
Predicting Stock Movement through Executive Tweets

Michael Jermann
Department of Computer Science

Stanford University
Palo Alto, CA 94305

mjermann@stanford.edu

Abstract

This paper details an investigation into the viability of predicting stock prices
directly from the tweets of company executives. I begin by describing the data
collection process and the natural language processing framework. The paper then
documents the construction, tuning, and evaluation of the various neural network
models and their performance. In the end, a very minor classification accuracy
gain is achieved, but I believe the results serve as a promising indication that with
additional data collection increased accuracy could be achieved.

1 Introduction

In an age where company executives can achieve a degree of fame comparable to actors, athletes,
and musicians, their social media activity is often scrutinized. An announcement, opinion, or remark
can be enough launch a news story or directly influence the market.

In this paper I use publicly available data from one such social media platform, Twitter, and perform
natural language processing (NLP) on it in order to predict positive and negative fluctuations in
stock price based on the text. Many existing efforts have shown that this is possible on a macro scale
by looking at ecosystem-level trends; however, I take the approach of identifying a small subset
of influential Twitter accounts and analyzing their tweets with a variety of NLP techniques. Both
sentence-level and word-level language features are used, and the NLP pipeline is built to consider
Twitter-specific syntax (such as hashtags, emoticons, and mentions). This results in a neural-network
model that achieves a minor gain over baseline (+0.1%) but nonetheless serves as a proof-of-concept
that this can be a viable trading strategy with an increased executive list and additional training
examples.

2 Background/Related Work

There has been significant interest both in tailoring natural language processing tasks to Tweets and
using Twitter data to predict stock market fluctuations, much of which this paper builds upon. Much
of the research regarding Twitter NLP has dealt with sentiment classification, which is a similar
task to the one undertaken here. Researchers have developed methods for training sentiment-aware
word embeddings [1]-[4] which are useful vector space representations of words used in a Twit-
ter context. By understanding the Twitter syntax and leveraging the huge amount of data available
via the Twitter API, these researchers have developed several approaches for encoding the emo-
tional subtext of Tweets into the word embeddings without extensive manual labeling. Additionally,
the identification and engineering of high-performing Twitter-specific features such as sentiment
association lexicons [5], twitter-specific part-of-speech identification [6]-[7], and entity and event
extraction [8]-[10] have increased the amount of available information regarding tweet content and
semantic information that can be harnessed for prediction. Using these types of features and word

1



embeddings, convolutional neural networks have been demonstrated to be very effective at parsing
this type of text for sentiment prediction [11].

Research into the relationship between Twitter and the stock market has identified a clear link be-
tween the two as well. In a ground-breaking analysis, predicted ”calmness” based on large-scale
Twitter activity was demonstrated to be correlated with the stock market [12], which subsequent
analysis corroborated [13]. Performing NLP on company financial reports has also been shown to
significantly improve stock price predictions [14], indicating that a similar type of model may be
effective if adapted to Twitter.

3 Approach

While much of the existing research has taken a macro approach to predicting the stock market with
Twitter (i.e. aggregating data from the ecosystem), I took a micro approach by identifying a set
of ”high signal” Twitter users (verified executives at publicly traded corporations) and attempted to
process the text content of their tweets to directly predict stock movements (up or down). While
it is obviously impractical to expect to achieve a high level of accuracy on this task (given that the
majority of stock movements are not caused by tweets, and vice versa), the goal of this paper is to
serve as a proof-of-concept that the Twitter activity of a highly-curated list of business executives
can be used as a signal for stock market prediction.

I leveraged the ”best practices” established in Twitter sentiment research to build a custom NLP
processing pipeline that includes tokenization, word vector representations and sentiment lexical
scores. The classification models developed are primarily neural networks in which the words com-
prising the tweet text (parsed with a tokenizer built to handle Twitter syntax) are represented by
vector embeddings. Sentence-level features will also be considered (e.g. ”containsEmoticon” or
”hashExclamation”), with the goal of using both as inputs to a multi-layered neural network which
achieves a high level of classification accuracy over the baseline (i.e. a Naive Bayes bag-of-words
classification model).

4 Experiments

This section describes the end-to-end process of obtaining and processing the data, performing ex-
ploratory data analysis to formalize the classification algorithm, and iterating upon versions of the
neural network classification models.

4.1 Data Collection

The data collection process used to generate this dataset is detailed as follows.

4.1.1 Twitter Accounts

I began with a list of all NASDAQ and NYSE companies (6,405 in total, obtained via Quandl1),
containing both the stock symbol and the company name. I compiled an initial list of relevant
executives through a combination of querying the ISS Directors database2 and manual inspection. I
then queried the Twitter API3 to search for each name. For each name, I iterated through the search
results (ordered by descending number of followers) and returned the ID of the first user who was
verified and contained the name of the company in their description. I then manually inspected the
list (removing non-English users, false positives, and low-activity members). The list of Twitter
accounts followed by these accounts was then crawled, with all accounts containing the company
name being returned, followed by additional manual inspection. After several iterations, I obtained
a total of 106 user accounts representing 44 companies. I then queried these accounts for public
tweets (including retweets and replies), resulting in 84,859 tweets. Metadata regarding these tweets
was also recorded (such as hashtags, mentions, and number of followers).

1https://blog.quandl.com/useful-lists
2http://www.whartonwrds.com/datasets/iss/
3https://python-twitter.readthedocs.io/en/latest/

2



Table 1: Dataset
Set Number of Samples Percentage POS

Train 26,171 51.6%
Development 3,189 51.8%
Test 3,182 51.9%

4.1.2 Stock Data

Half-hourly stock data for each company was purchased via Kibot4. This was used to calculate
the half-hour change in stock price following the tweet creation. This timeframe was used in or-
der to isolate the effect of the Tweet on the stock market. For tweets made during off-hours, the
next available stock price was used. For each company, the text of all tweets created within a
half-hour (regardless of author) were concatenated and features such as ”numberOfTweeters” and
”numberOfTweets” were calculated. This resulted in a dataset of 32,542 training examples.

4.2 Formulation

As seen in Figure 1, the vast majority of the stock fluctuations were very small. Therefore, directly
identifying the major shifts would be difficult - with less than 5% of the dataset seeing an increase
of more than 1%, more training examples would be required to for a network to learn to effectively
identify these.

Figure 1: Cumulative distribution function for stock price changes.

Therefore, I elected to perform binary classification with a threshold of zero given that identifying
any increase over baseline accuracy would demonstrate proof of concept. Those with an increase
greater than or equal to 0.0 were labeled as positive whereas those with an increase less than 0.0
were labeled as negative.

The dataset was divided into train, development, and test sets constituting roughly 70%/15%/15% of
the dataset. The training set was used to train the model parameters, the development set was used
to optimize the hyperparameters, and the test set was used only on the model that performs best on
the development set in order to gauge if the model is generalizable.

The metric used for evaluation was be classification accuracy. This basic metric is more appropri-
ate than something such as F1 score given that I am predicting the labels of classes with roughly

4http://www.kibot.com/

3



Table 2: Tokenization Methods

Method Sample

NLTK ”she”, ”’s”, ”back”, ”,” , ”for”, ”this”, ”week”, ”only”, ”!”, ”#”, ”blessed”, ”.”, ”:”, ”)”
Glove ”she”, ”’s”, ”back”, ”,”, ”for”, ”this”, ”week”, ”only”, ”!”, ”<hashtag>”, ”blessed”, ”.”, ”<smile>”
Twokenize ”she’s”, ”back”, ”,”, ”for”, ”this”, ”week”, ”only”, ”!”, ”#blessed”, ”.”, ”:)”

Table 3: Accuracy of Top Naive Bayes Model

Train Dev Test

51.6% 52.0% 52.1%

equivalent sizes. As seen in in Table 1, any accuracy over 51.9% on the test set is an increase over
predicting all positives.

4.3 Word

The word-based models consisted primarily of tokenizing the string of the tweet into modular com-
ponents to be represented by a vector, and then performing operations on those vectors to predict the
label of the training example. This section details the experimentation regarding these models.

4.3.1 Baseline

For a baseline, I trained a Naive Bayes model with a bag-of-words approach (i.e. representing each
training example by a set of the words it contains). To parse the text into words, I used several
tokenization methods, two of which could recognize Twitter-specific punctuation and syntax (which
is vital to maximizing the number of words that can be accurately represent with vectors). The three
tokenizers used were from Natural Language Toolkit python platform5, an adaptation of the Glove
tokenizer script6 (with several modifications from Christopher Potts’ Twitter tokenizer7) [15], and
Twokenize8 [16] which was published by the Carnegie Mellon NLP group. Sample tokenization of
the string ”She’s back, for this week only! #Blessed. :)” are contained in Table 2.

A randomized grid search in which the tokenizer was varied (along with many of the hyperparam-
eters) led to a Naive Bayes classifier with the performance listed in Table 2. The best model used
the NLTK tokenizer, did not ignore ”stop words” (or very common words that typically have low
predictive value), and represented a slight improvement over guessing ”positive” for every label. It
achieved 52.1% accuracy on the test set, or a modest 0.2% increase. While this change is very small,
it is of the expected magnitude and provides evidence that there is at least mild signal here. This also
served to temper expectations as to the performance of more complicated models on this dataset.

4.3.2 Embeddings

In order to ascertain if further gains could be achieved by using a vector-space representation of
words, my next step was to map words to a vector space representation. I considered two types of
pretrained embeddings that were trained on Twitter data: Glove9 [17] and Sentiment-Specific Word
Embeddings (SSWE)10. These embeddings differ based on how they treat punctuation and twitter
syntax but align with the Glove and CMU tokenizers, respectively, so each was only used with the

5http://www.nltk.org/api/nltk.tokenize.html
6https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
7http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
8https://github.com/brendano/ark-tweet-nlp/
9http://nlp.stanford.edu/data/glove.twitter.27B.zip

10http://ir.hit.edu.cn/ dytang/paper/sswe/14ACL.pdf

4



appropriate tokenizer. Both represent tokens with 50-dimensional vectors. Therefore, for the initial
model the input to the neural network was merely the average of the word vectors of each token
found within the text (i.e. 50 inputs) fed into a softmax layer to predict positive or negative. For
both embeddings the training set saw a dramatic increase in accuracy on the training set (but not the
dev set), indicating overfitting. This was a positive sign in that it indicated that the input dataset was
sufficiently complex as to be able to represent the training data. On the next iteration I added a L2
regularization term into the cost function, which successfully reduced overfitting (as seen in Figures
2 and 3). This had a more beneficial effect on the model using the SSWE embeddings, which was
able to achieve an accuracy on the test set of 52.2%, or a 0.3% increase over guessing all ”positive”
(and a 0.1% increase over the established baseline), as seen in Table 4.

Figure 2: SSWE embedding learning curve with and without regularization.

Figure 3: Glove embedding learning curve with and without regularization.

5



Table 4: Accuracy of Top Embeddings Model

Regularization Embedding Train Dev Test

No Glove 53.9% 52.2% 51.6%
No SSWE 55.0% 52.1% 51.3%
Yes Glove 51.8% 52.2% 51.9%
Yes SSWE 52.7% 52.3% 52.2%

I also attempted including both trainable and untrainable embeddings along with combinations of
these, but significant performance improvements were not observed.

4.3.3 Convolutional Neural Network

In order to consider each word’s position within the text and its proximity to other words, I next
attempted a model in which the embedding vector values were not merely averaged. Recent research
[11] has found that convolutional neural networks are extremely effective at tasks such as sentiment
parsing. Given that sentiment prediction is similar to this task, I implemented a convolutional neural
network to see if it resulted in any performance increase. Much of the code for this portion was
adapted from the TFLearn sample code11. This network was implemented by tokenizing the input
string and padding each list of inputs to the same length (that of the largest input, enabling me to
process the input as a batch). This input was then fed to 3, 4, and 5-input convolutional units, merged,
and combined via a max pool unit. This output then goes through a hidden layer before being input
to a softmax layer for prediction. The logic behind this is that any especially ”important” sequences
of 3-5 tokens will drive the output. This is very prone to overfitting, so the model was trained
with dropout (20%) and L2 regularization. Unfortunately these were insufficient in combating the
dramatic overfitting that occurred in these models as seen in Figure 4.

Figure 4: Learning curve for convolutional neural network.

11https://github.com/tflearn/tflearn

6



4.4 Sentence

An orthogonal set of features by which to evaluate the contents of these tweets are sentence-level
features. Sentiment analysis has successfully been performed on tweets using sentence-level features
and a classification algorithm [5] so it was logical to attempt this approach concurrently.

4.4.1 Baseline

For the baseline, I trained a logistic regression (i.e. a one-layer neural network with a softmax
activation function) to predict the two classes. The features used were easily obtainable from the
training data and selected through a combination of intuition and exploratory analysis. The logistic
regression achieved a poor fit, not even able to fit well to the training data.

Given that the model was unable to fit the training data, it seemed that the the features selected were
insufficient to model the underlying data. Therefore, I added some features regarding ”sentiment”
scores for unigrams and bigrams [5]12 to augment the existing feature set. This provided minor
improvement (52.0%) on test set, but underperformed the Naive Bayes baseline.

Figure 5: Sentence level model performance curve.

4.4.2 Hidden Layer

Since we saw minor improvement after adding the advanced features, I attempted to add a hidden
layer with a moderate number of nodes (roughly two times that of the number of sentence level
features) and a ReLU activation function. The idea is that cross-terms between the input features
may expose interdependencies that create more complexity. With the extra layer, I added a dropout
node (with various keep probabilities) to help guard against overfitting. Regardless, there was little
improvement and cost actually decreased more slowly.

4.5 Combined

Given that the sentence level features did achieve some success, I consolidated the best performing
word and sentence classifiers into a two layer neural network. Basically, the average of the em-
beddings is concatenated with the sentence level features and fed to a softmax classifier. While the
development set reached accuracy levels comparable to that of the best word and sentence model

12http://saifmohammad.com/WebPages/Abstracts/NRC-SentimentAnalysis.htm#download

7



iterations, the best performance on the test set was 52.0% - the same as the logistic sentence-level
baseline and worse than the Naive Bayes baseline.

5 Conclusion

Despite the best model only achieving a classification accuracy 0.3% higher than predicting every
tweet would result in an increase, I think that these results indicate there is signal here that could
be better harnessed by increasing the dataset to encompass more executives. This dataset only
had around 100 Twitter users representing 40 companies; a curated list would have enabled me to
discard many of the personal and unrelated tweets used here (which caused unnecessary noise) and
potentially improve performance. The most obvious next step is to expand this list and better filter
out non-business tweets.

This project also demonstrated the utility of custom-trained word embeddings. Using word vector
representations even in an unsophisticated manner (merely averaging them) was shown to be more
effective than implementing advanced techniques such as convolutional neural networks and multi-
layered neural networks. Another interesting follow-up from this research would be to train custom
embeddings tailored to this prediction task.

References

[1] Tang, Duyu, et al. ”Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification.”
ACL (1). 2014.

[2] Tang, Duyu, et al. ”Coooolll: A deep learning system for twitter sentiment classification.” Proceedings of
the 8th International Workshop on Semantic Evaluation (SemEval 2014). 2014.

[3] Severyn, Aliaksei, and Alessandro Moschitti. ”Twitter sentiment analysis with deep convolutional neural
networks.” Proceedings of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2015.

[4] Maas, Andrew L., et al. ”Learning word vectors for sentiment analysis.” Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Associ-
ation for Computational Linguistics, 2011.

[5] Mohammad, Saif M., Svetlana Kiritchenko, and Xiaodan Zhu. ”NRC-Canada: Building the state-of-the-art
in sentiment analysis of tweets.” arXiv preprint arXiv:1308.6242 (2013).

[6] Agarwal, Apoorv, et al. ”Sentiment analysis of twitter data.” Proceedings of the workshop on languages in
social media. Association for Computational Linguistics, 2011.

[7] Owoputi, Olutobi, et al. ”Improved part-of-speech tagging for online conversational text with word clus-
ters.” Association for Computational Linguistics, 2013.

[8] Saif, Hassan, Yulan He, and Harith Alani. ”Semantic sentiment analysis of twitter.” International Semantic
Web Conference. Springer Berlin Heidelberg, 2012.

[9] Ritter, Alan, Sam Clark, and Oren Etzioni. ”Named entity recognition in tweets: an experimental study.”
Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Com-
putational Linguistics, 2011.

[10] Ritter, Alan, Oren Etzioni, and Sam Clark. ”Open domain event extraction from twitter.” Proceedings of
the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012.

[11] Dos Santos, Ccero Nogueira, and Maira Gatti. ”Deep Convolutional Neural Networks for Sentiment
Analysis of Short Texts.” COLING. 2014.

[12] Bollen, Johan, Huina Mao, and Xiaojun Zeng. ”Twitter mood predicts the stock market.” Journal of
computational science 2.1 (2011): 1-8.

[13] Chen, Ray, and Marius Lazer. ”Sentiment analysis of twitter feeds for the prediction of stock market
movement.” stanford. edu. Retrieved January 25 (2013): 2013.

[14] Lee, Heeyoung, et al. ”On the Importance of Text Analysis for Stock Price Prediction.” LREC. 2014.

[15] Potts, Christopher. ”Sentiment Symposium Tutorial: Tokenizing.” Sentiment Symposium Tutorial: Tok-
enizing. N.p., 8 Nov. 2011. Web. 20 Mar. 2017.

[16] ”Tweet NLP.” Twitter Natural Language Processing – Noah’s ARK. N.p., n.d. Web. 20 Mar. 2017.

8



[17] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. ”Glove: Global Vectors for Word
Representation.” EMNLP. Vol. 14. 2014.

9


	Introduction
	Background/Related Work
	Approach
	Experiments
	Data Collection
	Twitter Accounts
	Stock Data

	Formulation
	Word
	Baseline
	Embeddings
	Convolutional Neural Network

	Sentence
	Baseline
	Hidden Layer

	Combined

	Conclusion

