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Abstract

The objective of this project is to build a classifier that can predict whether a piece
of news is fake based only its content, thereby approaching the problem from a
purely NLP perspective. An important part of the goal is to compare and report
the results from multiple different model implementations, and present an analysis
of the findings. Several architectures are explored, and a novel design that incor-
porates an attention-like mechanism in a Convolutional Network is investigated.

1 Introduction

Fake news is increasingly becoming a menace to our society. It is typically generated for commer-
cial interests—to attract viewers and collect advertising revenue. However, people and groups with
potentially malicious agendas have been known to initiate fake news in order to influence events
and policies around the world. It is also believed that circulation of fake news had material impact
on the outcome of the 2016 US Presidential Election [[1]].

From an NLP perspective, this phenomenon offers an interesting and valuable opportunity to
identify patterns that can be coded in a classifier. In our experiments, we will be ignoring all other
signals (e.g., the source of the news, whether it was reported online or in print, etc.), and instead
focus only the content matter being reported.

2 Data

The data used for this project was drawn from two different sources, both in public domain.
Fake news articles were procured from an open Kaggle dataset [2]—this collection is made up
of 13,000 articles that span multiple subjects. Authentic news articles (negative examples for
the classifier) were extracted from the Signal Media News dataset [3]; reservoir sampling was
used to select 50,000 entries uniformly at random from the corpus. The ratio of fake to non-fake
examples was determined on the basis of empirical evidence in an attempt to reflect published
news in the real-world. Binary 0/1 labels were assigned to the real/fake news articles, respectively.
The collection of 63,000 articles was subsequently shuffled, and split into 60% training, 20%
dev/validation, and 20% test sets. The test set was stashed away for the final performance evaluation
of the models, and the validation set was used for hyperparameter selection.

The hyperparameters used for the various models are listed in table[T}



3 Related Work

Text classification has a rich research history within the NLP community, and an equally impressive
array of practical applications to showcase its importance. See [4]] for an introduction and references.

While there exist tools and products to detect sources of fake news (e.g., whether a web site
publishes misleading news), we will approach this problem as an instance of text classification,
using only the content of the article as the source of features. Doing so affords us to focus on
NLP-related algorithms, thereby allowing us to explore in depth the performance of a variety of
models on a particular task.

4 Models

Several different models were implemented; the following sections describe each in detail. All mod-
els use pre-trained 300-dimensional GloVe [S]] embeddings, which are not updated during training.
Given that the training set is small compared to the magnitude of the corpora used to train GloVe
vectors, it makes little sense to update the embeddings as part training the models.

4.1 Logistic Regression

This is a simple, linear model, that was implemented to serve as a baseline for comparison with
other, more sophisticated models.

In this model, vectors corresponding to words in each news story are averaged to produce
one embedding, which is first run through a linear layer and subsequently input to the sigmoid
nonlinearity to predict the label:

J=0o(xW +1b) ()
All models used the logistic (sigmoid) cross-entropy loss, which is defined as:
J = —ylogj— (1 —y)log(1l - ) 2)

Figure[I|shows the loss as a function of training epochs.

4.2 Two-layer Feedforward Neural Network

This model also uses a fixed-size input z € R**3%0 obtained as the average of all vectors corre-

sponding to the words in the news story. It is inspired by the simple design explored in [6].

h = ReLU(@W + b1) 3)
hdrop = DTOPOUt(h’ pdrop) 4
J = 0 (haopU + b2) 5)

Averaging the word vectors has intuitive appeal; doing so not only normalizes every example for
length, but also takes every word in the content into account.

4.3 Recurrent Neural Network

The RNN was initially implemented to process the entire length of every news article. However,
with the longest training sample at 26,970 words, it quickly became computationally infeasible to
train the model. Consequently, a limit of 200 time steps was imposed (a hyperparameter, determined
via cross-validation), and shorter examples were padded with zero vectors at the beginning, so that
the network gets to examine the words in the examples as it moves through the time steps to the end.
Padding at the end of the examples produced higher loss.

ht = O'(acth + ht_1Wh + b) (6)

The output at the final time step was recorded as the predicted label for the example. Figure
illustrates the basic architecture underlying the network used in this model, as well as in some of the
others that follow.



4.4 Long Short-Term Memories

The Long Short-Term Memory (LSTM) unit was initially proposed by Hochreiter and Schmidhuber
[7], and since then a number of modifications to the original unit have been made. Unlike the
recurrent unit, which simply computes a weighted sum of the input signal and applies a nonlinear
function, each LSTM unit maintains a memory c; at time ¢, which is subsequently used to determine
the output, or the activation, h;, of the cell.

hy = o; ® tanh(cy) (7
c=ftOc1+it O (3
¢ = tanh(zs W, + hy_1U; + be) )
oy = o(x:Wo + hy—1U, + by) (10)
it = o(xW; + hy—1U; + b;) (11)
fi :U(l’thJrht_lUerbf) (12)

See [I8] for a good exposition of the motivation behind this mathematical formulation.

4.5 Gated Recurrent Units

Although RNNs can theoretically capture long-term dependencies, they are very hard to actually
train to do this. Gated recurrent units are designed in a manner to have more persistent memory
thereby making it easier for RNNs to capture long-term dependencies [8].

he = © by + (1 —ug) © hy—y (13)
hy = tanh(z,W + (ry © hy_1)U + b) (14)
uy = o (xWy + hi—1Uy + by) (15)
ry = o(e:Wy + he—1U, + by) (16)

The above equations can be thought of a GRU’s four fundamental operational stages and they have
intuitive interpretations that make this model much more intellectually satisfying.

4.6 Bidirectional RNN with LSTMs

As a final RNN model, a bidirectional recurrent network with LSTM cells was also implemented.
The final states of the forward and backward layers are concatenated and passed through an affine
transform before being input to the sigmoid to generate the prediction.

4.7 Convolutional Neural Network with Max Pooling

This model starts with the 300-dimensional GloVe embeddings of all the words in the example,
and extracts bigrams, trigrams, 4-grams, as well as 5-grams from the text. Vectors corresponding
to these n-grams are then concatenated and fed into a linear layer, where they are scaled using
different weight matrices (but the same bias). A max pooling layer then selects the largest from the
scaled inputs. The results are added and transformed via a ReLU unit, whose output is finally sent
to a sigmoid nonlinearity to predict the label.

Figure 8| shows the CNN model architecture.

4.8 Attention-Augmented Convolutional Neural Network

As an exploratory exercise, a new architecture that augments a CNN with an attention-like mecha-
nism was implemented. The intuition behind this approach is to determine if the features generated
by the convolution process can be enhanced to capture influence from prior n-grams before they are
max-pooled and sent through the nonlinearity. The idea is to learn an attention matrix for bigrams,
and another for trigrams (only two n-grams were used in this specific model) that capture influence
from a small set of n-grams preceding the convolution window.
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In other words, for words z; € R'** in a window size h, we learn not only the convolution
filter W(h), but also an attention matrix Wéh), such that the feature map becomes

c= {W(h) Z Wéh)zf—lzi—1+hxi:i+h} (17)

Max pooling is subsequently applied to this augmented feature map.

5 Implementation

All code was written in Python 2.7, using TensorFlow r0.12.1 and NumPy. However, TensorFlow’s
implementation of LSTM and GRU cells was not used; instead, they were coded from scratch.
Xavier initialization was used for all variables. Dropout was employed as a regularization mecha-
nism for the feedforward and the recurrent neural networks.

Experiments were run on local CPU-only machines, as well as on GPU-enabled Azure clus-
ters provided by Microsoft.
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Table 1: Hyperparameters for the Various Models

Baby

Model Embedding Learning Optimizer Hidden Dropout Time Epochs
Size Rate Size Steps
Logistic Regression 300 107! SGD — — — 100
Feedforward Network 300 1073 Adam 200 0.5 — 100
RNN (Vanilla) 300 1073 Adam 100 0.5 200 30
GRUs 300 1074 Adam 100 0.5 200 30
LSTMs 300 10~* Adam 100 0.5 200 30
BiLSTMs 300 1073 Adam 100 0.5 200 20
CNN with Max Pooling 300 1072 Adam 100 — — 100
CNN with Max Pooling and Attention 300 102 Adam 100 — — 10



Table 2: Model Performance on the Test Set

MODEL PRECISION RECALL F,
Logistic Regression 0.96 0.49 0.65
Feedforward Network 0.89 0.74 0.80
RNN (Vanilla) 091 0.56 0.70
GRUs 0.89 0.79 0.84
LSTMs 0.93 0.72 0.81
BiLSTMs 0.88 0.75 0.81
CNN with Max Pooling 0.87 0.44 0.58
CNN with Max Pooling and Attention 0.97 0.03 0.06

6 Results and Discussion

The performance of each model employed in this project is summarized in table 2]

There were two major takeaways from these experiments. First, in accordance with the ob-
servations reported in [9]] and [[10]], the RNN architecture with GRUs outperformed one with LSTM
cells in the task at hand. This result holds despite the fact that a positive bias was added to the
LSTM’s forget gate. Not only did the RNN with GRUs achieve the better F score (and the best
overall), it converged faster than the one using LSTM units. While the faster convergence time can
be attributed to the fact that GRUs have fewer gates, and hence fewer computations to generate
the output, the fact that the GRU exposes its full content without any control likely helped it
perform better overall, given that examples in the data set were long news stories, averaging 515
words across both classes. Further, the bidirectional RNN model equipped with LSTMs didn’t do
significantly better than the unidirectional network, reporting almost the same F} score.

The fact that an RNN architecture won out was a very interesting result in itself. It is worth
noting that some of the news articles in the dataset were thousands of words long, and RNNs, even
those equipped with LSTMs or GRUs, cannot retain memory for more than a hundred or so time
steps. The secret to the success of RNNs in this task may have to do with the fact that the network
employed a large internal state of size 100, often posing challenges in training and resource usage.
A smaller internal state didn’t perform as well.

Second, it was unsurprising to see the feedforward network perform well as a classifier. Its
success can be attributed to the fact that its input comprises the mean across the embeddings of
all the words in the example. As a consequence, the model takes into account contributions from
potentially salient words that identify the news story.

It was disappointing to see that the Convolutional network didn’t perform as well, given that
multiple n-grams were used as inputs to the model, and that a max pooling layer was incorporated.
The assumption was that the max pooled inputs would be a strong indicator to the classifier; but
apparently that signal isn’t adequate. Perhaps additional features would have helped. Further, en-
hancing the CNN with an attention-like device didn’t add much value (although this model achieved
the highest precision), but that’s also because only ten epochs of training could be completed within
the given time and resource constraints. It is also worth noting that the introduction of attention
vectors increases the number of parameters to learn, necessitating a larger training set, which was
fixed for all experiments conducted in the project to allow timely completion and fair comparison
of model performance.

The precision numbers are high for all models because the dataset is (deliberately) skewed,
with authentic news examples (i.e., negative examples) outnumbering the fake news examples by
4 to 1. Consequently, any model can deliver high accuracy simply by guessing every test example
as negative. However, only the feedforward network and the RNNs with complex activation units
achieved a recall greater than 0.7, indicating that the models were able to extract some subset of
relevant features to classify more of the positive examples correctly.



In a very high dimensional space, linear classifiers are generally able to take advantage of
the sparsity and find a hyperplane that separates the classes reasonably well. However, with dense
vectors like the GloVe embeddings used in all experiments for this project, it was apparent that
a nonlinear kernel is necessary for good results. The logistic regression model that serves as the
baseline is devoid of any nonlinearity, and therefore reports one of the lowest F; scores among the
bunch.

7 Future Directions

A complete, production-quality classifier will incorporate many different features beyond the
vectors corresponding to the words in the text. For fake news detection, we can add as features the
source of the news, including any associated URLs, the topic (e.g., science, politics, sports, etc.),
publishing medium (blog, print, social media), country or geographic region of origin, publication
year, as well as linguistic features not exploited in this exercise—use of capitalization, fraction of
words that are proper nouns (using gazetteers), and others.

I also believe that the idea of attention-enabled CNNs is a promising avenue worth exploring
further. Finally, more sophisticated models—for example, pointer and highway networks—
definitely merit investigation.

I plan to continue this effort after the class ends.
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