
Tagging Patient Notes With ICD-9 Codes

Sandeep Ayyar∗
Biomedical Informatics

Stanford University
Stanford, CA 94305

ayyars@stanford.edu

Oliver Bear Don’t Walk IV∗

Biomedical Informatics
Stanford University
Stanford, CA 94305

oliverb4@stanford.edu

Abstract

There is substantial growth in the amount of medical/data being generated in
hospitals. With over 96% adoption rate[1], Electronic Medical/Health Records
are used to store most of this medical data. If harnessed correctly, this medium
provides a very convenient platform for secondary data analysis of these records to
improve medical and patient care. One crucial feature of the information stored
in these systems are ICD9-diagnosis codes, which are used for billing purposes
and integration to other databases. These codes are assigned to medical text and
require expert annotators with experience and training. In this paper we formulate
this problem as a multi-label classification problem and propose a deep learning
framework to classify the ICD-9 codes a patient is assigned at the end of a visit.
We demonstrate that a simple LSTM model with a single layer of non-linearity can
learn to classify patient notes with their corresponding ICD-9 labels moderately
well.

1 Introduction

The international Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) is
the US health system’s adaptation of the international ICD-9 standard list of six-character codes to
describe diagnoses [2]. It is a list of codes mapping to diagnoses and procedures recorded in hospital
care in the US. These codes are then entered into a patient’s electronic health record and further used
for diagnostic, billing and reporting purposes. These codes are assigned to medical text and require
expert annotators with experience and training.

The idea behind standardizing these codes is to enable consistency among physicians in recording
patient symptoms, diagnoses for clinical research and reimbursements claims. It is the common
terminology upon which most US health care payment systems are based and other major standards
and practices have been built around it. For example, the reimbursement process by insurance
companies is based on the codes assigned to medical text reports following a patient’s treatment in
the clinic/hospital.

Currently, medical coders assign a set of appropriate ICD-9 codes after review information about
a patient’s record for a clinical event. This labeling task requires expert knowledge in the field of
medicine and the process in itself is expensive and prone to errors. A study [16] indicates that only
60%-80% of the assigned ICD-9 codes reflect actual patient diagnoses. This disagreement stems from
coders who may assign a more serious code than is present (over-coding) or miss codes altogether
(under-coding) which can result in serious financial loss. The approximate cost of icd-9 coding
clinical records and correcting related errors is around $25 billion per year in the United States.
[6].Codes are also very important in determining the eligibility of patients in clinical trials.

∗Contributed equally

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Figure 1: Going from patient visit, to clinical notes, to a list of ICD-9 codes can be done by either a
human or a computer with varying degrees of success.

These issues along with the challenge of exploring interesting and unstructured data have prompted
a large interest in automating the assignment of ICD-9 codes through various natural language
processing and machine learning approaches. An automated system with high accuracy can reduce
costs, simplify task for medical coders and help hospitals to standardize data.

2 Previous Work

The idea of automating ICD-9 codes assignment has been studied since 1990. Several researchers
have looked at automatically assigning icd-9 labels using patient records by looking at text or notes
written by physicians or hospital staff. Previous work has been focussed on pattern matching [10],
rule base systems [4],[5] [Goldstein et ., 2007] or supervised classification methods such as Logistic
Regression, k-NN and Support Vector Machines [10],[14]. Rule based systems consisted of manually
crafted rules that capture lexical elements, derived from one or more algorithms, such as n-grams
(sequence of consecutive words) or s-grams (sequence of consecutive words) extracted from reports,
and enhanced by semantic information. The lexical elements are basically short, meaningful set of
words. These rules base systems closely represent the procedure followed by medical coders for
manual annotation.

Several machine learning methods implemented such as K-NN, Naive Bayes, SVM, ridge Regression
have differed in the type of data set and method used. Eg. K-NN and SVM were used for assigning
ICD-9 codes to data that was preprocessed and represented in the form of manually designed features
(using techniques such as remove of negative, stop words, TF-IDF of words in the text, etc). However,
only limited number of codes were used for this problem[10]. Zhang et al., [8] specifically used
SVMs to achieve high F1 score of 86.6, however using only radiology reports with limited ICD-9
codes (45). while Perotte et al.,[14] also used SVM on a larger corpus (22000 documents) with
documents represented as a bag of words but reported lower F1 scores of 39.5. In general, most
machine learning methods were outperformed by rule based methods. Manual features fail to capture
the complexity found in medical records (sequential representation of information in patient records).
Hence, even though representing medical text as manual features has been found to work on particular
problems (such as specific set of codes, specific data sets), it has not been able to generalize on larger
data sets.

Deep learning has potential to overcome the limitations of traditional machine learning and rule based
systems by eliminating the task of describing explicit features or rules. There has been some work
in applying neural networks to textual classification involving multiple labels. [11]. A recent paper
in the previous version of this class [12] applied neural networks towards predicting ICD-9 codes.
However, their approach did not deal with all ICD-9 codes but preselected data to include only the
top 10 most frequently occuring ICD-9 codes. The models implemented in this study did not yield
high performance (F1score: 0.37) suggesting that there is considerable room for improvement in both
word representation and model architecture applied.

3 Dataset

MIMIC-III is the third iteration of a dataset generated by ICU/CCU patients at the Beth Israel
Deaconess Medical Center between 2001 and 2011 [9]. The database represents 40,000 patients with
structured and unstructured data including medications, test results, procedures performed, and free

2

text. The nature of this dataset skews the ICD-9 distribution towards more debilitating and severe
diseases/conditions. In order to focus on the NLP task our research only focused on free text from
the Notes table, and only on notes under the category of discharge summary. Further filtering was
performed by removing discharge summaries with no text or no associated ICD-9 codes.

(a) The distribution of assigned ICD-9 Codes per admission (b) The number of mentions for each top level ICD-9 Code

(c) The distribution of discharge summary note length (d) The empirical distribution of original ICD-9 Labels

Figure 2: Information on the notes

The ICD-9 coding system is based on the World Health Organization Guidelines. One ICD-9
code indicates a classification of a disease, diagnostic or treatment procedure, injury, symptom or
information from patient history. Codes are structured hierarchically where top level categories and
more generic (eg neoplasm or diseases of the respiratory system) and lower level codes indicate
specific diseases (eg. breast cancer, pneumonia). Higher level codes are only 3 digits while lower
level codes are 4,5 digits with a decimal after the 3rd digit. These codes are distributed such that a
minority of the codes make up a majority of the distribution of label mentions 2d. Because there are
6,198 codes our predictive power will be severely diminished for codes which do not often show up.
We mapped all codes to their top level representation in the ICD-9, which left 19 top level ICD-9
codes 2b.

Unlike other NLP and deep learning tasks the discharge summary notes can be very long, and have
a large variance in note length distribution 2c. The length of the notes can cause issues as any
architecture which relies on temporal dependencies will suffer without long-term memory and how
mentions of a disease early on in the note can affect predictions later on. This will be talked about in
the Discussion and Future Work sections. The notes are also laden with medical jargon not common
in other corpora, as well as misspellings.

4 Methods

All data manipulation and model training was done in python 3.5.3, TensorFlow 1.0.0 and R 3.3.1 on
the Microsoft Azure GPU instances provided through CS224N.

4.1 Preprocessing

The table for Notes and ICD-9 Diagnoses were retrieved from the MIMIC-III database and joined
using the dplyr package in R. Next, only notes which had a category value of ’Discharge’ and

3

a description value of ’Summary’ were kept. This narrows down the focus of the work so that
instead of working with partial patient information we can work with information gathered after
the patient has been discharged. This also narrows down the number of notes which correspond to
the same admission ID, where we arbitrarily took the first one to occur chronologically. Finally,
only admissions which have non-empty text and at least one diagnosis are kept. The data was split
into a 75-25 training validation split resulting in 39,541 and 13,181 observations in the training and
validation sets respectively.

While creating matrix representations of the clinical notes we converted tokens to arbitrary IDs and
then used these IDs to map words to their corresponding word vector during training. However,
because hardware constraints we were forced to set a maximum limit on the number of words in
a note (the tunable hyper-parameter max length) in order to batch process our notes. This means
that notes which are longer than max length only use the first max length words during training and
testing, while notes which are less than max length are padded with 0s, however only the prediction
corresponding to the last true word (not padded) is used during training and testing.

4.2 Model Description

Tokenization, Word Vectors from Glove: Our input to the neural network model consisted of a
sequence of words from the medical text. The text was split into individual words by space and
punctuation. For every word we obtained pretrained word vectors from Glove (Common Crawl 840
billion tokens, 2.2 million vocab of dimension size 300)[7]. Since our text consists of translated text
from clinical notes, there are several misrepresentations or errors in spellings of words themselves.
Hence for words not in our vocab, we simply represent the word vector as 0 initialized (Need to
report how many words do not have word vector representation). These word vectors are then fed into
the neural network for learning representations in sequential form i.e. one word vector after another .

RNN: The basic idea behind using Recurrent neural networks or RNN’s for our purpose is that they
make use of sequential information. Traditional neural networks have a fixed input length, which
doesn’t work for free text, and do not allow for temporal dependencies. In our task, this is not useful
since we are trying to take into account sequential information about medical text. We ideally want to
know the probability of an event (or ICD9 code in our case) given a sequence of words that occurred
previously. RNN’s capture this information as memory that has been computed up to and including
the current word in the document. However, RNN’s are limited to looking back only a few steps
(short term dependency). In our case, the length of the notes is typically long (average of 910 words).
Hence we need to learn long-term temporal dependencies which is difficult in case of RNN’s as
gradients decay exponentially with time (also known as the vanishing gradient problem). Hence we
use LSTM’s as our baseline model.

LSTM: Long Short Term Memory Networks or LSTMs are a special kind of RNN that can learn long
term dependencies[13]. They are explicitly designed to avoid the long-term dependency problem.
These use special units which include a memory cell that maintain information for a longer period of
time compared to traditional RNNs. It consists of a set of gates that control when information enters
memory, its output and when its forgotten. Hence this architecture is more suitable for our task which
requires these cells to learn long term dependencies.

We trained our LSTMs with the 300 word vector representation from Glove as described above. Our
baseline LSTM model consisted of hidden layer size 100, and a batch size of 256 for our training data
(We split our data into 75% training and 25% test). Since the text in our training data was variable in
size (each note had a different length of words: 1000 words on average), we tested our models on
different note lengths (250, 500, 750, 1000) to see if change in the length of notes affects our model
performance. We also added drop out to our LSTM model. Dropout is a regularization technique to
prevent overfitting[17]. In this technique, neurons are randomly selected during training and dropped
out randomly. This removes their contribution to the activation of any downstream neurons in the
forward pass and any weight updates not applied to the neuron in backward pass. Therefore if any
neurons are randomly dropped out of the network during training, then other neurons take over the
handling of the representations to make predictions. This makes the overal network less sensitive to
specific weights of neurons and results in multiple independent internal representations learned by the
network. Hence the network is better at generalization and is less likely to overfit to the training data.
We used input and output keep probabilities of 0.5 as our drop out. We also apply gradient clipping
to our model. When gradients are backpropogated in time, there is an issue of exploding gradients.

4

Gradient clipping prevents this problem by clipping the gradients between two numbers to prevent it
from getting very large. We employed gradient clipping with TensorFlow’s clip_by_global_norm
function. Given a gradient gradi its new value is calculated by gradi

c
max(GN,c) where c is the

clipping ratio (we used a value of 5 for this) and GN is the global norm defined as
√∑N

j=1 ‖gradj‖
2.

Figure 3: The main outline of the ICD-9 Tagger model

5 Results

All results are calculated for the same validation dataset, looking at the mean precision, recall, and
F1-score across all samples. That is precision, recall, and F1-scores were calculated for each sample
and averaged across all samples in the validation set. Due to time and hardware constraints we
decided to focus on tuning the parameters max length (which controls the maximum word length of a
note) the number of stacked LSTMs and batch size. Though we could have tried other parameter
combinations (output and input keep probabilities on the LSTM, learning rate) we found parameters
which boosted performance and stuck with those.

A quick summary of our impromptu search follows. our original settings were a batch size of 256,
a max length of 500, no dropout, and a learning rate of 0.0001. We originally did not take the last
true word, and instead always took the max length word when making predictions, which sometimes
corresponded to 10s or 100s of steps of training on the NULL word vector of all zeros for each
observation. Our F1-score around this time was .3, but when we chose to take the prediction at the
last true word we improved our performance to an F1-score of 0.6. Finally, we added dropout to
both the hidden state output and word vector input and noticed another improvement in our F1-score
to similar values reported below. These preliminary results showed that it was important to not let the
model predict on garbage inputs or else the final more accurate prediction is lost which harkens back
to the quote "garbage in, garbage out". it was also observed that the model was over-fitting by around
the 15th-20th epoch, which hinted at the need for regularization [17]. We settled on adding a keep
probability of 0.5 to both the input and output of each LSTM cell.

We noticed a slight increase in performance when varying the max length parameter for both versions
of the model 1. As the max length increases we tended to see an increase in precision, recall, and
F1-score, however there was not a large difference between the model with a single LSTM cell and
four stacked LSTM cells even though there was a increase in model complexity and training time.
Though we are sure of observing these differences, they are so small that we cannot be sure that
they’re due only to model changes and not to the difference in the random initialization of weights.
More runs are needed to confirm this.

5

Max length LSTM Stacks Precision Recall F1 Score

250 1 0.769 0.662 0.679
500 1 0.783 0.677 0.697
750 1 0.799 0.669 0.699

1,000 1 0.798 0.681 0.708
250 4 0.754 0.635 0.657
500 4 0.771 0.650 0.675
750 4 0.780 0.685 0.702

1,000 4 0.795 0.677 0.706

Table 1: Validation set performance of model when tuning Max Note Length and the number of
stacked LSTM cells. Learning rate of 0.001, batch size of 256, and an input/output keep probability
on the LSTM cell of 0.5 each

Because there was not a large jump in performance when using four stacked LSTM cells we decided
to go with the more simple model when iterating over batch size, however because there seemed to be
an upward trend in performance coinciding with the max length parameter we used a max length of
1,000. When varying batch size it was slightly more difficult to discern any pattern, but a batch size
of 128 seemes to have lead to the best performance in terms of precision and F1-score while a batch
size of 256 lad to the best recall which was closely followed by the recall for a batch size of 128.

Batch Size Precision Recall F1 Score

64 0.811 0.675 0.710
128 0.816 0.680 0.715
256 0.798 0.681 0.708
512 0.807 0.656 0.696

Table 2: Validation set performance of a single stack LSTM, a max length of 1,000 and all parameters
the same as table 1 using the same settings in Table 1 and keeping Max not length set to 1,000 while
changing batch size

6 Discussion

We used word vector representations of physician clinical notes from MIMIC III database and trained
LSTM networks to predict assign ICD-9 codes useful for billing purposes. We were able to achieve
best precision of 0.799, recall : 0.685, F1 score : 0.708 among our best performing models which
used a note length of 1000 words. We chose LSTM networks specifically for our task since we
were specifically interested in learning long term temporal features of our notes. We achieved a
considerable bump in our F1 scores when we changed our strategy by choosing the true last word
prediction of each sentence rather than using the word corresponding to the maximum length (which
changes due to the fact that we apply padding). In general, we also observed a marginal improvement
in our performance by increasing the maximum length of notes used for training (1000). We probably
don’t achieve a large boost in performance by adding additional words as our model maybe forgetting
previous information because LSTM models are capable of holding on to shot-term memory for a
long time, but might not be able to hold on to long-term memory for our longer inputs. Introducing
additional LSTMS as multiple layers did not really help in boosting our performance suggesting
that other alternative architectures maybe required. We found that smaller batch sizes gave us better
performance (size 128). This could probably attributed to the fact that we get more noise in the
estimate of our gradient which is useful in pushing the model away from the shallow valleys (local
minima) in the error function. We also observed that adding drop-out significantly improved our
performance by reducing model overfitting, however at the expense of increased learning time.
Overall, we tackled an important existing problem of clinical text annotation of ICD-9 codes by
adopting a new deep learning approach which uses distributed vector representations of words. We
think there is plenty of room for improvement in both the information representation and the model
architecture used.

6

7 Future Directions

A major limitation of our data set is the occurrence of several misspellings. We represent all the words
in the form of word vector representations. We get a standard vocab of pre-trained word vectors
from Glove (Common crawl)[7] and look for words in our data set in the Glove set. Due to errors
in our dataset, we miss representations of these misspelled words in our clinical notes. It is very
likely that several of these words represent critical components of information that we are not able
to capture. Hence, we need to account for these missing words by coming up with some matching
strategy so that they are represented in our training information. This can be achieved through either
a spell check step during preprocessing, or more involved deep learning approaches to understand
how similar misspelled word vectors are to their correctly spelled counterparts.

We also need to be able to accurately learn more important words or text and hold them in memory for
longer periods of time. For example, some medically relevant words are more critical in predicting
the codes than others. By representing this information correctly (for eg. more weighting) and
more emphasis on learning, we can hope to see improvement in our performance. A more complex
architecture where a fully connected neural network learns the output of all LSTM networks before
final prediction could be helpful in extracting the most relevant information.

We also believe that the learning task can be improved by using medically relevant dictionaries to
obtain more pertinent word vectors. We could use databases such as ClinicalTrials.gov or UpToDate
to obtain contextual information that would be more relevant for our task.

References

[1] https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-ehr-
adoption-2008-2015.php

[2] https://www.cdc.gov/nchs/icd/icd9.htm

[3] Church, Kenneth Ward. "Word2Vec." Natural Language Engineering 23.01 (2016): 155-62.
Web.

[4] Koby Crammer, Mark Dredze and Kuzman Ganchev and Partha Pratim Talukdar Automatic
Code Assignment to Medical Text

[5] Ira Goldstein, M.B.A., Anna Arzumtsyan, M.L.S., and ozlem Uzuner, Ph.D Three Approaches
to Automatic Assignment of ICD-9-CM Codes to Radiology Reports. AMIA 2007

[6] Richard Farkas, Gyorgy Szarvas. "Automatic construction of rule-based ICD-9-CM coding
systems". BMC Bioinformatics 2008.

[7] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors
for Word Representation.

[8] Yitao Zhang A Hierarchical Approach to Encoding Medical Concepts for Clinical Notes
Proceedings of the ACL-08: HLT Student Research Workshop (Companion Volume), pages
67–72

[9] Johnson, Alistair E.w., Tom J. Pollard, Lu Shen, Li-Wei H. Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark.
"MIMIC-III, a Freely Accessible Critical Care Database." Scientific Data 3 (2016): 160035.
Web.

[10] Alan R. Aronson1, Olivier Bodenreider1, Dina Demner-Fushman1, Kin Wah Fung1, Vivian K.
Lee1,2, James G. Mork1, Aurelie Neveol1, Lee Peters1, Willie J. Rogers From Indexing the
Biomedical Literature to Coding Clinical Text: Experience with MTI and Machine Learning
Approaches. BioNLP 2007: Biological, translational, and clinical language processing, pages
105–112

[11] Zhang, M. and Zhi-Hua Z. (2014) A review on multi-label learning algorithms. Knowledge and
Data Engineering, IEEE Transactions 26.8: 1819-1837.

[12] Priyanka Nigam Applying Deep Learning to ICD-9 Multi-label Classification from Medical
Records cs224d Class paper presentation. 2015

[13] Sepp Hochreiter. Long Shert Term Memory Neural Computation. (1997):1735 - 1780

7

[14] Perotte, Adler, Rimma Pivovarov, Karthik Natarajan, Nicole Weiskopf, Frank Wood, and
Noaomie Elhadad. "Diagnosis Code Assignment: Models and Evaluation Metrics." Journal of
the American Medical Informatics Association 21.2 (2014): 231-37. Web.

[15] Zhang, Min-Ling, and Zhi-Hua Zhou. "A Review on Multi-Label Learning Algorithms." IEEE
Transactions on Knowledge and Data Engineering 26.8 (2014): 1819-837. Web

[16] Benesch, C., D. M. Witter, A. L. Wilder, P. W. Duncan, G. P. Samsa, and D. B. Matchar.
"Inaccuracy of the International Classification of Diseases (ICD-9-CM) in Identifying the
Diagnosis of Ischemic Cerebrovascular Disease." Neurology 49.3 (1997): 660-64. Web.

[17] Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. "Im-
proving Neural Networks by Preventing Co-adaptation of Feature Detectors." ArXiv Preprint
ArXiv:1207.0580, 2012.

[18] Lita, Lucian Vlad, Yu Shipeng, Stefen Niculescu, and Jinbo Bi. "Large Scale Diagnostic Code
Classification for Medical Patient Records." International Joint Conference on Natural Language
Processing (2008): n. pag. Web.

8

	Introduction
	Previous Work
	Dataset
	Methods
	Preprocessing
	Model Description

	Results
	Discussion
	Future Directions

