
Smoothing

97.10 88.20

DevTest Performance



Christopher	Manning

Smoothing	/	Regularization

• Talking	of	“priors”	and	“MAP	estimation”	is	Bayesian	language
• In	frequentist statistics,	people	will	instead	talk	about	using	

“regularization”,	and	in	particular,	a	gaussian prior	is	“L2
regularization”

• The	choice	of	names	makes	no	difference	to	the	math
• Recently,	L1 regularization	is	also	very	popular

• Gives	sparse	solutions	– most	parameters	 become	zero	 [Yay!]
• Harder	optimization	problem	(non-continuous	 derivative)



Christopher	Manning

Smoothing:	Virtual	Data
• Another	option:	smooth	the	data,	not	the	parameters.
• Example:

• Equivalent	 to	adding	two	extra	data	points.
• Similar	to	add-one	smoothing	for	generative	 models.

• For	feature-based	 models,	hard	to	know	what	artificial	data	to	create!

Heads Tails

4 0
Heads Tails

5 1
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Smoothing:	Count	Cutoffs

• In	NLP,	features	with	low	empirical	counts	are	often	dropped.
• Very	weak	and	indirect	smoothing	method.
• Equivalent	 to	locking	their	weight	to	be	zero.
• Equivalent	 to	assigning	 them	gaussian priors	with	mean	zero	and	variance	zero.
• Dropping	low	counts	does	remove	the	features	which	were	most	in	need	of	
smoothing…

• …	and	speeds	 up	the	estimation	 by	reducing	model	size	…
• …	but	count	cutoffs	generally	hurt	accuracy	in	the	presence	 of	proper	smoothing.

• Don’t	use	count	cutoffs	unless	necessary	for	memory	usage	
reasons.	Prefer	L1 regularization	for	finding	features	to	drop.



Smoothing/Priors/	
Regularization	for	
Maxent Models


