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Abstract

We adapt the hierarchical attention network for the task of genre classification
using lyrics. Utilising a large dataset of intact song lyrics we apply a recurrent
neural network model which tries to learn importance of words, lines and sections
in the genre classification task. This hierarchical structure attempts to replicate
the structure of lyrics and enable learning of which sections, lines or words play
importance in different genres. We explore the differences between taking layers at
the line level or at the section level. We test the model over a 117 genre dataset
and a smaller 20 genre dataset, classifying over a much higher number of genres
than previous research. Experiments show that the hierarchical attention network
outperforms basic non-neural models and in certain situations simple neural models,
although high classification accuracies still present a tough challenge. We visualise
the performance of the model by extracting from songs the lines and words it
applies most weight to in the classification task.

1 Introduction

Automatic classification of music is an important and well researched task in music information
retrieval (MIR) [McKinney and Breebaart, 2003]. Previous MIR work has primarily focused on
classifying mood [Logan et al., 2004, Hu and Downie, 2010], genre [Mayer et al., 2008], annotations
[Tingle et al., 2010, Nam et al., 2012], and artist [Knees et al., 2004]. Typically one or a combination
of audio, lyrical, symbolic, and cultural data is used in machine learning algorithms for this task
[McKay et al., 2010].

Genre classification by lyrics presents itself as a natural language processing (NLP) problem. In NLP
the aim is to assign meaning and labels to text; here this equates to a genre classification of the lyrical
text. Traditional approaches in text classification have utilised n-gram models and algorithms such as
Support Vector Machines (SVMs), k-Nearest Neighbour (k-NN), and Naïve Bayes (NB).

In recent years the use of deep learning methods such as recurrent neural networks (RNNs) or
convolutional neural networks (CNNs) has produced superior results and represent an exciting
breakthrough in NLP [Kalchbrenner et al., 2014, Kim, 2014]. Whilst linear and kernel models rely on
good hand selected features, deep learning architectures attempt to prevent this by letting the model
learn important features themselves. However, not much research has looked into the performance of
these deep learning methods with respect to the genre classification task on lyrics. Here, we attempt
to remedy this situation by extending the deep learning ideas on text classification to the particular
case of lyrics.

Hierarchical methods attempt to use some sort of structure on the data to improve the models and have
previously been utilised in vision classification tasks [Seo et al., 2016]. Yang et al. [2016] propose a
hierarchical attention network for the task of document classification. Since documents often contain



structure they introduce this knowledge to the model, resulting in superior classification results. By
applying successive attention layers the model attempts to learn which words and sentences play
the most important parts in the classification. It is evident that lyrics contain a very hierarchical
composition: words combine to form lines, lines combine to form sections, and sections combine to
form the whole song. Here, we propose application of this hierarchical attention network to lyrical
content.

The paper is structured as follows. Section 2 provides a review of other research in the area. In
Section 3 we described our methods, including the dataset and a description of the hierarchical
attention network. In Section 4 we provide results from our experiments: Section 4.1 details results
mimicking the paper of Yang et al. [2016], Section 4.2 provides results and visualisations from the
lyrics classification task. We conclude with a discussion in Section 5.

2 Background

Previous research has show that lyrical data performs the weakest in the genre classification task
compared to other forms of data [McKay et al., 2010]. As a consequence, this problem is not as well
researched and preference has been given to other methods. Previous non-neural lyrical classifiers
struggled to achieve a classification accuracy any higher than 50%.

SVMs, k-NN, and NB have been heavily used in previous lyrical classification research. In addition
no research has looked into classifying more than between 10 genres despite the prevalence of clearly
many more. Fell and Sporleder [2014] classify among 8 genres using n-grams along with other hand
selected features to help represent vocabulary, style, structure, and semantics. Ying et al. [2012]
make use of Part-of-Speech tags and classify among 10 genres using SVMs, k-NN, NB with a
highest accuracy of 39.94%. McKay et al. [2010] utilise hand selected features in lyrics to produce
classification accuracies of 69% amongst 5 genres and 43% amongst 10 genres.

Often the lyrical data is combined with other forms of data to produce superior classifiers. Mayer
et al. [2008] combine audio and lyrical data to produce a highest accuracy of 63.50% within 10 genres
via SVMs. Mayer and Rauber [2011] then use a cartesian ensemble of lyric and audio features to
gain a highest accuracy of 74.08% within 10 genres.

In recent years, MIR has seen the application of deep learning in several other situations [Scaringella
et al., 2006, Li et al., 2010]. In particular, neural methods have been utilised for the genre classification
task on other forms of data. Sigtia and Dixon [2014] used the hidden states of a neural network
as features for song on which a Random Forest classifier was built, reporting an accuracy of 83%
amongst 10 genres. Similarly, Li et al. [2010] use a CNN to learn features attaining an accuracy of
84% over 10 genres. Costa et al. [2017] compare the performance of CNNs in genre classification
through spectrograms with respect to results obtained through hand-selected features and SVMs. The
hierarchical nature of a song has also been previously exploited in genre classification tasks with Du
et al. [2016] utilising hierarchical analysis of spectrograms to help classify genre.

3 Methods

3.1 Dataset

The majority of research into this problem has suffered from copyright issues on lyrics, which have
forced previous literature to mostly use bag-of-words format lyrics. Often these bag-of-words are
supplemented with Part-of-Speech (POS) tags and other hand selected features. In this format you
lose the structure and it has been shown that utilising intact lyrics reveals superior results in these
classification tasks [Fell and Sporleder, 2014, Smith et al., 2012].

For their superior performance over bag-of-word format, an intact lyric corpus was obtained through a
research agreement with LyricFind1, as has been previously utilised in Ellis et al. [2015], and Atherton
and Kaneshiro. This contained a set of 1,039,151 song lyrics. The corpus provides basic metadata,
however no genre label. To add these labels we utilise the iTunes Search API2, extracting the value
for the primaryGenreName as our baseline truth. This unfortunately greatly reduces the size of the

1http://www.lyricfind.com
2http://apple.co/1qHOryr
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dataset due to the sparse iTunes database. We then further removed any songs that were linked with a
genre tag of ‘Music Video’. Some genres are very sparse in the dataset and for comparison we filter
via two methods. In the first we remove any genres with less than 50 instances giving a dataset of
size 495,188 lyrics consisting of 117 genres. In the second we only take the top 20 genres giving a
dataset of size 449,458. It must be noted that iTunes attribute genres by artist, not by track; this is
a known issue of the dataset for artists whose work may cover multiple genres. Additionally noted
is that the dataset originally contained various versions of the same lyrics, due to the prevalence of
cover songs; we only include one of these versions. The song lyrics are split into line and segments
and tokenised using the nltk package in Python. We split the dataset into a rough split of 80% for
training, 10% for validation, and 10% for testing.

3.2 Hierarchical Attention Networks

The structure of the model follows closely to that of Yang et al. [2016]. The HAN can be thought
of as applying the same layer model to each hierarchy in the model. Each layer is run through
a bidirectional GRU with attention applied to the output. The attention weights are then used to
create a weighted vector which is then passed as the input to the next layer. A representation of the
architecture for the example song of ‘Happy Birthday’ can be seen in Figure 1, where the layers are
applied at the word, line and song level. We briefly step through the various components of the model.

Happy      Birthday    to              you

}

Happy      Birthday    to              you

}

Happy      Birthday    dear          Lucy

}

Happy      Birthday    to              you

} }

Word Bidirectional GRU Word Attention

Line 
Bidirectional 

GRU

Line Attention

“Genre”
Softmax

Figure 1: Representation of the HAN architecture; coloured boxes represent vectors. Blue and
red vectors represent the hidden states for the forward and backward pass of the GRU at the word
level, respectively. The orange line vector is then obtained from these hidden states via the attention
mechanism. The green and purple vectors represent the forward and backward pass of the GRU at
the line level, respectively. The yellow song vector is then obtained from these hidden states via the
attention mechanism. Finally classification is performed via the softmax activation function.

3.2.1 Word Embeddings

An important idea in NLP is the use of dense vectors to represent words. To learn these word vectors
a variety of methods have been proposed. A successful methodology proposes that similar words
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have similar context and thus that these vectors should be learnt through their context, such as in the
word2vec model from Mikolov et al. [2013]. Pennington et al. [2014] propose the GloVe method
which combines global matrix factorisation and local context window methods to produce word
vectors that outperformed previous word2vec and SVM based models.

We take as our vocabulary the top 30,000 words from the whole LyricFind corpus, including those
we did not match with a genre. We train 100 dimensional GloVe word embeddings for these words
using methods obtained from the GloVe website3. Previous research has shown that retraining these
word vectors over the extrinsic task at hand can improve results if the dataset is large enough. In our
experiments it was shown that retraining these word embeddings did improve results, and so we let
our model learn superior embeddings to those provided by GloVe. For a full description of the GloVe
method see Pennington et al. [2014].

3.2.2 Gated Recurrent Units

Introduced by Chung et al. [2014], Gated Recurrent Units (GRU) are a form of gating mechanism in
RNNs designed to help overcome the struggle to capture long-term dependencies in RNNs. This is
achieved by the introduction of intermediate states between the hidden states in the RNN. An update
gate zt is introduced to help determine how important the previous hidden state is to the next hidden
state. A reset gate rt is introduced to help determine how important the previous hidden state is in the
creation of the next memory. Mathematically we describe the process as

zt = σ (Wzxt + Uzht−1 + bz) (1)
rt = σ (Wrxt + Urht−1 + br) (2)

h̃t = tanh (Whxt + rt ◦ Uhht−1 + bh) (3)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t, (4)

where xt is the word vector input at time-step t, σ is the sigmoid activation function and ◦ is the
Hadamard product. Wz , Uz , Wr, Ur, Wh, and Uh are weight matrices randomly initialised and to be
learned by the model along with the bz , br, and bh bias terms.

3.2.3 Hierarchical Attention

Attention was first proposed by Bahdanau et al. [2014] with respect to neural machine translation
to allow the model to learn which words were more important in the translation objective. With
regards to this paper, we would like our model to learn which words are important in classifying
genre and then apply more weight to these words. Similarly, we can apply attention again on lines or
song segments to let the model learn which lines or segments are more important in classification. A
segment of a song is a verse, chorus or bridge of a song and typically consists of several lines. We
explore the differences between applying attention at the line of segment level, as well as at the word
level.

Given input vectors hi for i = 1, . . . , n the attention mechanism can be formulated as

ui = tanh (Wahi + ba) (5)

αi =
exp(uTi ua)∑n
i=1 exp(u

T
i ua)

(6)

s =

n∑
i=1

αihi, (7)

where s is the output vector passed to the next layer consisting of the weighted sum of the current
layers vectors. Parameters Wa, ba, and ua are learnt by the model after random initialisation. We
note that the vector ua computes relevance of the hidden representation of hi through the cosine
similarity operation.

One layer of the network takes in vectors x1, . . . , xn, applies a bidirectional GRU to find hidden
states and then uses attention mechanism to form a weighted sum of these hidden states to output as

3http://nlp.stanford.edu/projects/glove/
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the representation. Letting GRU indicate the output of a GRU and ATT represent the output from
an attention mechanism one layer is mathematically formulated as

−→
h i =

−−−→
GRU(xi), (8)

←−
h i =

←−−−
GRU(xi), (9)

hi = [
−→
h i;
←−
h i], (10)

s = ATT (h1, . . . , hL). (11)

Our HAN consists of two layers, one at the word level and one at the line/segment level. Consider
a song of M lines or segments sj , each consisting of nj words wij . Let L be the pre-trained word
embedding matrix. LettingLAY represent the dimension reduction operation of a layer in the network
as in Equations 8 - 11 the whole HAN can be formulated for i = 1, . . . , nj and j = 1, . . . ,M as

xij = Lwij (12)
sj = LAY (x1j , . . . , xnjj), (13)

s = LAY (s1, . . . , sM ). (14)

Each layer has its own set of GRU weight matrix and bias terms to learn as well as its own attention
weight matrix, bias terms and relevance vector to learn.

3.2.4 Classification

With the song vector s now obtained, classification is performed by using a final softmax layer

p = softmax (Wps+ bp) , (15)

where intuitively we take the index of the largest value as the prediction for that song.

To train the model we use cross-entropy loss over K songs

J = −
K∑

k=1

log(pdkk), (16)

where dk is the true genre label for that song.

3.2.5 Dropout

Proposed by Srivastava et al. [2014], dropout is a regularisation technique to prevent networks from
overfitting. During training units in the network are randomly dropped with probability p giving the
effect of training several different networks at the same time and forming an ensemble of them in
classification. Not originally included in HAN we introduce dropout into the HAN at the hidden layer
of each hierarchical layer in the network. Namely, we drop the output of the bidirectional GRU with
probability p at each layer before continuing with attention. At testing time dropout is not included in
the model.

4 Experiments

4.1 Yelp Review Classification

As an initial step we first look to mimic the classifier constructed in Yang et al. [2016]. The aim here
is not to exactly recreate the results of the paper, but rather achieve a similar result using a classifier
of the same structure, indicating we have built a good comparable model. We will then be able to
carry this model over to the lyrics case and perform our optimisations for the set of lyrical data.

In the original paper, the authors introduce the HAN and utilise it for document classification. They
perform experiments on well-known public datasets from the Yelp Dataset Challenge, IMDB reviews,
Yahoo answers, and Amazon reviews. As a first objective we try to emulate the results obtained from
the Yelp 2013 data in this paper, which involves classifying Yelp reviews as 1-5 stars. We obtain
Yelp Reviews from the Yelp Dataset Challenge4. Unfortunately the archived data from 2013 is not

4https://www.yelp.com/dataset_challenge
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Table 1: Yelp Review Classification
Paper # Reviews Vocabulary Accuracy (%)

Tang et al. [2015] 335,018 211,245 65.1
Yang et al. [2016] 335,018 211,245 68.2
This paper 400,000 30,000 68.0

available and so instead we take a subsample of 400,000 reviews from the current datasets, which
is of similar size to that of the Yelp 2013 dataset. As such exact replication of results may not be
possible since the datasets used contain different reviews, however similar results should be achieved.

The structure of the HAN is exactly of that described in Section 3.2 however we have slight differences
to the original model which we will now highlight, implemented for computational speed purposes.
Each review is divided into sentences and tokenized using nltk5 in Python. In the original model
the tokenizing was done via Stanford’s CoreNLP [Manning et al., 2014]. We retain the top 30,000
words as our vocabulary compared to the paper which keeps every word that appears at least 5 times.
As described above, word embeddings are obtained via GloVe and are 100 dimensional compared
the original model’s use of word2vec and 200 dimensional vectors. Each direction of the GRU has a
dimension of 50 and context vectors have a dimension of 100, both as in the original paper. Dropout
is not included in the original model, however we introduce a dropout layer after each of the GRU
layers with a dropout probability of 0.5. We utilise a mini-batch size of 64 as in the original paper
but optimise using RMSprop rather than just stochastic gradient descent with momentum. We use a
learning rate of 0.1, clip gradients at 1, and let the model run for 10 epochs. The results compared
with that of the original paper can be seen in Table 1. Included for comparison is the best baseline
model from the original paper, namely the LSTM-GRNN model from Tang et al. [2015].

From Table 1 we can see that despite the reduced vocabulary size and reduced embedding dimension
near identical results have been produced that are much better than those produced by the best baseline
model. Further, this accuracy was produced with minimal parameter tuning and it is hypothesised that
superior accuracy would have been produced had more tuning taken place. Confident with the success
of the starting model from this initial test we now continue on to the music genre classification task,
where we will optimise further than has been done here.

4.2 Lyrical Genre Classification

4.2.1 Baseline Models

We compare the performance of the HAN against various baseline models.

1. (MC) ‘Rock’ is the most common genre in our dataset. The majority classifier simply
predicts ‘Rock’ for every song.

2. (LR) A logistic regression run on the average song word vector produced from the GloVe
word embeddings.

3. (LSTM) A Long Short-Term Memory where we treat the whole song as a single sequence
of words and use max-pooling of the hidden states for classification. 50 hidden states were
used in the LSTM and each song had a maximum of 600 words. For full discussion of the
LSTM framework see Hochreiter and Schmidhuber [1997].

4. (HN) The hierarchical network structure in the absence of attention run at the line level.
Instead at each layer all of the representations are averaged to produce the next layer input.
This is equivalent to applying equal attention to each vector in that layer.

For LR, LSTM and HN we let the model retrain the word embeddings as it trains.

4.2.2 Model Configuration

Before testing the model, hyperparameters are tuned on the development set. We dropout with
probability p = 0.5 and gradients are clipped at a maximum norm of 1. We utilise a mini-batch size

5http://www.nltk.org/

6



Table 2: Genre Classification Test Accuracies via Lyrics (%)
Model 117 Genre Dataset 20 Genre Dataset

Majority Classifier 24.71 27.17
Logistic Regression 35.21 38.13
LSTM 43.66 49.77
HN 45.85 49.09
HAN-L 46.42 49.50
HAN-S 45.05 47.60

of 64 and optimise using RMSprop with a learning rate of 0.01 [Tieleman and Hinton, 2012]. In each
case 10 epochs were enough for the validation loss to stop decreasing. The baselines were run until
their validation loss did not decrease for 3 successive epochs.

We test the models on the two different subsamples of the dataset and investigate the difference
between applying the first layer at the line or section level. The models are padded/truncated to have
uniform length. In the line model, each line has a maximum of 10 words and a maximum of 60 lines.
In the section model each section has a maximum of 60 words and a maximum of 10 sections.

4.2.3 Results

For both dataset sizes we run the baseline models and the HAN ran at the section and line levels. Let
HAN-L represent running over lines and HAN-S represent running over sections. The test accuracies
are seen in Table 2.

From the results we see a trend between model complexity and classification accuracy. The very
simple majority classifier performs weakest and is improved upon by the simple logistic regression
on average bag-of-words. The neural based models perform stronger than both of the simple models.
The LSTM model, which takes into account word order and tries to implement a memory of these
words, gives performances of 43.66% and 49.77%, outperforming the HAN on the 20 genre dataset.
Over the 117 genre dataset the best performing models were the HANs, with a highest accuracy of
46.42% when run over lines. It is observed that for the simpler 20 genre case, the more complex
HAN is not required since the simpler LSTM beats it, although the LSTM took almost twice as long
to train as the HAN. However for the tougher 117 genre case the HAN-L outperforms the LSTM,
perhaps picking up on more of the intricacies of rarer genres.

In both cases the HAN ran at the line level produced superior results than ran over the section level
giving a bump of roughly 1.4% and 1.9% in the 117 genre and 20 genre dataset, respectively. The
HN, which is ran at the line level, additionally outperforms the HAN at section level. This indicates
that the model performs better when looking at songs line by line rather than section by section. In
the HAN-L the model can pick up on many repeated lines or lines of a similar ilk, rather than the
few similar sections it attains in the HAN-S, and this may be attributive to the better performance.
The network does benefit from the inclusion of attention, with the HAN-L classifying with higher
accuracies than the HN.

As expected, classifying over the 20 genre dataset has given boosts of roughly 3% and 2.5% in the
HAN-L and HAN-S, respectively. It is interesting to note that discarding roughly 10% of the data by
only keeping roughly a sixth of the genres has not strengthened the model by much. The increase
in accuracies is most likely mainly down to the removing of instances of incorrect classifications
between rarer genres.

In each of the HAN models the validation loss stopped decreasing between the 5th and 8th epoch.
The training and validation accuracies across the epochs for each of these models can be seen in
Figure 2. The HAN-L continues to learn for longer than the HAN-S. This can be seen by the upward
smile shape occurring in both of the HAN-S loss plots compared to the HAN-L. In each of the cases,
whilst the training loss catapults downwards, the validation loss does not decrease greatly with no
model managed to decrease the validation loss by more 1.0. For the 20 genre case the loss is, as
expected, much lower than in the 117 genre case. We expect this, since classifying between many
less choices becomes naturally an easier task.
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Figure 2: Learning rates of the HAN during training.

Table 3: HAN-L Confusion matrix for top 5 genres over 117 genre dataset. Rows represent true
genre, whilst columns are predicted.

Rock Pop Alternative Country Hip-Hop/Rap
Rock 6879 1198 2460 561 91
Pop 1892 2620 738 324 157
Alternative 2385 534 2866 150 67
Country 534 304 90 2199 4
Hip-Hop/Rap 71 97 63 11 2629

The confusion matrix for HAN-L run over the larger dataset for the top 5 genres can be seen in Table
3. We can see from the matrix that Rock, Pop and Alternative are all commonly confused; the model
predicts Rock for Alternative almost as many times as it does Alternative. As the most common
genre in the dataset by about 30,000 it is unsurprising to see the model try and predict Rock more
often, and it is unclear whether a person would be able to distinguish between the lyrics of these
genres. However, we see that both Country and Hip-Hop/Rap are more separated. With their distinct
lyrical qualities, especially in the case of Hip-Hop/Rap, this is an encouraging result indicating that
the model has learnt some of the qualities of both these genres.

4.2.4 Attention Visualisation

To help illustrate the attention mechanism, we feed song lyrics into the HAN-L and observe the
weights it applies to words and lines. For each song we extract the 5 most heavily weighted lines and
a visualisation of their weights and the individual word weights for a few different correctly predicted
song lyrics can be seen in Figure 3. We warn that offensive language is present in these lyrics.

From these visualisations we notice that the model has placed greater weights on words we may
associate with a certain genre. For example ‘baby’, and ‘ai’, are weighted heavily in the Country song
and the most heavily weighted line in that song has a very strong Country feel. The model has placed
great weight on a blank line, indicating the break between sections; it is unclear whether the model is
learning to place importance on how songs are sectioned and the number of sections occurring. In
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the Hip-Hop/Rap song the model places attention on swearwords used in the piece, as well as the
incorrectly spelled ‘dyin’ and ‘hurtin’. The model picks up the ‘woh’ and ‘oo’ in the Rock song and
also heavily weights occurrences of second person determiner ‘your’ and pronoun and ‘you’. It was
found that for many Rock songs this was the case.

In addition some visualisations of lyrics that were incorrectly classified by the HAN-L can be seen in
Figure 4. We observe the model predicting Country for a Pop song, applying weights to ‘sin’ and
‘strong’ which could be characteristic of Country songs. The dataset contains songs with foreign
language lyrics, and it is unclear whether the iTunes genre association is truly correct. Here we
observe a song with Spanish lyrics classed as Pop Latino by the model whilst iTunes deems it Pop.
This seems like a fair mistake for the model to have made since it has evidently recognised the
Spanish language. The model also incorrectly classifies the Hip-Hop/Rap song as Pop. In the 5 most
heavily weighted lines we do not spot any instances of language that indicate a Hip-Hop/Rap song
and we hypothesise the genericness of the lyrics has led the model to predict Pop.

5 Discussion

In this paper we have shown that a HAN and other neural-based methods can improve on the genre
classification accuracy. We have shown by classifying over a large dataset of nearly half a million
song lyrics we have been able to outperform other basic methods. In large this model has beaten all
of the previously reported lyrical only genre classification model accuracies from Section 2, except
for the classification amongst 5 genres. We have shown that the HAN works better with layers at the
word, line and song level rather than word, section and song level.

Visualisations of the weights the HAN applies to words and lines were produced to help see what the
model was learning. In a good amount of cases words and lines were heavily weighted that were
cohesive with the song genre, however this was not always the case. We note that in general the
model tended to let one word dominate a single line with the greatest weight. However this was not
as apparent across lines, with weights amongst lines much more evenly spread. With a large amount
of foreign language lyrics also present in the dataset an idea for further research would be to build a
classifier that identified language, and from there classified by genre. Any such research would be
inhibited, however, by the lack of such a rich dataset to train on.

From one standpoint, classification by lyrics will always be inherently flawed by vague genre
boundaries with many genres borrowing lyrics and styles from one another. For example one merely
need consider cover songs which utilise the same lyrics but produce songs in vastly different genres,
or songs which have no lyrical content. To produce a state of the art classifier is is evident that this
classifier must take into account more than just the lyrical content of the song. Audio data typically
performs the strongest and further research could look into employing this hierarchical attention
model to the audio and symbolic data and combining with the lyrics to build a stronger classifier.
Lyrics typically perform stronger on the sentiment analysis classification task and further research
could employ the HAN to this problem. In addition the HAN could be extended to include both a
layer at the line and section level, or even at the character level to explore performance.
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Searchin ' shit , will have a nigga hurtin sick
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Figure 3: Weights applied by the HAN-L for song lyrics that were correctly classified. Line weights
appear to the left of each line and word weights are coloured according to the respective colorbars on
the right.
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Figure 4: Weights applied by the HAN-L for song lyrics that were incorrectly classified. Line weights
appear to the left of each line and word weights are coloured according to the respective colorbars on
the right.
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