#SQuADGoals:
A Comparative Analysis of Models for Closed
Domain Question Answering

Andrew Duffy Daniel Shiferaw Eric Musyoka

Abstract

The task of machine comprehension has long been one of the greatest unsolved
tasks in natural language processing. Thanks to a proliferation of datasets, nu-
merous deep neural architectures have been created. We implemented two such
architectures: the Match-LSTM with Answer Pointer[1] and a flavor of Dynamic
Coattention Networks[2]]. Our end-to-end models are able to exceed an existing
logistic regression baseline with millions of derived features without having to
perform any feature extraction, demonstrating the neural architectures are well
poised to be the dominant model for conquering QA.

1 Introduction

The task of question answering is one of the greatest unsolved problems in the field of NLP. We are
still a long way off from building systems that can truly understand and answer questions in an open
domain, but Weston et al. propose a set of prerequisite tasks that researchers can focus on first[3].
The hope is that creating models for these constituent tasks will eventually allow us to compose
models and create more advanced systems.

The main subtask the field is currently concerned with is machine comprehension. The formula-
tion of the task is quite simple: given a reading passage, evaluate how much the model is able to
learn. The way we measure machine comprehension of text will be familiar to anyone who has gone
through elementary education: we ask the model questions about the text. If the model answers cor-
rectly, we determine that it has learned and reasoned effectively given the question about the context
text. This specification allows us to cast the comprehension problem as a supervised classification
problem, for which we already have many models. In general, reading comprehension not only
requires the ability to reason effectively to answer questions about text but also pool from outside
knowledge of the world, which is a challenging and involved enough task in its own right. To focus
evaluation of models on the reasoning side and avoid a substantial focus on whatever information
retrieval/extraction techniques necessary to solve general reading comprehension, closed question
answering developed, which is effectively reading comprehension in which the information needed
to answer the question is contained with the context test. Existing models that attain decent per-
formance on machine comprehension have in the hundreds of millions of parameters[4], while still
performing far below human level performance on the task. There is clear room for improvement
on this front both in terms of performance and model efficiency. We reviewed the recent literature
and found a pair of deep learning models that achieved decent performance on this task. While we
do not achieve the same results as the original authors, we try numerous different variations on the
models and are able to exceed the logistic regression baseline with less than 3% of the parameters
of traditional models using end-to-end deep learning techniques.

1.1 Datasets

The formulation of the task is simple enough, but access to strong datasets has proven to be a bot-
tleneck up until recently. Facebook Artificial Intelligence Research released the open source bAbl
dataset[3]], while Google DeepMind released the CNN/Daily Mail dataset[S]. Both datasets have
been very helpful in taking steps forward, but there are a variety of drawbacks to each. The babl
dataset provides text-based simulation data to target twenty question answering tasks. However, the
simulated nature of the data limits the context text it can present and thus does not generalize well
to context texts for reading comprehension. The CNN/Daily Mail dataset loosely leveraged com-
putational abstractive summarization techniques to automatically convert online CNN and Daily
Mail articles and their matching summaries to document-query-answer triples. While Google Deep-
Mind provided one of the first large-scale supervised reading comprehension datasets, the automatic
query generation process inherently limited the nature of the questions posed, as they could not
be reflective of the wide variety of questions and the associated reasoning techniques needed for
closed question answering in general. Thus existing machine comprehension models working on
these datasets tend to actually learn very little about the passages[6]. Below, we discuss the recently
introduced SQuAD dataset in depth.

1.2 The Question Answering Task and SQuAD

The SQuAD dataset[4] was released by Rajpurkar et al. in 2016 to fill the void for high quality QA
datasets. It asks questions based off of paragraphs in Wikipedia text, where all answers are spans
of the passage, i.e. some contiguous run of tokens from the original text. All models are trained on
(¢, p, a) triplets, where given the provided question and passage, the answer span can be extracted
from the passage.

SQuAD is run like a contest reminiscent of the Netflix Prize: researchers are ranked on a pub-
lic leaderboard, a training and development set are provided and then all submissions are scored
against an internal hidden test set by the SQuAD authors. We decide to try and implement some
of the modest models from the leaderboard, Match-LSTM with Answer Pointer as well as Dy-
namic Coattention Networks. These two are good choices for re-implementation because they
both topped the leaderboard when first submitted, and the teams behind both have published de-
tailed research on their model architectures.

Our main contribution is faithful implementations of these two models modulo a set of extensions.
Both models achieve decent performance on the development set. Section 2 goes into detail on
the models and their version, Section 3 gives details on our experiment setup, Section 4 explains
the results of our experiments and Section 5 details future work. In Section 6 we include some
concluding thoughts on the success of neural models for NLP tasks in general.

2 Models

Specify task for SQUAD: We take this section to describe at a high-level the models we imple-
mented, as well as some of the extensions we made from their original formulations.

2.1 Match-LSTM with Answer Pointer

Wang et al. published the Match-LSTM with Answer pointer, and for a time enjoyed the top seat on
the official SQUAD leaderboar It has since been replaced with other models, but we wanted to
look into Wang’s model as a starting point for more advanced models.

The model makes use of sequence attention with a pointer network[/7]. Pointer Networks were put
forward by Vinyals et al. as a new neural architecture for learning functions whose outputs were
some possibly permuted subset of the inputs. In their work, they formulated a pointer network that
could learn to solve the traveling salesman problem approximately. Here, Wang et al. propose using
pointer networks to predict the start and end tokens

'nttp://stanford-ga.com
’In the original paper they also propose a sequence model, but we did not use it in our experiments.

http://stanford-qa.com

2.1.1 Match-LSTM formulation

The Match-LSTM with Answer Pointer makes use of three sequential layers: LSTM preprocessing,
Match-LSTM and Answer Pointer

The preprocessing layer runs the question); and passage P; through an LSTM, yielding matrices
H f) ,HI € R™*! where m is the maximum length of a passage and [is the hidden state size.

The Match-LSTM layer is a second encoding layer that runs over the hidden states of the passage
hE, calculating an attention distribution c; against each question token. It outputs an encoded matrix

H(T’) c RPXl.

The answer pointer layer takes in the Hi(r) and runs it through another LSTM layer that outputs a
probability distribution 3; over the potential start tokens, and a second distribution over the potential
end tokens. In this simple boundary model, we take the maximum over the first distribution and
choose that as the start, and do the same for the end token distribution. Together that gives us our
predicted answer span.

2.1.2 Variations on the Basic Model

Aside from the boundary model from the original paper, we also adopted a BILSTM encoder for the
preprocessing layer to account for all surrounding context for questions and passages.

We also applied masking to our logit distributions before applying softmax to disable the boundary
model from predicting padding tokens as the start or end of a span. As the penultimate step before
our answer pointer decoder, we had a logit distribution 5;;. We create a special masking vector
m; that is O for all the token positions, and then a large negative number such as —1000 for the
positions with padding. Adding these vectors together before performing the softmax gives us a
new probability distribution that prevents predicting the padding tokens.

2.2 Dynamic Coattention Networks

We also implemented a variant of the Dynamic Coattention Network architecture, hereafter referred
to as DCN[2]. DCN first develops an attentive co-dependent representation of the question and
document for the encoding to capture the strongest relationships contained therein. We by and large
preserve the DCN architecture for this encoding in our variant except we neglect to include sentinel
vectors for attention. For the decoder, DCN employs a dynamic architecture, which iterates over
possible answer spans until it decides to output an answer. Given time and resource constraints, we
implemented a simpler but focused decoder. Our decoder formulated the answer prediction problem
as a boundary problem by predicting the start and end tokens of an answer by two separate but
unified sub-architectures. We first developed separate representations for the start and end tokens of
an answer via an LSTM working on the attentive co-dependent representation of the question and
document. We then concatenated these representations as our co-dependent answer representation
and finally utilized two separate Bidirectional LSTMs to predict the start and end answer token
probabilities. We will elaborate on the final parametrization of our architecture in the experiment
section.

To elaborate on the encoder architecture, we ran the same LSTM (to unify the representation) to
encode the GloVe representations of our question and document. Let’s call those final represen-
tations @@ and D, respectively. To enable the network to learn a relationship between the ques-
tion and document space, we added a non-linear projection layer on top of the question with a
Q= tanh(W(Q)Q/). For coattention, we first compute an affinity matrix, L = DTQ. This matrix
computes some initial score for each document-question word pair. We then softmax this matrix
row-wise to produce normalized attention for a document relative to each word in the question (A®)
and then column-wise to produce normalized attention for each question relative to a word in a
document (AP). Next, we derive the summaries of the documents informed by its attention for a
question by C? = DA®Q. We do the same for the question informed by its attention for each word
in a document QAP . Lastly, we compute the attention context of C? informed by each word in a
document (C? AP), concatenate that with QAP to form a codependent representation of the ques-

Table 1: DCN Hyperparameters vs Loss

STATE SIZE DECODER DROPOUT MIN VAL LOSS
128 Decoder with no pre-processing LSTMs 0.1 4.53
96 Decoder with no pre-processing LSTMs 0.1 4.35
96 Decoder with pre-processing LSTMs 0.1 4.24
96 Decoder with pre-processing LSTMs 0.2 4.43

tion and document, and then run a bidirectional LSTM on on that representation to define U, the
initial encoding of our start and end answer tokens.

To begin decoding, we leveraged two separate LSTMs to prepare our initial encoding of the start
and end answer spans, which we’ll call U, and U.. We then concatenated those representations into
another unified representation of the start and end answer spans, U’. We finally ran two separate
Bidirectional LSTMs with a linear projection layer on top to output our final probabilities for start
and end answer tokens.

In the experiment section below, note we also to start had a decoder that did not perform the inital
encoding and concatenation of the start and end answer spans and instead started prediction directly
from U. We found that this addition to our decoder architecture helped performance marginally but
significantly enough to include in our final model.

3 Experiment Details

The vocabulary for our models was constructed from the training and validation passages and ques-
tions, and contained over 115k distinct token types. For our word embeddings, all experiments were
run with 300-dimensional GloVe vectors from the Common Crawl Corpus[8]. All our software was
implemented in Tensorflow 1.0 and written in Python 3 [9].

The Match-LSTM model had 3.7 million parameters, and was trained using the Adamax optimizelﬂ
We used a batch size of 64 while training. Our hidden state size [is 150, some experiments were
performed with [= 300 but initial results were not promising so all reported results are with the
former choice.

The most common technique in regularizing recurrent neural networks is dropout[10]. Various
values of the drop probability were tried, but the optimal choice was found to be p = 0.4, in keeping
with the wisdom of Srivastav et al.’s original work that recommends using a value between 0.2 to
0.5. All Match-LSTM based models we report here were trained with this drop probability. For
details about DCN dropout values, see Table

A copy of the model parameters was saved at the end of every epoch of training, and we report the
one with the highest overall F1 score on the development set.

For the DCN model, our final model had 1,377,925 parameters. Our hyper-parameter testing is
summarized in the table above.

4 Results

We list our results for the various models on Table 2] Notably, our Match-LSTM model performed
significantly higher when using the BiLSTM encoder for preprocessing, likely due to the increased
contextual information available in the encodings.

For our DCN model, we surprisingly found that reducing the state size helped our model’s perfor-
mance quite a bit. We anticipate that this reduction in feature size forced the architecture to learn
more robust representations for the reading comprehension task. We also found that dropout beyond

3Implementation of Adamax was taken from OpenAl: https://github.com/openai/iaf

https://github.com/openai/iaf

Table 2: Best F1/EM Score Across Epochs For Match-LSTM Based Models
MODEL F1 EM

Match-LSTM 46.14 34.20
Match-LSTM + BiLSTM 51.98 39.89

a small threshold tended to hurt our model’s performace. We believe that this resulted because our
model’s architecture was already lean, and dropout would cause it to underfit. Lastly, we found
that increasing the number of layers beyond one through the sub-networks in our architecture dra-
matically hurt our model’s performance. We think that, given the complexity of the architecture,
gradients could not backpropagate effectively through time to the beginning of the network. Keep-
ing the networks shallow helped our lean model learn quickly and effectively and take advantage of
the representation and attention mechanisms to tackle the task.

Loss Across Epochs

Ln wn o
o] o
1 1 1

Mean Cross Entropy
o+ o+
= Ln

W
LA
1

LJ
=
1

1 2 3 4 5 6 7 8 9 10
Epoch

Figure 1: Training and validation error across epochs for the Match-LSTM with BiLSTM prepro-
cessing. Train in red, validation in blue.

5 Future Work

As with any experiment, there are countless extensions that we were not able to try. One of the
simplest is to add features beyond simple tokens. As we can see in Figure [3] the distribution over

25000- wsoo- N a500-
20000
§ 15000 - § 10000~ § 15000
g & g
10000 o000
5000~
s000- 5000
o ! . T .. e T B B
B s s s W Vo van W o s ™ v o

MNP NN D

A 6 §oT NS W NS
Span Length First Token POS Tag Last Token POS Tag

Figure 2: Plots of the distributions of span lengths, and most common starting and ending token
POS tag.

the training dataset of span lengths and start and end token part of speech are largely clustered
around a small handful of tags. Both of these pieces of information alone could be combined into a
third model that classifies all possible spans up to a maximum length directly. We would then find
either the most likely span, or perhaps take a learning to rank approach where we build a pairwise
model that finds the best of each pair of possible spans until we are reduced to a ”winner”. This
approach bears some similarity to the work of Lee et al. that builds out spans[11]]. They claim that
their performance comes form being able to classify spans rather than generating new spans, and
based on their results is an interesting avenue for future research.

It might also be feasible to perform ensembling of our models. Each of our models outputs a logit
distribution over tokens in the last stage. If we summed these scores before performing softmax
normalization, we would theoretically end up with a variable that is the sum of each model’s opinion
of each character in the passage.

6 Concluding Remarks

Over the course of CS 224N, we’ve seen how to apply deep learning models to achieve state-of-the-
art results for a variety of tasks, including translation, sentiment analysis and dependency parsing.
Translation seemed to require the most ingenuity to get to its current state right now, and now that
systems such as Google NMT[12] have achieved phenomenal results, it has taken decades to reach
this point. The question answering task is likely to be similar, but it benefits from the fact that so
many deep learning models for other learning tasks exist at this point in time. All the models we
have studied seem to borrow bits and pieces of old models as the old saying goes, there is nothing
new under the Sun.

Our models’ performance was modest but decent, and the fact that both surpassed the score for a
strongly engineered traditional machine learning model gives us hope that more great leaps for NLP
will come from the application of neural architectures.

Acknowledgments and Contributions

We would like to thank Richard Socher and Christopher Manning for their detailed and well-
organized instruction. Many of the more practically minded lectures gave us the ideas for techniques
we applied in our study. In terms of the division of work, Eric and Andrew worked primarily on the
coding the Match LSTM model and exploratory data analysis. Daniel primarily worked on coding
the DCN model. Everyone together worked on brainstorming and experiment analysis.

References
[1] Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer pointer.
CoRR, abs/1608.07905, 2016.

[2] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for ques-
tion answering. CoRR, abs/1611.01604, 2016.

[3] Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete
question answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[5] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. CoRR,
abs/1506.03340, 2015.

[6] Dangi Chen, Jason Bolton, and Christopher D. Manning. A thorough examination of the
cnn/daily mail reading comprehension task. In Association for Computational Linguistics
(ACL), 2016.

[7] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2692-2700. Curran Associates, Inc., 2015.

[8] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543, 2014.

[9] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929-1958, January 2014.

[11] Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and Dipanjan Das. Learning recurrent span
representations for extractive question answering. CoRR, abs/1611.01436, 2016.

[12] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jef-
frey Dean. Google’s neural machine translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144, 2016.

	Introduction
	Datasets
	The Question Answering Task and SQuAD

	Models
	Match-LSTM with Answer Pointer
	Match-LSTM formulation
	Variations on the Basic Model

	Dynamic Coattention Networks

	Experiment Details
	Results
	Future Work
	Concluding Remarks

