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Abstract

We approach the task of named entity recognition (NER) for Chinese by repre-
senting each entity with a composition of its traits: the token-entity, its characters,
and its characters’ main radicals. Character and radical-level information for each
entity are included to provide additional relationships that might not be strictly
captured within a token-entity’s word embedding during training. We learn using
neural networks that are some combination of the following traits: unidirectional
or bidirectional; single or multi-layer; simple, gated recurrent unit (GRU), or long
short term memory (LSTM) celled. We achieve a maximum not-O token-level F1
score of 76 and entity-level F1 of 70.

1 Introduction

NER is a task in Natural Language Processing (NLP) that is concerned with taking an input sentence
and identifying entities in the text which fall into categories such as PERSON, ORGANIZATION,
and LOCATION. Most NER efforts have been focused on classifying entities in English sentences,
while other languages have had less focus. This paper seeks to further explore NER for the Chinese
written language.

There are key differences between the Chinese and English languages. Chinese entities are com-
posed of 50,000 characters, unlike English entities which are composed of 26 letters. Each Chinese
character holds intrinsic meaning, but also embodies and contributes to a wide variety of meanings
depending on which entity it is part of and its surrounding context. This differs from English, as the
letter ”c” by itself holds no intrinsic meaning. Additionally, obvious English features used in NER
such as word capitalization do not exist in Chinese. The Chinese written language also does not
contain spaces between entities, so word segmentation is an additional challenge. Thus, imperfect
segmentation techniques must be performed on datasets before NER-work, adding another layer of
difficulty.

An additional feature we have decided to include that is specific to the Chinese language is each
character’s main radical. A radical is a sub-part of a character. There are 214 radicals, which were
identified historically by the Qing Emperor Kangxi; today, radicals are used as the basis for Chinese
dictionary indexing. Radicals help to convey additional meaning behind each character. Take for
example, the characters食 (food),餓 (hungry),飯 (rice), and餐 (meal). All of these characters have
the main radical食 and are related to food. We establish and feed to our neural network additional
relational information through radical embeddings we train using a skip-gram word2vec model.

2 Related Work

Chinese NLP is a field that has produced a fair amount of mixed results. Peng and Dredze (2015)
from Johns Hopkins University worked with Chinese NER on a dataset of Weibo messages [1], one
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of the first groups to apply Chinese NER to less formal domains. The group produces F1 scores
consistently below 48.90 using word and character embeddings trained with word2vec with skip-
gram and negative sampling. This is in stark contrast to English NER, which generally produces F1
scores between 80 and 95 [2].

From a morphological perspective, radicals have been previously used in NLP tasks. Fandrianto,
Natarajan, and Zhu (2012) from Stanford University applied Chinese radicals to the tasks of lan-
guage modeling, part-of-speech tagging, and word segmentation [3]. They noted no significant
improvements from the inclusion of radicals, but did note that in specific niche cases such as out-
of-vocab words, the radicals were useful. While this paper did not employ deep learning and was
not focused on NER, it explores the inclusion of sub-components of the Chinese language for NLP
tasks.

Chinese NER has also experienced exciting improvements in the last few years. A successful bilin-
gual approach was implemented by Wang, Che, and Manning (2013) from Stanford University,
showing vast improvement in the Chinese NER task by using a semi-supervised learning model on
unannotated bilingual text and achieving a maximum F1 score of 74.32 [4]. Additionally, Wu, Jiang,
Lei, and Xu (2015) from the University of Texas Health Science Center explored the use of a deep
neural network applied on a singular domain, Chinese clinical text, and were able to achieve a F1
of 92.80 [5]. We aim to generalize even further in comparison to their approach, using data from
multiple domains and source types and not restricting ourselves to just clinical text.

3 Approach

3.1 Data

3.1.1 Chinese Corpus

We use the OntoNote (v5.0) corpus [6], a dataset put together collaboratively by BBN Technologies,
the University of Colorado, the University of Pennsylvania, and the Information Sciences Institute.
The dataset draws from a wide range of text sources, including news, telephone conversations, web-
sites, talk shows, broadcast television, and more.

In addition to structural and semantic information, the data also contains manually annotated Named
Entity tags for nineteen types such as: PERSON, FACILITY, ORGANIZATION, LOCATION,
PRODUCT, EVENT, WORK OF ART, etc. The tag ”O” is used to denote the lack of an entity.
Because many of these tags are in similar categories or rarely appear in the dataset, we reduce the
number of Named Entity tags in our model from nineteen to five for our purposes. Considering only
a few major categories during NER is precendented in many of the papers mentioned above. The
five categories we used and the subcategories from the original dataset are shown below:

Table 1. Reduced labels and corresponding corpus labels

Category Tags from original dataset

LOC LOC, GPE

ORG ORG, NORP

PERSON PERSON

QUANT MONEY, QUANTITY, ORDINAL, CARDINAL, DATE, TIME, PERCENT

O O, FAC, PRODUCT, EVENT, WORK OF ART, LAW, LANGUAGE

2



3.1.2 Radicals

We use the Unihan Database [7] to obtain the main radical for each Chinese character. We spec-
ify ”main” here, as most Chinese characters contain multiple radicals. The database also contains
information on remaining stroke count, which we have chosen not to include in our training as we
thought it would be less correlated to character meaning.

As an example of data from the Unihan database, below are all the characters with the main radical
日, meaning day. The bolded numbers indicate remaining stroke count in the character after the
main radical is discounted.

Image 1. Chinese characters with the main radical日

For our purposes, we train radical embeddings for all 214 radicals on the OntoNote corpus using a
word2vec model with skip-gram and cross-entropy loss.

3.1.3 Word Embeddings

Facebook recently published pre-trained word embeddings for 90 languages including Chinese,
trained using a skip-gram model described in Bojanowski (2016) [8]. These vectors are of dimen-
sion 300 and correspond to entities rather than individual characters. We use both these pre-trained
word embeddings as well as randomly initialized embeddings in our work. From the OntoNote cor-
pus, around 76.8% of our tokens have corresponding Facebook embeddings, whereas the remainder
do not and are randomly initialized during training.

3.2 Input Features

We use several combinations of features when feeding our input into the model, composed of token,
character, and main radical-level embeddings:
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Table 2. Feature sets

Category Features (n)

token token (1)

char character (1)

token-char token, first character of token (2)

char-rad character, main radical of character (2)

token-char-char token, first, second characters of token (3)

token-char-rad token, first character of token, main radical of first character (3)

For example, given the token 冰淇淋, the following describes a singular input to the model given
the feature set type:

token: [冰淇淋]
char: [冰]
token-char: [冰淇淋 ,冰]
char-rad: [冰 ,水]
token-char-char: [冰淇淋 ,冰 ,淇]
token-char-rad: [冰淇淋 ,冰 ,水]

For the feature set types char and char-rad, every character is inputed and later labeled as a separate
entity. Thus for feature set char-rad,冰淇淋 is fed to the model as three inputs: [冰,水], [淇,水],
[淋,水].

3.3 Models

3.3.1 Baseline

We implemented a baseline that parses the training data, records the entity tags for each character,
and then naively labels a test token using the most frequently encountered entity tag for all characters
in the token. We default to labeling as ’O’ if the test token did not show up in training. An example
of a character and its encountered entities:

民: {
ORG: 1,
PERSON: 4,
WORK OF ART: 1
}

3.3.2 Neural Network

For parameters for all neural networks, we have chosen to set them as detailed:

Table 3. Neural network parameters

dropout 0.5
learning rate 0.005
embed size 150
hidden size 300
window size 2
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Adjustments to the above parameters were applied to learning rate and window size with no dif-
ference observed in the resulting F1 score. The remaining parameters were chosen to maintain
computational feasibility without sacrificing significant performance.

3.3.3 Unidirectional Recurrent Neural Network

e(t) = x(t)L

h(t) = σ(h(t−1)Wh + e(t)Wx + b1)

ŷ(t) = softmax(h(t)U + b2)

We use an unidirectional recurrent neural network (RNN) and initialized our weights and biases
using the Xavier optimization function.

3.3.4 Unidirectional RNN with GRU

z(t) = σ(x(t)Uz + h(t−1)Wz + bz)

r(t) = σ(x(t)Ur + h(t−1)Wr + br)

h̃(t) = tanh(x(t)Uh + r(t) ◦ h(t−1)Wh + bh)

h(t) = z(t) ◦ h(t−1) + (1− z(t)) ◦ h̃(t)

We use an unidirectional RNN with GRU cells, which are better at capturing long-term dependencies
due to the fact that GRU cells have update and reset gates.

3.3.5 Unidirectional RNN with LSTM

it = σ(W (i)xt + U (i)ht−1)

ft = σ(W (f)xt + U (f)ht−1)

ot = σ(W (o)xt + U (o)ht−1)

c̃t = tanh(W (c)xt + U (c)ht−1)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

We use an unidirectional RNN with LSTM cells, which are similarly motivated in comparison to
GRU cells, but contain more gates: new memory generation, input, forget, final memory generation,
and output/exposure gates.

3.3.6 Bidirectional, Multi-Layer RNN

We use bidirectional RNNs with simple, GRU, and LSTM cells to make predictions based on tokens
both before and after our current token. This enables us to capture even more complex relationships
existing in our corpus.

3.4 Evaluation

We split the OntoNote dataset into 80/10/10 portions for train, dev, and test, respectively. We then
output label predictions per token, compare them to the golden labels, and calculate the F1 score.
Since we break down our entities into small components during learning, we thought it prudent to
examine not only the entity-level precision, recall, and F1 scores, but also the token-level precision,
recall, and F1 scores pertaining to the not-O labels, ie. PERSON, ORG, LOC, and QUANT.

The F1 score is defined as follows:

F1 = 2 · precision · recall
precision + recall

where precision denotes the ratio of correct labels to total number of labels our model predicted and
recall denotes the ratio of correct labels to total number of actual labels in the golden set.
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4 Experiments

4.1 Data

Our baseline model yielded a token-level F1 score of 34. We began by testing the 6 different input
feature sets on a unidirectional RNN using a simple RNN and the neural network parameters in
Table 3. Below are the resulting F1 scores.

Table 4. Unidirectional RNNs with randomly initialized word/radical embeddings

Features PERSON ORG LOC QUANT Not-O Entity

char 74 54 68 81 71 55

char-rad 74 47 67 81 69 55

token 63 54 68 79 69 61

token-char 69 59 74 81 73 66

token-char-rad 75 56 70 82 73 67

token-char-char 77 58 73 81 74 68

To compare the effectiveness of the Facebook pretrained word embeddings and our word2vec-
trained radical embeddings, we have the following runs, named in the form

{word embedding}-{radical embedding}

where ’r’ indicates randomly initialized whereas ’p’ indicates the use of pretrained embeddings.

Table 5. Unidirectional RNNs with pre-trained word and/or radical embeddings

Features Embed PERSON ORG LOC QUANT Not-O Entity

token-char-char p-r 80 61 75 81 76 70

char-rad r-p 76 56 68 80 71 55

token-char-rad r-p 70 60 74 81 74 65

We ran the most promising configurations above with GRU and LSTM RNNs using Facebook’s
word embeddings and randomly initialized radical embeddings.

Table 6. Unidirectional GRU, LSTM RNNs with pretrained word embeddings

Cell Features PERSON ORG LOC QUANT Not-O Entity

GRU token-char-char 79 61 74 81 75 70

GRU token-char-rad 76 52 70 80 71 64

LSTM token-char-char 81 58 73 82 76 70

LSTM token-char-rad 77 59 72 82 74 68

Lastly, we selected the two highest-performing configurations from above to run on bidirectional,
single and multi-layer LSTM RNNs, all using Facebook’s word embeddings.
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Table 7. Bidirectional single, multi-layer LSTM RNNs with pretrained word embeddings

Features Layers PERSON ORG LOC QUANT Not-O Entity

token-char-char 1 78 62 74 81 75 69

token-char-char 3 76 60 72 82 75 69

token-char-rad 1 75 59 68 81 73 67

token-char-rad 3 75 59 74 81 74 68

4.2 Analysis

4.2.1 Unidirectional RNNs

In Table 4, we first compare the performance of character-level and token-level features. At first
glance, ”token” outperforms ”char” in entity-level F1 with scores of 61% to 55%, respectively. How-
ever, ”char” achieves an 11% increase in PERSON F1 which contributes to a 2% increase in not-O
F1 compared to ”token.” We conjecture that character-level features are especially helpful in iden-
tifying names, since full names are unlikely to appear in training data unless the person is famous.
Because there is a small subset of Chinese characters used as common last names, character-level
features have much more predictive power than token-level features. With this in mind, combining
character-level features with token-level features in ”token-char” and ”token-char-char” significantly
improves performance, bringing entity-level F1 up to 68% and achieving significant improvements
in all F1 categories. Lastly, ”token-char-char” is the highest performing model in our comparison
thus far, which shows that character-level information, when combined with the token as a whole, is
extremely predictive in labeling.

To assess radical-level features, we compare ”token-char” and ”token-char-rad” and see that radicals
as a feature do not clearly improve performance. An exception occurs for the PERSON F1 score,
which sees a 6% increase with radicals. This suggests that certain radicals are highly indicative of
Chinese names.

Comparing Facebook’s pretrained word embeddings with randomly initialized embeddings in Ta-
ble 5, we observe that pretrained word embeddings improved F1 scores in almost every category
for ”token-char-char”; most notably, not-O token-level and entity-level F1 scores both jumped 2%
with the use of pretrained embeddings. Next, comparing our pretrained radical embeddings with
randomly initialized embeddings, we see that pretrained embeddings improved F1 scores for ”char-
rad,” with a 9% increase in ORG F1. This suggests a complex relationship between a radical and its
usage in an ORG entity that cannot be adequately captured with randomly initialized embeddings.
However, pretrained radical embeddings had little impact on ”token-char-rad” F1 scores, improving
ORG and not-O level scores but worsening PERSON and entity-level scores.

4.2.2 Unidirectional GRU, LSTM RNNs

Overall, using GRU and LSTM cells instead of simple cells did not improve the model. They
decreased or matched performance in every category when compared to RNNs with simple cells with
the exception of the PERSON F1 score in ”token-char-rad.” In this special case, GRUs improved
the F1 score from 70% to 76% and LSTMs to 77%. This suggests that GRUs and LSTMs are more
capable of capturing context from previous tokens in the sentence when predicting a PERSON label.
They are also superior at discerning whether or not an encountered common family name is being
used in a PERSON or not-PERSON context. Because LSTM cells at least matched performance of
RNN cells in every category, we proceeded with LSTM cells for later experiments.

4.2.3 Bidirectional RNNs

Using bidirectional LSTM RNNs either decreased or matched performance in most categories com-
pared to unidirectional LSTM RNNs. Of note is the ORG category in ”token-char-char,” which
increased from 58% to 62%/60% for bidirectional single/multilayer neural nets, respectively. This
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suggests that predicting organization labels is significantly aided by context from tokens occurring
after the ORG entity.

The positive benefit of the triple-layered neural net is seen when comparing within the ”token-char-
rad” feature set runs. The LOC category F1 score increased from 68% to 74% when the number of
layers was increased from 1 to 3. This suggests that the added complexity when predicting location
entities is extremely helpful.

Otherwise, no drastic improvement is seen in the bidirectional runs in comparison to unidirectional
ones, possibly due to overfitting. It might also be true that Chinese entities are not as affected by
proceeding tokens, and thus, using the bidirectional net harmed rather than helped our predictive
ability.

5 Conclusions

Overall, we see that ”token-char-char” is the best performing model. In particular, the unidirectional
RNN using pretrained Facebook word embeddings achieved the highest not-O F1 score of 76% and
entity-level F1 score of 70%. The inclusion of characters in the feature set helped tremendously
overall while the inclusion of radicals helped specific entity types (ie. PERSON) but not the overall
score.

For future work, we will investigate using all of the token’s characters when constructing features,
as well as train the bidirectional LSTM on more epochs to ensure convergence. Further fine-tuning
of parameters such as learning rate and step size could also improve results.
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