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Abstract

With the large amount of available data and the variety of features they offer, electronic health records
(EHR) have gotten a lot of interest over recent years, and start to be widely used by the machine learning
and bioinformatics communities. While typical numerical fields such as demographics, vitals, lab measure-
ments, diagnoses and procedures, are natural to use in machine learning models, there is no consensus yet
on how to use the free-text clinical notes. We show how embeddings can be learned from patients’ history
of notes, at the word, note and patient level, using simple neural and sequence models. We show on vari-
ous relevant evaluation tasks that these embeddings are easily transferable to smaller problems, where they
enable accurate predictions using only clinical notes.

1 Introduction

With the rise of electronic health records (EHR), applying machine learning methods to patient data has raised a lot of attention
over the past years, for problems such as survival analysis, causal effect inference, mortality prediction, etc. However, whereas
the EHR data warehouses are usually enormous, a common setback often met by bioinformatics researchers is that populations
quickly become scarce when restricted to cohorts of interest, rendering almost impossible using the raw high-dimensional
data. To that extent, several attempts have been made in learning general-purpose representations from patient records, to
make downstream predictions easier and more accurate.

These records usually contain a large set of numerical features such as patient demographics (e.g. age, gender, ethnicity),
lab measurements (e.g. blood gases, fluid balances, vital signs), binary indicators for diseases and medical procedures, as
well as free-text clinical notes. While numerical fields can be straightforward to use in most machine learning models, there
is no common ground on how to process clinical notes from physicians and nurses. Researchers often use general-purpose
off-the-shelf techniques, such as fitting topic models or learning direct word representations. These techniques, besides being
somewhat impractical from a computational standpoint, are very generic and do not leverage the particular structure of these
notes. They are, for each patients, a sequence of un-ordered collections of words1.

In this paper, we use a combination of natural language processing and deep learning techniques to develop models that
can learn embeddings of clinical terms and notes. We propose multiple models, and compare them on a wide range of
evaluation tasks. Because of the particular structure described above, our model learns embeddings on three scales: word-level
embeddings are pooled to create note-level embeddings, which are aggregated to create patient-level embeddings, representing
a patient’s medical history through his medical notes. We compare (1) models where embeddings are first learned on the word
level using count-based and neural models, and then aggregated across notes, and (2) models where all three embeddings are
learned jointly in a recurrent neural network.

As we believe work on representation learning and embedding extraction is only as valuable as its evaluations, we also focused
our efforts on designing relevant and thorough quantitative evaluations of our embeddings. Because of the three-scale structure
of these embeddings, it is natural to evaluate them on three levels.
Word embeddings are evaluated through the Medical Relatedness Property developed in [1] and detailed in 5.1. This is
an intrinsic evaluation similar to the analogy task and aims at assessing how well the embeddings capture semantic relations.
Note-level representations are evaluated through the prediction of 15 phenotypes such as Asthma and Obesity, using a publicly
available dataset, as detailed in 5.2. Patient-level representations are evaluated through multiple classification tasks of different

1The words are always un-ordered in the notes as a consequence of the anonymization and annotation pipeline in the annotator used in
our dataset, which is quite widely spread.
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complexity. These were designed to mimic real-world settings and tackle problems of interest for health-care providers. In
particular we consider the problem of transfer learning and train our models on a small number of patients (500 or 2,000),
since labeling is complex and expensive, and thus bioinformaticians usually have relatively small sample sizes when looking
at particular cohorts.

We use these evaluations to compare various approaches at extracting these note embeddings, and also discuss some particular
design choices involved in those models.

2 Related work

Several popular papers offer extremely powerful techniques to extract representations from words or documents, such as
word2vec [2], GloVe [3], or latent Dirichlet allocation [4]. Those techniques provide good representations for general-purpose
tasks, and offer interesting analogy properties, but they do not utilize the full structure of clinical notes. In [5], the authors
propose a way to use similar models to learn document-level embeddings, which is similar to our goal, but this work has been
found quite difficult to reproduce ([6]).

Learning representations from medical data has been an area of active research recently, either by using free-text notes and
converting them to patient-feature matrices [7], or by using a combination of EHR features and free-text notes. [8] for instance
uses stacked auto-encoders to learn a general-purpose representation of EHRs, but they interestingly use a latent Dirichlet
allocation model to fist process the medical notes. We have tried fitting a model with similar parameters to our medical notes,
and it either does not converge or takes weeks to run.
[9] is very relevant to our work since it learns distributed representations of medical codes at different levels (code-level and
visit-level). However they do not consider clinical notes and do not consider patient-level representations.

Representing patients’ states in a sequence model has been explored as well, using different feature extraction techniques than
learning representations from free-text notes. DoctorAI [10] and [11] use a recurrent neural network trained en electronic
health records to predict future occurrences of diseases, and [12] uses a recurrent model to extract phenotypes from medical
data, regularizing it with prior medical knowledge.

There has been various relevant attempts to learn embeddings from medical words or concepts. While [13], [14] and [15]
are direct application of classic word-embeddings algorithms on various medical corpus, [1] learns embeddings using various
techniques and compares them with relevant quantitative metrics, some of which we use in this work. However only [15]
consider the use of such embeddings in a real-world application. Its approach is still very generic and does not apply to many
problems of interest in the medical community such as utilization, cost, etc.

3 Data

3.1 Presentation

Throughout this work, we use the STRIDE dataset, which is an anonymized medical data extract used by the Stanford Shah Lab
(BMIR2.). This dataset is extracted from the much larger Stanford Translational Research Integrated Database Environment
([16]), a clinical data warehouse.

This extract contains about 27 million notes, corresponding to 1,2 million patients, most of them being between 1998 and
2014. There are about 49 million visits, each them having multiple procedures and diagnoses.

Figure 1: Notes are collections of terms, ordered in a patient’s history

2Stanford Center for Biomedical Informatics
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The clinical notes in this particular extract are processed and annotated using the Open Biomedical Annotator ([7]), which is
a pretty standard practice. This process anonymizes the notes (rendering the words un-ordered), and converts each term to
concept IDs (CUI), which we will sill refer to as words in the remaining of the paper. The annotated notes have the following
structure:

• each patient has a number of clinical notes, written sequentially and timestamped

• each note is a (un-ordered) collection of terms

• terms have been processed, such that it is annotated whether they are negated and/or refer to the patient’s family
history

• terms can be mapped (in a many-to-one relation) to medical concepts

Each notes can also be associated with a visit, during which various diagnoses are made (through ICD9 codes). Those
diagnoses can be mapped to more general diseases categories through the Clinical Classification Software (CCS)3. Thus, for
each note, we can obtain a collection of CCS codes diagnosed at the same time as the note.

3.2 Setup and pre-processing

Vocabulary

While it is common practice to discard all negated words (such as in [8]), we decided to include them as extra words in the
vocabulary, as we believe negations have a particular meaning in clinical notes. This means that each word in our vocabulary
also has its negated counterpart.

This gave us about 265k words, with an extremely long tail, so we restricted our vocabulary to keep relevant words only.
We removed words appearing in fewer than 50 notes, and those appearing in more than 10 million notes. This led us to a
vocabulary size of 107,388.

Patient eras

As most of our extrinsic evaluations consist of prediction on patients, we split each patient’s records in two eras: the input era,
and the target era. Records in the input era will be used to train our embeddings as well as inputs in evaluation tasks, whereas
records in the target era will be used as prediction targets in evaluation tasks.

For each patient, we isolated a 6-months span of interest for the target era, and we used the previous year as input era. For
instance, a year of medical notes and their embeddings could be used to predict the development of various diseases for a
patient in the 6 months following this year of data.

Data split

Our dataset consists of 69,416 patients for training, 11,289 for validation and 34,524 for testing. These patients were filtered
from the STRIDE database to satisfy practical constraints such as having at least a couple visits during the input / target eras
and having at least one clinical note containing a word form our restricted vocabulary.

4 Methods

We explore three types of methods, which we explain here. They are, respectively, learning word-level embeddings and
aggregating them to a fixed-length representation, fitting a sequence model to patients’ notes to learn all embeddings jointly,
and learning a cross-channel encoder from medical notes to diagnoses.

4.1 Embed and aggregate

We first propose a method to learn word embeddings from clinical notes, and then discuss how these can be aggregated to
represent a note or a patient state.

4.1.1 Learning word embeddings from clinical notes

It is natural to think about common methods in Natural Language Processing to learn word embeddings, such as GloVe[3]
and Word2Vec[2]. However, as explained above, the Open Biomedical Annotator removes the order of words in the notes as
part of the de-indentification process. We decided to tackle this challenge by simply re-generating notes with a random word

3https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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order. Such approach was already proposed (e.g. in [10] and [1]) as an easy trick to deal with the unordered medical codes
and did not seem to alter the models’ quality. However since clinical notes can be quite long, we suspect that it might be too
hard for our models to capture the context of a word. Therefore, we also propose to juxtapose a couple times duplicates of a
same note, but with different random orders.

This makes our data look exactly like text data, so that we can learn embeddings with an efficient C implementation of GloVe4.

4.1.2 Learning word embeddings from external data (MCEMJ)

In [14] the authors learn embeddings from 350,000 medical journal abstracts in the OHSUMED dataset. They first map the
free text to UMLS5 concept ID’s and then learn the word embeddings using Word2Vecs skip-gram model with hierarchical
softmax. Their best results were achieved with embeddings of dimension 200 and a window size of 5. 52,100 such embeddings
were shared publicly by the authors 6 and approximately 28,000 of them belonged to our vocabulary. We will refer to them as
MCEMJ (Medical Concept Embeddings from Medical Journal).

4.1.3 Fixed-length aggregation at the note and patient level

Although it seems to be a simple approach, it is still very common in medical applications to aggregate a patient’s data over
time by summing or averaging counts of medical codes. Similarly, we propose to aggregate (mean, max, min, or sum) the
word embeddings per note and then per patient. We explored these various ways of pooling the embeddings both on the note
and the patient level.

In addition, we investigate the utility of concatenating multiple of these patient-level aggregations, especially some derived by
different sources of embeddings (e.g. randomly ordered notes and medical journals).

4.2 Recurrent neural network

Our methods so far do not rely on the sequential nature of the notes in a patient’s history. For a number of prediction tasks,
it is important to capture the progressive evolution of a patient’s state in its representation. Thus, it is a natural idea to use
recurrent neural networks to learn those patient-level embeddings.

4.2.1 Supervision

We supervise our network with diagnoses associated with the notes (from the corresponding visits, as explained in 3.1).
Since these descriptors are extremely high-dimensional, we map them to more general disease categories using the Clinical
Classification Software (CCS)7, leaving a label space of dimension 254.

At this point we have a design choice, training the network as a multi-task sequence classification problem (aggregating the
CCS labels on a per-patient basis), or as a sequence labeling problem (supervising each timestep with its corresponding CCS
codes). Experiments showed that the former gave considerably higher scores on the evaluation task, which is a probable
consequence of the labels’ sparsity (the latter providing very scarce supervision signal).

4.2.2 Architecture

Pooled embedding layer

Since this un-ordered structure in the input is quite uncommon, we use an unusual layer as input to our neural network. This
layer computes trainable embeddings from the collections of words in an input note, and pools them before feeding them to
the rest of the network. More precisely, we use max-pooling aggregation, so the input to our network for a note x is actually
given by:

φL(x) = max1(x� L)

where x = [0, 0, 1, ..., 0, 1, 0] is the note bag-of-words encoding of shape (V, 1), L is the word embedding matrix of shape
(V,Dx) (V being the vocabulary size andDx the word embedding size), and max1 performing a max over the first dimension.

We also explored with aggregating the word embeddings by taking their average, but this performed extremely poorly on the
evaluation tasks. It makes sense to use particularly activated features in the learned word representations rather than their
average, as those activated features will capture specific semantic indicators from the note.

4https://github.com/stanfordnlp/GloVe
5Unifieid Medical Language System, the same as the one we use.
6https://github.com/clinicalml/embeddings
7https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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Figure 2: Model architecture

RNN cells

We explored both using Long Short-Term Memory ([17]) and Gated Recurrent Units ([18]) as cell structure for our recurrent
network. We found that LSTM learned a poor representation of the input, leaving a number of columns at 0 and performing
poorly on evaluation tasks, which confirms the findings of [10]. Thus, most of our final experiments were conducted with
GRUs, and this is what we strongly recommend for researchers working with similar problems.

Other details

We used tanh activations, dropout (with drop probability 0.1 or 0.2 depending on models), and a dense layer with binary
cross-entropies for the multi-task supervision. We trained the networks for 100 epochs, using RMSProp ([19]) for loss opti-
mization. The models were implemented in Keras ([20]) and trained on a NVIDIA GeForce GTX TITAN X GPU.

4.2.3 Embeddings initializations

We explored initializing our embeddings in various ways. In particular, we tried initializing them randomly, with word
embeddings pre-trained on our notes, and with word embeddings trained on journal abstract (MCEMJ) (see 4.1.2 for details).
While the results for random initialization and MCEMJ initialization are reported below, we found that initializing the weights
with embeddings pre-trained on the clinical notes themselves gave very poor results on the evaluation tasks.

4.3 Note-level cross-channel autoencoder

Finally, we experimented with a flat version of the sequential model presented in the previous section, ie. a two-hidden-layer
neural network where the first layer is a randomly initialized embedding layer with max-pooling. For this model, the inputs
are the clinical notes and the non-exclusive targets are CCS labels derived from the corresponding visit data.

This model seems appealing since it leverages our data to provide supervision in order to learn word embeddings. In addition,
it is simpler to implement and deploy than a sequential model. However we found that in practice it mostly combined the
drawbacks of both previous models: it does not provide a clear patient-level representation, it requires a lot of training data
(and labels!), and is also very slow to run.

5 Experiments

A key component in describing novel embeddings is a thorough evaluation of their relative effectiveness. The multi-scale
nature of thes embeddings (words, notes, patients) imposes a multi-scale evaluation. As we will see in the results, it is not
clear whether or not the results in the intrinsic and note-level evaluation have an impact on the final extrinsic evaluation at the
patient level.
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5.1 Word-level evaluation

We evaluate our word embeddings through the Medical Relatedness Property developed in [1] 8.

The National Drug File Reference Terminology (NDF-RT) provides sets of relations (such as May-Treat and May-Prevent)
between drug and diseases. The objective is equivalent to the analogy task used in NLP. Suppose we have two diseases d1,
d2 and medications m1,m2 such that the relation r holds for both pairs (d1,m1) and (d2,m2). The goal is to check if the
following arithmetic holds in the word embeddings space:

ed1 − em1 + em2 ≈ ed2

Precisely, the metric is computed by the ratio of words for which one of the top-40 neighbors of ed1 − em1 + em2 satisfies the
relation r with m2.

Embedding method May-Treat (%) May-Prevent (%)
GloVe300-W10-R1 7.83 8.51
GloVe-100-W7-R2 6.01 08.09
GloVe-300-W4-R2 8.81 10.64
GloVe-300-W7-R2 8.25 10.21
GloVe-500-W7-R2 9.23 10.21
GloVe-300-W10-R2 10.49 9.79
GloVe-300-W4-R3 6.57 7.23
MCEMJ 8.25 6.81
Cross-channel 5.45 2.55
MaxGRU200-MCEMJ 7.27 5.53
MaxGRU300 1.26 0.43

Table 1: Evaluation of the Medical Relatedness Property for two relations: May-Treat and May-Prevent. ”GloVe-300-W10-
R2” corresponds to GloVe embeddings trained on our clinical notes, with length 300, window size 10, and clinical notes
repeated twice in the corpus. All GloVe models were run for 25 iterations. ”MaxGRU200-MCEMJ” is a RNN with GRU
cells, 200 cells, initialized with MCEMJ. This evaluation was computed with the code provided by [1]

Interestingly, we notice that many of our GloVe embeddings perform better than the MCEMJ ones (learned from abstracts of
medical journals), despite randomized word orders and a vocabulary twice as big. In addition, embeddings from randomly
initialized neural models perform worse, especially the RNN.

5.2 Note-level evaluation

To evaluate our note representations, we used the i2b2 (Informatics for Integrating Biology to the Bedside) 2008 Obesity
Challenge [21]. The publicly available dataset contains approximately 1,230 clinical notes and 15 phenotype targets such as
Asthma and Obesity. The dataset is divided in two: the textual task for which labels are attributed from explicit mention in the
notes; for the intuitive task however, classification was done by using doctors’ intuition and judgment.

To align with this competition, we consider the micro-averaged F19 as our main metric. For simplicity, we will only report
the average performance across the 15 targets. More details about this dataset and our approach is provided in Appendix A.
We used a raw bag-of-words encoding of the notes as baseline.

Embedding method Textual Intuitive
Baseline 0,822 0,802
GloVe-300-W7-R2 0,784 0,773
GloVe-500-W7-R2 0,779 0,774
MCEMJ 0,776 0,765
MaxGRU300 0,793 0,778
MaxGru200-MCEMJ 0,781 0,769

Table 2: Micro-averaged F1 scores averaged over the 15 targets of the i2b2 Obesity Challenge test set. All embeddings where
aggregated among the notes by component-wise maximum.

Overall, we did not notice much disparity in the accuracies yielded by the different representations, although the baseline
performed a bit better than all our dense features. We also observed that in general, aggregating the word representation in a

8We used their code to compute this metrics, which is available at https://github.com/clinicalml/embeddings
9Which corresponds to summing counts (true positives, . . . ) across classes, see [21] for details.
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note with the max operator yielded the best results (compared to mean, min, sum). Finally, we notice that the baseline
had a larger drop in performance between the textual task and the intuitive one, compared to the models based on the word
embeddings. This could mean that word embeddings become more robust when the target gets more complex.

5.3 Patient-level evaluation

The final evaluation - at the patient level - consists of various real-world applications in which such embeddings could be
used, and thus it is our extrinsic evaluation. We look at the performance of various prediction tasks, using only the learned
embeddings as input. Moreover, to replicate the common drawback of prediction tasks in healthcare in actual settings, where
sample sizes for actual problems of interest are often relatively small, we only use small training sets (respectively 500 and
2,000 patients) to evaluate those prediction tasks (the results are then averaged over 20 trials).

The tasks we use are particularly relevant to bioinformatics scientists and healthcare providers. We use the embeddings to
predict various events in the patient’s ”target era”: mortality. future admission, future emergency visits (ER), future develop-
ment of the 6 densest diseases in our training set (thyroid disorder, cardiac dysrhythmias, diabetes, spondylosis, disorder of
lipid metabolism, and essential hypertension).

All of our evaluation models were trained using Ridge logistic regression, cross-validated over 5 folds (using glmnet), on a
per-training group basis. The results were further averaged over 20 sampled training groups. All GloVe methods reported here
use a window size of 7 and 2 resampling of the notes. In addition all aggregations of word embeddings (GloVe and MCEMJ)
are concatenations of aggregations by maximum, minimum and average since this always improved the performance.

The baseline is a Ridge logistic regression fit on a raw bag-of-words encoding of the patient history of notes, where the
vocabulary is restricted to the most frequent words appearing in the small training set10. We only kept the results when the
baselines converged, but this does not happen all the time, and would even more rarely with longer eras and more patients.

Results with 500 patients

For each model, we report the resulting average and standard error of Area Under Receiver-Operator Curve (AUROC):

Method Death Admission ER Visit
Baseline 0.801 (0.019) 0.711 (0.019) 0.698 (0.005)
GloVe-300 + MCEMJ 0.811 (0.005) 0.758 (0.002) 0.756 (0.002)
GloVe-500 + MCEMJ 0.809 (0.006) 0.757 (0.003) 0.755 (0.003)
MCEMJ 0.795 (0.004) 0.74 (0.003) 0.729 (0.004)
GloVe-300 0.797 (0.005) 0.752 (0.003) 0.752 (0.002)
GloVe-500 0.805 (0.005) 0.752 (0.004) 0.752 (0.003)
MaxGRU300 0.842 (0.003) 0.723 (0.022) 0.745 (0.005)
MaxGRU600 0.829 (0.017) 0.765 (0.004) 0.759 (0.002)
MaxGRU500-MCEMJ 0.812 (0.017) 0.746 (0.006) 0.747 (0.004)
MaxGRU200-MCEMJ 0.817 (0.017) 0.75 (0.006) 0.754 (0.002)

Table 3: Evaluation on mortality and utilization prediction tasks. Reported metrics are mean and standard error of AUROC
and across 20 small evaluations.

Methods Thyroid Dysrhythmias Diabetes Spondylosis LMD11 Hypertension
Baseline 0.610 (0.009) 0.687 (0.01) 0.68 (0.005) 0.667 (0.017) 0.635 (0.011) 0.664 (0.009)
GloVe-300 + MCEMJ 0.632 (0.009) 0.69 (0.004) 0.689 (0.004) 0.696 (0.004) 0.648 (0.009) 0.679 (0.005)
GloVe-500 + MCEMJ 0.648 (0.006) 0.689 (0.005) 0.691 (0.003) 0.701 (0.004) 0.649 (0.009) 0.667 (0.01)
MCEMJ 0.642 (0.01) 0.688 (0.004) 0.69 (0.004) 0.688 (0.003) 0.651 (0.005) 0.666 (0.01)
Glove-300 0.618 (0.008) 0.683 (0.005) 0.683 (0.004) 0.689 (0.003) 0.649 (0.005) 0.672 (0.005)
Glove-500 0.618 (0.01) 0.686 (0.004) 0.683 (0.004) 0.693 (0.003) 0.642 (0.008) 0.67 (0.004)
MaxGRU300 0.701 (0.011) 0.709 (0.017) 0.737 (0.013) 0.732 (0.012) 0.7 (0.015) 0.745 (0.003)
MaxGRU600 0.721 (0.004) 0.673 (0.023) 0.744 (0.013) 0.738 (0.013) 0.702 (0.016) 0.735 (0.013)
MaxGRU500-MCEMJ 0.623 (0.013) 0.673 (0.02) 0.718 (0.012) 0.725 (0.004) 0.706 (0.004) 0.739 (0.005)
MaxGRU200-MCEMJ 0.662 (0.01) 0.697 (0.016) 0.705 (0.02) 0.728 (0.012) 0.703 (0.011) 0.741 (0.003)

Table 4: Evaluation on prediction of future diseases. Reported metrics are mean and standard error of AUROC and across 20
small evaluations.

10This is the only way to have this model converge in a majority of cases.
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We can observe most models beat the baseline quite easily (which often did not converge when fitting these evaluation models),
except on mortality prediction where it appears to perform particularly well. The sequence models achieve the best results,
however it is unclear whether it is due to the training supervision or to the fact it captures the sequential semantic information
in the notes.

Results with 2,000 patients

The results with 2,000 patients are reported in the appendix B. The baseline is not included since it could never converge
(2,000 patients per training groups means more word features, at a level where glmnet could not converge).

6 Conclusion

We showed in this work that is possible to learn embeddings from patients’ clinical notes, which can easily be transfered to
considerably smaller populations for specific prediction and classification problems, using a particularly relevant and thorough
set of evaluation tasks. We showed that such learned representations not only render those smaller problems computationally
more tractable, they also have the ability to improve the accuracy of such predictions, by capturing more of the semantic
information contained in the notes than baseline models.

Furthermore, we proved that recurrent neural network can learn representations that yield particularly good improvements
on these evaluation tasks, by leveraging the sequential arrangements of the notes in a patient’s history, provided the correct
design choices are made. However, it is interesting to note that while our ”embed and aggregate” methods perform less well
than our sequence models, they are way quicker to train, demand less tweaking, and can be transfered across institutions and
sub-problems in a more flexible manner. It is also interesting to note that models that perform the best on our extrinsic tasks
(which are realistically the most important) are not necessarily the ones yielding the best word embeddings according to our
word-level evaluation.

There are future developments that could be made to this model. First, it would be interesting to develop a new expression
of the GloVe or word2vec objective function that takes into account the specific structure of these notes (sample negated
words during negative sampling, sample windows from the set of words at each iteration, etc.). Secondly, it would be worth
exploring other options for the RNN supervision. Ideally, the labels would be less sparse and would only use the notes’
content; so perfect labels would be some very high-level aggregation of the concepts present in the note.
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Appendices
A Details on note-level evaluation

The publicly available dataset contains approximately 1,230 clinical notes (730 for training and 500 for testing) and 15 targets.
The targets are phenotypes such as Asthma, Obesity, etc, and they all have 4 possible classes: Present, Absent, Questionable
and Unmentioned.

The notes were processed with the Shah Lab annotator so that it had the exact same format as the notes in the STRIDE
database. From the original training set, we randomly subsampled a validation set containing 20% of the data. We report only
the classification models that yielded the highest accuracies: a Random Forest with 10 trees was used for the baseline repre-
sentation (bag-of-words) and a k-Nearest Neighbors for all other inputs (k was chosen by cross-validation on the remaining
training data).

Embedding method Aggregation Textual Intuitive
Baseline all 0,807 0,803
GloVe-300-W7-R2 max 0,784 0,785
GloVe-300-W7-R2 min 0,772 0,774
GloVe-300-W7-R2 mean 0,754 0,759
GloVe-300-W7-R2 sum 0,763 0,765
GloVe-500-W7-R2 max 0,788 0,776
GloVe-300-W10-R2 max 0,749 0,758
GloVe-300-W10-R1 max 0,77 0,764
GloVe-300-W4-R3 max 0,769 0,783
MCEMJ max 0,775 0,761
Cross-channel max 0,775 0,759
MaxGRU300 max 0,780 0,783
MaxGRU200-MCEMJ max 0,773 0,769

Table 5: Micro-averaged F1 scores on the validation set for several word embeddings

B Patient-level evaluation with 2,000 patients

We report, for reference, the results of some of our models when the evaluation task is trained on 2,000 patients instead of
500. As stated earlier, the baseline could not converge in this setting. What’s reported is still the average AUROC across 20
training groups, as well as the standard error.

Method Death Admission ER Visit
Baseline NA NA NA
GloVe-300-W7-R2 + MCEMJ 0.864 (0.001) 0.783 (0.002) 0.78 (0.001)
MaxGRU300 0.866 (0.001) 0.791 (0.001) 0.768 (0.002)
MaxGRU600 0.864 (0.001) 0.789 (0.001) 0.775 (0.001)
MaxGRU500-MCEMJ 0.849 (0.001) 0.775 (0.002) 0.766 (0.001)
MaxGRU200-MCEMJ 0.854 (0.001) 0.782 (0.002) 0.767 (0.001)

Table 6: Evaluation on prediction of mortality and hospital utilization.

Method Thyroid Dysrhythmias Diabetes Spondylosis LMD Hypertension
Baseline NA NA NA NA NA NA
GloVe + MCEMJ 0.704 (0.003) 0.728 (0.002) 0.735 (0.002) 0.73 (0.001) 0.706 (0.002) 0.719 (0.002)
MaxGRU300 0.744 (0.002) 0.738 (0.013) 0.77 (0.002) 0.761 (0.001) 0.749 (0.001) 0.768 (0.001)
MaxGRU600 0.759 (0.002) 0.738 (0.013) 0.785 (0.002) 0.766 (0.001) 0.752 (0.001) 0.778 (0.002)
MaxGRU500-MCEMJ 0.685 (0.003) 0.737 (0.003) 0.757 (0.001) 0.745 (0.001) 0.737 (0.001) 0.768 (0.001)
MaxGRU200-MCEMJ 0.706 (0.002) 0.741 (0.001) 0.761 (0.001) 0.755 (0.001) 0.743 (0.002) 0.768 (0.001)

Table 7: Evaluation on prediction of future diseases.
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