Coreference Resolution
Part 2
CS224n
Christopher Manning
(borrows slides from Roger Levy, Altaf Rahman, Vincent Ng)

Knowledge-based Pronominal Coreference

• [The city council] refused [the women] a permit because they feared violence.
• [The city council] refused [the women] a permit because they advocated violence.
 — Winograd (1972)

 — Winograd Schema Challenge @ Commonsense 2015 • http://commonsensereasoning.org/winograd.html

Hobbs’ algorithm: commentary

"... the naive approach is quite good. Computationally speaking, it will be a long time before a semantically based algorithm is sophisticated enough to perform as well, and these results set a very high standard for any other approach to aim for.

"Yet there is every reason to pursue a semantically based approach. The naive algorithm does not work. Any one can think of examples where it fails. In these cases it not only fails; it gives no indication that it has failed and offers no help in finding the real antecedent.”
 — Hobbs (1978), Lingua, p. 345

Plan

1. Evaluation of Coreference [5+5 mins]
2. Introduction to machine learning approaches to coreference [15 mins]
3. Feature-based discriminative classifiers [15 mins]
4. Feature-based softmax/maxent linear classifiers [20 mins]
5. Different conceptualizations of coreference as a machine learning task [15 mins]

Coreference Evaluation

• B-CUBED algorithm for evaluation
 — Shading = gold standard, circles = system clustering

Figure from Amigo et al 2009

Evaluation

• B1 (B-CUBED) algorithm for evaluation
 – Precision & recall for entities in a reference chain
 – Precision (P): % of elements in a hypothesized reference chain that are in the true reference chain
 – Recall (R): % of elements in a true reference chain that are in the hypothesized reference chain
 – Overall precision & recall are the (perhaps weighted) average of per-chain precision & recall
 – Optimizing chain-chain pairings is a hard problem
 – In the computational NP-hard sense
 – Greedy matching is done in practice for evaluation
 – F\textsubscript{1} measure is harmonic mean of P and R
Evaluation metrics

- MUC Score (Vilain et al., 1995)
 - Link based: Counts the number of common links and computes F-measure
- CEAF (Luo 2005); entity based, two variants
- BLANC (Recasens and Hovy 2011): Cluster RAND-index
 - ...
 - All of them are sort of evaluating getting coreference links/clusters right and wrong, but the differences can be important
 - Look at it in PA3

Plan

1. Evaluation of Coreference [5+5 mins]
2. Introduction to machine learning approaches to coreference [15 mins]
3. Feature-based discriminative classifiers [15 mins]
4. Feature-based softmax/maxent linear classifiers [20 mins]
5. Different conceptualizations of coreference as a machine learning task [15 mins]

Machine learning models of coref

- Start with supervised data
 - positive examples that corefer
 - negative examples that don’t corefer
 - Note that it’s very skewed
 - The vast majority of mention pairs don’t corefer
- Usually learn some sort of discriminative classifier for phrases/clusters coreferring
 - Predict if coreference, o for not coreferent
- But there is also work that builds clusters of coreferring expressions
 - E.g., generative models of clusters in (Haghighi & Klein 2007)

Supervised Machine Learning

Pronominal Anaphora Resolution

- Given a pronoun and an entity mentioned earlier, classify whether the pronoun refers to that entity or not given the surrounding context (yes/no) [binary classification task]

 Mr. Obama asked the city. The president talked about Milwaukee’s economy. He mentioned new jobs.

 ? ? ?

- Usually first filter out pleonastic pronouns like “it is raining,” (perhaps using hand-written rules)
- Use any classifier, get “yes” examples from training data, make “no” examples by pairing pronoun with other (wrong) entities
- Decision rule: take nearest mention classified “yes”, if any.

Kinds of Coref Models

- Mention Pair models
 - Treat coreference chains as a collection of pairwise links
 - Make independent pairwise decisions and reconcile them in some way (e.g. clustering or greedy partitioning)
- Mention ranking models
 - Explicitly rank all candidate antecedents for a mention
- Entity-Mention models
 - A cleaner, but less studied, approach
 - Posit single underlying entities
 - Each mention links to a discourse entity [Pasula et al. 03], [Luo et al. 04]

Mention Pair Models

- Most common machine learning approach
- Build a binary classifier over pairs of mentions
 - For each mention, pick a preceding mention or NEW
 - Or, for each antecedent candidate, choose link or no-link
- Clean up non-transitivity with clustering or graph partitioning algorithms
 - E.g. [Soon et al 01], [Ng and Cardie 02]
 - Some work has done the classification and clustering jointly [Mc Callum and Wellner 03]
- Failures are mostly because of insufficient knowledge or features for hard common noun cases
Features: Grammatical Constraints
Are the two mentions in a coreference grammatical relationship?

• Apposition
 – Nefertiti, Amenomfis the IVth's wife, was born in ...

• Predicatives/equatives
 – Sue is the best student in the class
 – It's questionable whether predicative cases should be counted, but they generally are.

Features: Soft Discourse Constraints

• Recency
• Salience
• Focus
• Centering Theory [Grosz et al. 86]
• Coherence Relations

But it's complicated ... so weight features

• Common nouns can differ in number but be coreferent:
 – a patrol ... the soldiers

• Common nouns can refer to proper nouns
 – George Bush ... the leader of the free world

• Gendered pronouns can refer to inanimate things
 – India withdrew her ambassador from the Commonwealth

• Split antecedence
 – John waited for Sasha. And then they went out.

Other coreference features

• Additional features to incorporate aliases, variations in names etc., e.g. Mr. Obama, Barack Obama; Megabucks, Megabucks Inc.

• Semantic Compatibility
 – Smith had bought a used car that morning.
 • The dealership assured him it was in good condition.
 • The machine needed a little love, but the engine was in good condition.

Pairwise Features

1. strict gender [true or false]. True if there is a strict match in gender (e.g. male pronoun Pro, with antecedent NP).
2. compatible gender [true or false]. True if Pro and NP are merely compatible (e.g. male pronoun Pro, with antecedent NP of unknown gender).
3. strict number [true or false]. True if there is a strict match in number (e.g. singular pronoun with singular antecedent).
4. compatible number [true or false]. True if Pro and NP are merely compatible (e.g. singular pronoun Pro, with antecedent NP of unknown number).
5. sentence distance [0, 1, 2, 3]. The number of sentences between pronoun and potential antecedent.
6. Hobbs distance [0, 1, 2, 3]. The number of noun groups that the Hobbs algorithm has to skip, starting backwards from the pronoun Pro, before the potential antecedent NP is found.
7. grammatical role [subject, object, PP]. Whether the potential antecedent is a syntactic subject, direct object, or is embedded in a PP.
8. linguistic form [proper, definite, indefinite, pronoun]. Whether the potential antecedent NP is a proper name, definite description, indefinite NP, or a pronoun.

But it's complicated ... so weight features

• Common nouns can differ in number but be coreferent:
 – a patrol ... the soldiers

• Common nouns can refer to proper nouns
 – George Bush ... the leader of the free world

• Gendered pronouns can refer to inanimate things
 – India withdrew her ambassador from the Commonwealth

• Split antecedence
 – John waited for Sasha. And then they went out.

Other coreference features

• Additional features to incorporate aliases, variations in names etc., e.g. Mr. Obama, Barack Obama; Megabucks, Megabucks Inc.

• Semantic Compatibility
 – Smith had bought a used car that morning.
 • The dealership assured him it was in good condition.
 • The machine needed a little love, but the engine was in good condition.

Pairwise Features

1. strict gender [true or false]. True if there is a strict match in gender (e.g. male pronoun Pro, with antecedent NP).
2. compatible gender [true or false]. True if Pro and NP are merely compatible (e.g. male pronoun Pro, with antecedent NP of unknown gender).
3. strict number [true or false]. True if there is a strict match in number (e.g. singular pronoun with singular antecedent).
4. compatible number [true or false]. True if Pro and NP are merely compatible (e.g. singular pronoun Pro, with antecedent NP of unknown number).
5. sentence distance [0, 1, 2, 3]. The number of sentences between pronoun and potential antecedent.
6. Hobbs distance [0, 1, 2, 3]. The number of noun groups that the Hobbs algorithm has to skip, starting backwards from the pronoun Pro, before the potential antecedent NP is found.
7. grammatical role [subject, object, PP]. Whether the potential antecedent is a syntactic subject, direct object, or is embedded in a PP.
8. linguistic form [proper, definite, indefinite, pronoun]. Whether the potential antecedent NP is a proper name, definite description, indefinite NP, or a pronoun.

[Luo et al. 04]
Plan

1. Evaluation of Coreference [5+5 mins]
2. Introduction to machine learning approaches to coreference [15 mins]
3. Feature-based discriminative classifiers [15 mins]
4. Feature-based softmax/maxent linear classifiers [20 mins]
5. Different conceptualizations of coreference as a machine learning task [15 mins]
Entity-Mention (EM) Model

- Pasula et al. 2003; Luo et al. 2004; Yang et al. 2004
- Classifies whether a mention and a preceding, possibly partially formed cluster are coreferent or not.
- Strength
 - Improved expressiveness.
 - Allows the computation of cluster level features
- Weakness
 - Each candidate cluster is considered independently of the others.

Mention-Ranking (MR) Model

- Denis & Baldridge 2007, 2008
- Imposes a ranking on a set of candidate antecedents
- Strength
 - Considers all the candidate antecedents simultaneously
- Weakness
 - Insufficient information to make an informed coreference decision.

First Ranking Mention Model

- Actually, we don’t need a ranking on all candidate antecedents
- We can just find the highest ranking antecedent
- This is equivalent to multiclass classification:
 - Choose the antecedent
 - But without a fixed set of classes
 - structured prediction
- Used in recent (high-performing) paper of Durrett and Klein (EMNLP 2013)
 - They use a maxent/softmax model just as we have been discussing