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Abstract

In music composition, melody is relatively easy to generate: a piece com-
posed even by an amateur can be pleasing at times. However, chords
composition typically requires some musical background to have them be
acoustically in harmony. In this report, we designed a system to generate
chords matching a given melody using several models and draw similarities
between natural language and music. We mainly focused on two models:
a proposed paired model and a multi-task language model, each with a
few extensions. Both models were able to generate chords that match to
melody in harmony, and we found that proposed paired model performance
was able to generate more pleasing music. 1 2

1 Music as a Language

Music and natural language are very similar. They are both in the form of sound (musi-
cal notes and speech) which can be transcribed into symbols (musical sheet and articles).
Therefore, acoustic model and language model are extensively used on both of them re-
spectively. Moreover, one can view music theory as the grammar in natural language and
preprocess their hierarchical structure. The pitches, notes, bars, musical phrases, and cho-
rus in music are the counterpart of phonemes, morphemes, words, phrases, and articles in
natural language. Given so many similarities, many researchers deem music as a universal
languageCohen [2008], Besson and Schön [2001]. In our project, we want to generate chord
progression given melody, which is a sequence-to-sequence problem just like the language
translation in NLP. There are still some difference between natural language and music. For
example, music is represented in time units in music, which allows us to stretch our data to
twice the length or compress it into half the length for data augmentation and take average
of predictions for more stable results. Also, music theory can be formulated using math-
ematics and thereby have multiple representations. Based on these advantages that only
music possess, we propose paired model and language modeling using multi-task learning
and merging units methods for melody-to-chord in this report.

1Link to generated music https://goo.gl/Mzflpl
2Github: https://github.com/hsuwt/cs224n-project
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2 Introduction

Melody and chords are main elements of music. Melody is a succession of musical notes
that provide the foreground rhythm, while each chord is composed of multiple notes and the
sequence of chords provides the harmonic background for melody. In music composition, we
often have a melody line firstly and then need to find a chord progression to accompany it.

There are mainly two approaches to automatic music composition. The first approach ex-
ploits music theory and domain knowledge to formulate hand-crafted rules for composition.
Such a model is usually explicitly coded, so it is difficult to extend the model to different
genres or applications. This is generally not an issue for the second approach, which is
based on machine learning and therefore data-driven. Some of the attempts at the second
approach used simplistic models such as a finite state machine (Markov chain) [Forsyth and
Bello, 2013, Musick, and Bello, 2015] or Hidden Markov Model [Simon, and Basu, 2008,
Simon, et al., 2008].

A major limitation of both the FSM and HMM models is that they consider only the 1st-
order relations between adjacent short-time frames of music; that is, they make the Markov
assumption about chord progression. This proved to be too naive for actual music pieces,
where long term correlation often happen across time frames. As a result, these methods
tend to choose only the most common and conservative chords combinations.

Another limitation of HMM and FSM is the need to define the state spaces corresponding to
chord types for melody-to-chord and musical notes for chord-to-melody. However, it might
be difficult to adequately set the number of states. For example, for melody-to-chord, using
too few chord types may limit the diversity and aesthetic quality of the generated chord
sequence, whereas using too many chord types may lead to data imbalanced problems, since
some of the chord types can be under-represented in the training data. It is better to get
rid of the states and use sequential representations of melody and chords.

The popularity of the Internet and data sharing platforms has made available a large amount
of data (e.g. musical scores) in digital format suitable for training deep neural networks
[Bengio, and Hinton, 2015] to generate artworks. This has been attempted, for example, on
visual arts [Ecker, and Bethge, 2015] and on generating full music piece given the first few
notes (i.e. automatic music generation) [Eck and Schmidhuber, 2002, Bengio, and Vincent,
2012].

For automatic music composition, recurrent neural network (RNN) Goller and Kuchler
[1996] represents a promising deep learning architecture, because it takes into account infor-
mation from all the frames, allowing the model to analyze the songs as a whole. Intuitively,
we can build a sequence-to-sequence (seq2seq) model to achieve either melody-to-chord con-
version, by using melody sequence as the input and chord sequence as the output.

Even though seq2seq is widely used in NLP especially language translation, its architecture
is best known for its ability to transform sequences with different length. Since melody and
chord progression have the same length, we may modified language modeling Ponte and
Croft [1998] to build a simpler architecture. Instead of predicting next frame like normal
RNNLM Mikolov et al. [2010], we can predict the chord progression at each time-step given
the current melody.

For most music composers, melody and chord are composed in parallel with multiple itera-
tions, rather than separately. This motivates us to develop a unified model that can examine
melody and chord at the same time and generate the correction of the chord to perform the
music accompaniment at the same time, just like a human composer naturally does.

In this report, we proposed a new framework called the proposed paired model, or paired
model for short. The paired model takes a pair of melody and chord lines as input, and
output how good a match the incoming melody-chord pair constitute and additionally how
to modify the inputs chord to get a better match.

By jointly learning their relationships, our paired model can better capture their dependency
using information from all pairs of inputs, and then find the best melody-chord pair at test
time.
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3 Models

We experimented with three fundamentally different learning strategies or task definition for
melody-to-chord: seq2seq, language modeling, and paired model. As discussed above, paired
model takes a pair of melody and chord lines as input and tries to learn what constitute a
good match between melody and chord, which establishes a commutative relation; language
model, on the other hand, takes the sequence of melody as input and tries to learn and
produce the best chord to accompany the input melody. The two models have their own
merits which are discussed below.

We experimented with a variety of models combined with each strategy where applicable:
basic RNN cells, Gated Recurrent Unit[Chung et al., 2014], the Long Short-term Mem-
ory network [Hochreiter and Schmidhuber, 1997], Bidirectional-RNN [Schuster and Paliwal,
1997], and seq2seq model[Cho et al., 2014]. In particular, the basic RNN can be combined
with both learning tasks.

3.1 RNN variants

A standard RNN suffers from vanishing gradient problem, documented in Hochreiter and
Schmidhuber [1997], and is prevented from learning long-term dependencies. Since each
timestep in our model represents a 16th note on the music score, the length of sequence our
RNN can be easily in the order of hundreds for a 10-second music clip. Gated cells such as
GRUs are therefore used in our model to ameliorate the problem of vanishing gradients.

To learn even longer time dependency, we adopted LSTM model as network units. While
RNNs have the so-called vanishing gradient problems, LSTM is free from such an issue and
is best-known for classifying time-series data with long lags between events. For music, we
can treat beats, bars, and musical phrases as musical events. The time signature also plays
an important role in music composition. Therefore, we expect that the LSTM architecture
can perform better than RNN.

While LSTM has more parameters and may be more capable of modeling complex data,
GRUs takes less memory and are faster to train. With our dataset not being tremendously
large, GRUs may be more suited for our application.

For musicians, the process of composing music is rarely unidirectional. They often modify
the previous notes based on the subsequent notes, and vice versa. Therefore, we also tested
bidirectional RNN (BRNN) Schuster and Paliwal [1997], which consists of two recurrent
models that learn forward and backward dependency respectively. The prediction is based
on both directions. Similarly, we can have bidirectional LSTM (BLSTM).

3.2 Proposed Paired strategy

To capture the complex relationship between chords and melody, we want our model to be a
music connoisseur who can differentiate between good and bad music. Given a melody/chord
pair, the task is to determine whether the melody and chords are compatible or a good
match.

Specifically, we adopt a simple strategy in generating data pairs with different goodness-of-
match for model training: With 1,000 songs, we cross product the melody and chord into
1,000,000 pairs and assume melody and chords from different songs are mismatch, and those
from the same song are perfect match. During test time, we feed all chord progressions with
the input melody to see which chord candidate get the highest score.

An advantage of this strategy is that we do not need extra efforts in manually labeling the
goodness-of-match of melody/chord pairs. To balance the positive and negative samples in
the dataset. We shuffle the chord melody pairs as negative pairs and keep the number of
positive data pairs the same as the negative ones.

Some may argue that randomly picking negative pairs might get a very great chord but
labelled as negative samples. To deal with this problem, we extend our model to predict the
”correction” from the input chord to ground truth chord. E.g. if our input chord is C Maj
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[1,0,0,0,1,0,0,1,0,0,0,0] and output chord is C Min [1,0,0,1,0,0,0,1,0,0,0,0], Our correction
ground truth would be their difference: [0,0,0,-1,1,0,0,0,0,0,0,0], indicating that we should
add the E note and delete the D# note from the input chord progression. This model allow
us to not only generate a great chord progression but also serve as a music composition
teacher, telling us which notes we should correct to sound better.

Figure 1: pair-model learning depiction

3.3 Language modeling strategy

Language model treats melody as input and chords as label at each timestep and attempts
to predict the most suitable chords to an unseen melody. Musical chords, the ones our
model will predict, can be described in both one-hot representation and chroma format.
E.g. C major chord have notes C, E, and G, so its chroma vector is [1,0,0,0,1,0,0,1,0,0,0,0].
Both representation have their merits. The one-hot representation treats each chord as
completely discrete entities and would not be able to predict chords unseen from the training
set; whereas the chroma representation allows the model to learn similarities between any
chords that have sharing notes and enable unseen chords prediction, but is prone to predict
notes combinations that are not actual chords. The fact that chords can be expressed in
chroma format an important property of music that natural languages don’t have. Using
this advantage, we build a one-to-one mapping between both representations and propose a
multi-task learning framework to jointly learn the correlation of one-hot and chroma vectors
during training and use ensemble from both prediction at test time. We experimented our
models in one-hot representation, chroma representation, and multi-task learning to compare
the performance in each of the model.

3.3.1 Stabilization of prediction

One difference between music and language learning is time notion: our model has to predict
chords and the time to switch from one to another, which is irrelevant to an ordinary NLP
tasks. With our language modeling approach to music chords matching, our model predicts
a chord at each timestep (16th notes). Without any post-processing or augmentation, the
model has a hard time deciding the best time for chord transition. As a result, we observe
that the predictions are unstable at each beat and tends to switch at arbitrary 16th-note
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Figure 2: Multi-task learning depiction

timestep. To counteract such problems, we tried to augment our model by assigning different
sample weight at each timesteps: we assign higher weight to the beginning of each beat and
each measure, and let the error at these timestep contribute to a larger portion of training
loss, in hope that our model picks up the importance of the time where chord transitions
are likely to occur. Another technique is to post-process the prediction by merging every 8
timesteps by taking the average, and interpret the predictions to make a chord transition
at every half note.

3.3.2 Multi-task Learning

We adopted a learning strategy to learn the relationship between melody and chord in both
the chroma and one-hot representations. Intuitively this gives the system more information
on how to improve the current chord selection.

Multi-task Learning is the learning strategy where the model learns at least two related
tasks at the same time [Liu et al., 2015, Ando and Zhang, 2005, Evgeniou et al., 2005],
where one task is the primary and the other tasks are the secondary. The model will be
trained to perform both primary and the secondary task using a shared parameters. The
idea is the model may generalize better to unseen data thanks to the shared structure of the
tasks. Especially for cases where labeled data for the primary task is scarce, MTL can take
advantage of the labeled data of the second task in improving performance for both[Yang
et al., 2016].

By learning with multiple forms of output labels as the secondary tasks, MTL can possi-
bly learn signal-level or music compositional level relationships among attributes, thereby
improving the performance of the primary task [Yang et al., 2016]. Such an idea has been
pursued in prior work, using for the example a multi-chain hidden Markov model (HMM)
Ni et al. [2012] or a dynamic Bayesian network Mauch [2010].

In this project, we used a multi-task learning strategy where the primary task was learn-
ing from the one-hot representation and the secondary task was learning from the chroma
representation of the chord progression.
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3.4 Seq2seq

With language modeling approach we subscribe to an analogy of the melody to chord con-
version to the machine translation problem. The seq2seq model was first proposed by Cho
et al. [2014] and has proven very effective in tasks like machine translation, image caption,
etc. The seq2seq model is handle sequence data of variable lengths, which makes it suitable
for many tasks related to music.

In our context, however, we assume an equal length fro all the songs for simplicity. Therefore
we did not make use of the variable length advantage. On the other hand, seq2seq is much
harder to train and require a lot of data, which is why we ended experimenting with other
network models.

4 Experiment setting

4.1 Dataset

Music informatics is a data-poor area, where most music are protected by copy right, leading
to only few dataset available for research. Even more, it requires expensive human-labor
to precisely label the chords and melody from a particular song. Tse et al. uses algorithm
to align and generate 130,000 MIDI files from audio files. However, it’s still very difficult
to extract melody and chord from MIDI files due to the lack of clear tracks and beat
information. We wrote hundreds lines of code attempted to parse the 300,000 MIDI, but
still failed to improve our model.

Thus, we collected another datasets of MIDI files, each with 8 measures of melody and
chords. Most of the clips are extracted from Western pop songs. We randomly sampled
10% clips as testing data set, and used the remainders as the training data set.

We partitioned MIDI files into a melody track and chord track. Due to arbitrary practice
by music creators, this process was not as straightforward as one’s intuition would suggest.
We follow the principle of preferring precision in the classification and simply reject those
songs that cannot be easily partitioned.

We parsed the data into 12-bin chroma vectors specifying the activation of the 12 pitch
classes (C, C#, D, D#,. . . and so on) to represent the notes in a melody line or chord
progression, disregarding tone height (i.e. octave number).

We use a sixteenth note (semiquaver) as the smallest time unit. For simplicity, we deal with
music clips of 8 measures (128 16th notes) in this work, although this can be easily extended
in future study. Therefore, 8-measure melody line or chord progression can be represented
as a Boolean matrix of size 128×12.

For the model to better learn the chord, we experimented with two different chord repre-
sentations, which are the chroma and one-hot representation. In the chroma representation,
the vectors of the involved notes are simply added. The advantage of the chroma represen-
tation is its transparency. It is easy to define a distance metric, such as L1, based on its
components. The one-hot representation, on the other hand, uses a one-hot vector for the
212 = 4096 possible chords. With one-hot representation, our model is not able to distin-
guish the similarities between chords, however, it allows us to reduce the dimension of our
output by eliminating notes combination that does not makes musical sense more easily,
and provides a more intuitive approach in making a prediction. We experimented both and
the result shows that , as we will show in the results section below.

4.2 Implementation Details

Our implementation of the neural networks is based on keras Chollet [2015], a modular neural
network library. We use mini-batch learning with 128 neurons and ADAM for updating the
learning rates. To prevent over-fitting, we set the dropout rate Srivastava et al. [2014] to
0.5. The activation function inside the RNN is set to the hyperbolic tangent.
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For chroma prediction, we use the sigmoid activation function to generate a real value be-
tween zero and one. As for one-hot prediction, we use softmax activation to generate a
probability distribution. We used binary cross-entropy cost evaluation for chroma represen-
tation and categorical cross-entropy for one-hot representation.

4.3 Evaluation Protocol

We evaluated the results by separating data into training and test set by around 9 : 1
ratio. After a model under evaluation is trained on the training set, we evaluated it by its
prediction on the test set. In particular we measured its the L1 error per frame and number
of unique predictions (for proposed pair strategy only).

The number of unique predictions is useful as a secondary evaluation metrics for the proposed
pair model. It counts the number of unique chord predictions for about 100 melody lines in
the test set. Essentially it measures the diversity of the model, and the higher the diversity
is, the better the model should be able to generalize to melodies of diverse style and genres.
The results is shown in Figure-6.

For multi-task model, we measure the L1 error per frame for both of subtasks and plot this
measurement as a function of the ratio of contributions from the two subtasks in an attempt
to determine the optimal ratio. The result is shown in Figure-5.

5 Results and Discussion

Fig. 3 shows the stabilization results before and after we implement the sample-biased and
merging every 8 timesteps (from a frame of 16th notes to half notes). From the MIDI
piano rolls, one can see the MIDI chords are much smoother across the entire song after
stabilization.

Fig. 4 shows the results for multi-task learning in language modeling, we only train chroma
output when multi-task ratio is 0.0, and only train one-hot output when multi-task ratio is
1.0. We expect to see the U-curve loss plot. However, because one-hot loss and dimension is
way larger than chroma ones, it’s very difficult to balance the losses, and allow model to learn
their correlation in shared weights. We also experimented with late-fusion ensemble learning
on both output. Nonetheless, one-hot representation still dominate the whole prediction and
thereby make no improvement.

6 Conclusion and future work

We surveyed a number of strategies to generate chords to a given input melody, including
pair-model, language model, multitask-leaning, and sequence-to-sequence. Each of which
has their own advantage over others and we implemented techniques to augment the strength
and to remedy the weakness of each of the strategies. Pair model utilizes a lot of domain
knowledge to restrict the chord progression to an existing song, and is less capable of gener-
alization; language model provides freedom to generate any chord at any given timestep but
lacks domain knowledge. Even though music and languages share a lot of similarities and
the language model generates the lowest L1 training loss, the music generated by the pair
model sounds more acoustically pleasing. This is because L1 is a close, but not absolute
indication of how good a chord match to melody. For a single melody line, there can be
many great chord progression for accompaniment. A simple L1 loss similarity against the
original chord progression does not fully capture the quality of match by a predicted chord
progression and can reject many perfectly good ones. Some chord progressions may sound
great but are very different from the ground truth chord progression, which then suffers a
poor L1 loss.

To further study this applications, we should first collect and sanitize more melody and
chord progression data.

More research should also be performed on balancing the contributions of the subtasks in
multi-task learning such that one does not dominate another and can learn from each other.
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Appendix

Figure 3: melody and chords prediction before and after stabilization
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Figure 4: Multi-task Learning Performance plot. Where train1 and train12 refer to the
training loss of one-hot (1) and chroma (12) subtask. err1 and err12 refer to the test error
of the two subtasks.

Figure 5: Loss value during training of multi-task learning model
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Figure 6: Proposed pair model norm and unique index
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