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Abstract

In this paper, we describe a model to answer questions using informations
contained in context paragraphs. An answer is a short contiguous segment
of the context. The SQuAD dataset o↵ers a hundred thousand question-
answer pairs generated by humans from Wikipedia context. We present a
model derived from multi-perspective matching from Z. Wang et al. (2016)
that leverages perspective functions to match relevant context segments
with the question.

1 Introduction

Question Answering (QA) is a crucial task in Natural Language Processing (NLP). It was
shown that any NLP task can be transformed into a QA task. For instance, translating
a sentence S from English to French is the same as asking: How do you translate the
sentence S in French? Hence, QA can be seen as an universal, high-level abstraction of NLP
tasks. Notably, QA ties to Machine Comprehension, because answering a question usually
requires understanding the question itself, and other potential sources of information.
Reference datasets used to be manually crafted thus intrinsically very limited in size,
which prevented researchers from building powerful, expressive models. The broad range
of impactful problems that can be solved using QA motivated the need for a massive,
high-quality dataset. For this reason, Rajpurkar et al. (2016) built the SQuAD dataset.
The SQuAD dataset is a very large (100k+ samples) dataset made of paragraphs of text,
called contexts, and pairs of (questions, answer) about the context where the answer is a
segment from the context. A very simple example could be: if the context is ”the best way
to learn NLP is to take CS224N”, the question could be ”what is the best way to learn
NLP?”, and the answer would be ”take CS224N”.

Manual analysis of SQuAD shows that it contains examples requiring various reasoning
techniques to predict the correct answer. This diversity and richness poses an interesting
challenge for the researcher, because models must be expressive enough to capture and
reproduce those di↵erent forms of logical thinking. On the other hand, resulting models
are expected to generalize very well to other tasks.

This paper first describes previous work in the area, which is easily accessible via the online
leaderboard for SQuAD. Then, we dive into the technical approach we used to solve this
problem. The next section details the experiment we ran, the results we obtained and the
conclusions and questions they raised. Lastly, we’ll conclude on the work done.

2 Related Work

Our approach is mainly inspired by the work of Z. Wang et al. (2016). He has demon-
strated that a multi-perspective matching architecture similar to the one we implemented
as described below is able to achieve results close to state-of-the-art on the SQuAD dataset.
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The key takeaway from Wang’s approach is the use of perspective functions as a way to
correlate, cross-reference and fuse informations from the question and the context. They
also proposed a classification of QA models targeting SQuAD into two classes: boundary
identification, where we aim to predict directly the answer span, and chunking and ranking,
where we first identify potential answers before ranking them.

Notably, Seo et al. (2017) have built upon the multi-perspective architecture, proposing a
Bidirectional Attention Flow for Machine Comprehension (BiDAF). In addition to filtering
context using the question, Seo symmetrically filters the question using the context, to
extract relevant part of the questions. This allows him to entirely skip the perspective layer
and achieve slightly better F1 score, while training performance increases. However, we
found that this model was extremely hyperparameters-dependent since our implementation
yielded a score of 31% F1.

Even though their model is very di↵erent from ours, S. Wang et al. (2017) yields several new
ideas that we successfully adapted into our model: the tanh layer, doubly-stacked BiLSTM
or a window-based answering fallback technique. In general, we took inspirations on several
implementation details from various papers out of the scope of SQuAD papers.

3 Approach

Figure 1: Multi-perspective matching network
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We have implemented a multi-perspective matching algorithm. Let us assume that the
paragraph, or context, has n words, and the question has m words. The model is made of
6 layers:

Embedding outputs context and question representations P = [p
1

, . . . , p

n

] 2 Rd⇥n and
Q = [q

1

, . . . , q

m

] 2 Rd⇥m by embedding each word into a vector made of the
concatenation of a pretrained word embedding and a char-based word embedding.

Attention filter selectively filters the context words that will be useful to answer this
specific question, by weighing each word from the context: decreasing the norm
of useless words to reduce their relative importance. Outputs P0 = [p0

1

, . . . , p

0
n

] 2
Rd⇥n.

Representation fuses all words from the question (resp. the context) into one vector that
captures the meaning of the question (resp. the context), using two BiLSTMs.
The previous filtering step is crucial in making sure that useless words, noise, has
as little influence as possible on the context representation. Turns P0 and Q into
P

h

2 Rn⇥2h, Q
h

2 Rm⇥2h.

Perspective ”reads” the context from di↵erent perspectives while referencing to the ques-
tion. The process is analogous to analyzing the (context, question) pair using di↵er-
ent techniques and reasoning to extract relevant informations, where the techniques
themselves are determined and learned by the algorithm. Outputs a perspective
matrix R 2 Rn⇥6p

Aggregation fuses extracted informations from the perspective layer with representations
for context and question. Outputs R

a

2 Rn⇥h that conveys the answer to the
question on this specific context.

Prediction transforms the abstract, high-dimensional answer vector into two numbers: the
predictions for the positions of the beginning and the end of the answer within the
paragraph.

In this section, we will go into details through the successive layers of our model, from raw
data to predicted answers.

3.1 Preprocessing

Upon evaluation of our models, we realized that three phenomena could impact performance:

• Words missing GLoVE encodings are encoded with random vectors. This can be
solved using the larger corpora of GLoVE vectors (2.2M tokens), but since they are
only provided in dimension 300, this negatively impacts training speed.

• Words that do have a GLoVE vector but are not in the vocabulary (because they are
in test but not in train dataset) will also be encoded as the token unk (unknown).
This causes on average a 6% drop in performance, but can be fixed by not restricting
the embeddings to the train vocabulary when evaluating the model.

• Symbols-based words (such as 1970 or 10.5%).

In those three cases, the default encoding mechanism loses the meaning of those potentially
meaningful segments. Hence, in addition to the default preprocessing (turning words into
ids referencing the vocabulary list), we have added a character-wise encoding. Similarly to
words, each letter of the context and question is encoded into an integer. Since there are
only 170 distinct characters, this modification does not have a major impact on the number
of parameters to the model (with encodings of size 40, this is 6800 parameters, or less than
1%). This allows for a better expressiveness in those cases.

3.2 Word embedding layer

Each word of the question and the context is represented by a d-dimensional vector. It is the
concatenation of the word’s GLoVE vector of dimension d

glove

(typically 50 or 100) and a
character-wise embedding of dimension d

char

(typically 40). The GLoVE vector is obtained
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by a simple lookup operation.
For the character-wise embeddings, we use the following process:

1. Let d

c

be the number of characters in our dictionary. We choose an arbitrary
embedding dimension for each character d

e

. We initialize a random embedding
matrix of dimension d

c

⇥ d

e

using a Xavier initializer.

2. We lookup into this matrix to convert each character into its embedding.

3. We feed each character embedding in the order they appear in the word into a LSTM
that fuses the embeddings. The final state represents the entire word meaning. It
is called the character-wise word embedding, and is concatenated to the GLoVE
vector for the word.

As a result, context (resp. question) is a list of n (resp. m) vectors of dimension d, one for
each word. This vector summarizes as well as possible the word meaning.

3.3 Attention layer

Contexts are usually relatively long (several hundreds of words), because they discuss a
broad topic, and most of the information contained in a passage is not relevant for answering
the question. A specific question will only require to comprehend a subset (not necessarily
contiguous) of the passage, which contains the answer itself and the clues needed to find the
answer. The attention layer will make sure that our model identifies the crucial elements
in the context, and pays very little attention to the noise generated by the rest of the passage.

As in Wang et al. (2016), we compute a coe�cient of relevancy r

i,j

for each pair of words
(p

i

, q

j

) from the passage and the question and pick the maximum over question words: for
a word of the passage p

i

, r
i

= max
j

r

ij

. The idea is that if a word in the passage has a high

”similarity” with at least one word in the question, it must be important, and vice-versa.
Then, we set p0

i

= r

i

⇥ p
i

.

We use cosine similarity to compute r

ij

=
pT

i qj

||pi||·||qj ||
, as it leverages the properties of

word embeddings (words are clustered in this high-dimension space in a meaningful way).
Radovanovi et al. (2010) have shown that since cosine distance is closely related to L2 norm,
it can su↵er from the curse of dimensionality (especially for GLoVE in dimension 300).
Hence, we have experimented with dimensionality reduction via PCA before computing
cosine similarity.

We have also found that applying a second filter, this time using a mean r

i

= 1

M

P
j

r

ij

proves to be useful. Indeed, the filter proposed by Wang might emphasize heavily a word
of the context that triggered only one word in the question, when using the mean helps the
model isolate words that are heavily related to the entire question. For similar reasons,

good results can be obtained by using r

i

= cosine(p
i

, [
 �
h

q

1

,

�!
h

q

N

]), where h are final states
from the BiLSTM that fuses the informations of the question (see representation layer). A
high cosine similarity will mean that the context word echoes the entire question. We call
this the Co-Qu filter.

Ablation study have highlighted the importance of this layer, so we spent a lot of time fine-
tuning it. For this, we have developed a visualizing mechanism that shows the emphasis put
on each word of the context. This allowed us to easily judge the quality of the filtering layer
and build intuitions. That said, we are very aware that the behavior of the model should
not be expected to mimic human reasoning: what sounds normal or good to us might not
be ideal for the model.
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3.4 Context/Question representation layer

We have representation of each word in the question and the now question-aware context.
We use two BiLSTMs, one for the question and one for the context. Each of those BiLSTM
produces two sets (backward and forward) of n (for the context) or m (for the question)

vectors. We have hp

i

= [
�!
hp

i

,

 ��
hp

n�i

] 2 Rn⇥2h where

�!
hp

i

=
����!
LSTM(

��!
hp

i�1

,p
i

)

 �
hp

i

=
 ����
LSTM(

 ��
hp

i+1

,p
i

)

We tried to add a second layer of BiLSTM stacked on top of the first layer proposed by
Wang et al., to give more expressivity and power to the model. We saw small variations
in accuracy that we deemed insignificant, suggesting that the LSTM structure was not
su�cient. For this reason, we wanted to try using Convolutional Neural Networks (CNN) or
a Dynamic Neural Network approach where representations are not built linearly but by a
constant back and forth to identify part of interests in the text. Time constraints prevented
us from training those models. That said, our analysis suggest that the main bottleneck in
the performance of the model is not the representation layer.

Also, it is possible that questions and contexts are not encoded into the same ”meaning
space” by their respective BiLSTM. In other words, a same vector in the question space
or the context space might have completely unrelated meaning and properties. To allow
comparison, we added an intermediary reconciliation layer: let W 2 R2h⇥2h, b 2 R2h be
trainable variables, then hq

i

= tanh(Whq

i

+ b) This simple modification yielded an increase
of about 4% in F1 score.

3.5 Perspective layer

At this stage, we have a vector of size 2h for each word of the question and the context.
The perspective layer allows us to compare the context against the question using di↵erent
techniques, called perspectives. Basically, we try di↵erent matching/similarity methods,
concatenate their results, and let the following layer learn how to use those informations
to identify the answer within the passage. As in Wang, we define r = f

r

(v
1

, v

2

,W) =
cosine(W � v

1

,W � v
2

), where W 2 Rp⇤2h is trainable (p is the number of perspectives). We
use six trainable matrices W 1

...W

6, and define

��!
rfull
j

= f

r

(
�!
h

p

j

,

�!
h

q

m

,W

1)

��!
rmax

j

= max
i=1..m

f

r

(
�!
h

p

j

,

�!
h

q

i

,W

2)

���!
rmean

j

=
1

m

mX

i=1

f

r

(
�!
h

p

j

,

�!
h

q

i

,W

3)

Symmetrically, we define
 ��
rfull
j

,
 ��
rmax

j

and
 ���
rmean

j

. Concatenating those 6 vectors for each word
of the context yields the matrix R 22 Rn⇤6p. The idea behind those three strategies is to
allow the question to select relevant parts of the context, contiguous or not. For instance,

if the part of the context that matches the question is on the left of the answer,
��!
rfull
j

will
be useful. When the matching parts of the contexts are spread across the answer segment,
mean and max matching are useful.
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3.6 Aggregation layer

Each perspective function yields 6 perspective vectors per word of the context. Identically
to the representation layer, we can fuse the information of all the perspective functions by
using a BiLSTM. The output of this layer is simply the concatenation of the forward and
backward hidden states of the LSTMs. From R 2 Rn⇤6p we obtain a matrix R

a

2 Rn⇤h.

3.7 Prediction layer

We use two feed forward neural networks to extract the information from the perspective
vector: one predicts the beginning of the answer span, the other predicts the end. We
found that adding the representation of the context and the question to the data fed to this
layer improved F1 score. Hence, the input matrix S 2 Rn⇥(6p+4h) is the concatenation of
all the BiLSTM-fused perspectives and the representation of context and questions: S

i

=
[R

i

,hp

N

,hq

N

]. The output is o
b

2 Rn or o
e

2 Rn, and the argmax yields b, e, integer
positions of begin and end. We use a single hidden layer, and ReLU non-linearities.

4 Performance

In our case, performance issues were extremely time consuming. Without any optimization,
the model described does not allow for a batch size greater than 5 to avoid out of memory
errors on the 8Gb GPU of our Azure VM. Hence, we implemented several tricks to improve
performance:

Clipping lengths Plotting the histograms for context and question lengths allowed us to
see that less than 1% of the contexts are longer than 300 words, and questions 25
words. Keeping very long contexts and questions causes allocation of huge matrices.
In other words, 99% of the data could be processed with a greater batch size, but
the presence of those long samples prevented us from increasing the model’s batch
size. We simply removed those examples from our training set, and kept them as
testing data. We expect the expressiveness of the model to be unnoticeably altered
by the absence of those long sentences in the training data, bringing about 100%
performance gain in training time.

Adaptative batch size We use adaptative padding: we pad questions and contexts to the
length of the longest one in the batch, instead of padding everything to one single
length, which adds a lot of computational overhead for processing useless states.
Similarly, when a batch is made of only smalls questions/contexts, we extend its
size to fill the memory as much as possible

Precomputing feed dictionaries We realized that by computing feed dictionaries on the
fly at each batch, GPU usage was below 30% because of the delay between batches.
Precomputing all feed dictionaries initially allow us to store them in a Tensorflow
queue, which has a RAM impact but increases GPU usage to almost 100%.

5 Experiments

We have three datasets: train ( 80k samples), test (10k samples) to measure performance
on an unseen dataset, validation ( 5k) for hyperparameter testing. Only once we reached a
good model and we have shown it does not overfit, we retrain it using those three datasets
and the dev datatset. Evaluation of the models are done using two criteria: average F1
and EM scores. F1 is the number matching words between prediction and correct answer,
normalized by the length of the prediction to prevent model from simply returning the
entire sentence. EM is a binary indicator that is 1 when the prediction exactly matches the
correct answer. Sometimes, shifting the predicted segment by one word still makes a good
quality answer but would yield an EM of 0, that is why the more progressive F1 score is
used as the primary measurement.
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5.1 Results

Even though we started with a simple reimplementation of Wang’s model, our performance
does not quite compare with his paper. We reached 54% on our test set, less on the
leaderboard because of the unknown word issues described above. We have ran extensive
debugging, displaying gradients and variables, and using Tensorboard to visualize learning.
We identified several reasons for this lower performance than Wang’s model:

1. An epoch takes about 14h on the VM: computing the perspectives is extremely
time consuming, and the space requirements force us to use a very small batch size.
Since we got the model working late and we had several experiments to run, we
could not run the training for more than 2 epochs and stop it even though it was
still learning.

2. We have noticed the impact of dropout on performance, but we have not been able
to figure out the ideal places to use dropout. That said, comparing performance on
train and test sets show that we do not overfit.

3. We manually analyzed results from the attention layer, and they seemed coherent
with our expectations.

4. We spent a lot of time trying to modify and improve the model, as per the course
guidelines that said that simply implementing an existing model is not enough. For
this reason, we did not have enough time to fully diagnose Wang’s basic model.

We have completed several model runs throughout the course of the projet. We started
with a minimum viable model, with only one perspective function, no chars embeddings,
glove vectors of size 50. Training was fast and quickly yielded 21% F1, confirming that
the model worked. Then, we added the two remaining perspective functions, and reached
a F1 score of 40% after two epochs. We added char embeddings and noted an increase to
45%. Then, we cross-experimented with the tanh layer, doubled BiLSTMs (unconvincing
results), glove vectors size (higher dimensions systematically outperformed lower dimensions,
with the inter-dimension gap reducing as dimension was increasing). We also changed
prediction network depth (we used two hidden layers for our biggest models to summarize
more smoothly the huge matrices into two integers. Again, the inability to run training for
10 or more epochs made hard to confirm model power, we were merely confirming that they
could learn in a few epochs, but never actually reached a hard plateau. Our best model has
a F1-score of 51% on our test dataset.

Due to time and computing power limitations, we did not have to build an ensemble model.
The literature shows it would yield an almost guaranteed increase in performance of a 2-3%.
Our plan was to add the outputs of the final softmax functions (the probability distributions
for begin and end) of several models, and pick the argmax on the sum.

5.2 Analysis of errors

Manual analysis of errors made by the model reveal that the question type if very frequently
well understood: when is answered by a date, whose is answer by a named entity, etc. Indeed,
questions that are of the true/false type, a more blurry type, have the lowest success rate,
because it is harder to interpret what is expected.

1. ”the university’s center in beijing is located next to what school’s campus?”, answers
”hong kong” instead of ”renmin university”

2. ”when did the warsaw uprising begin?”, answers ”1944” instead of ”August 1944”

Some answers appear correct to our human brains. For instance, ”what did davies want
to build?” has ”nationwide network” and ”proposed to build a nationwide network in the
uk” as o�cial answers, but our model predicts ”nationwide network in the uk” which seems
correct as well. One answer is ”11” when the context only says ”around 11”, which is the
predicted answer and should be an accepted answer.
We also noted that for hard contexts (i.e. several words are OOV), our model tends to
predict very wide or completely unrelated answers. It seems to underutilize the information

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: The performance is strongly damaged when increasing the answer length, whereas
our model’s prediction is not a↵ected by neither the context or the question length. The
bottom right histogram presents the F1 and EM scores given the type of question.

from the known words to extrapolate that the unknown word is indeed the answer, and the
predictions are mere results of numerical instability as the probability distribution seems
uniform on several potential answers.
In cases where the answer is spatially and syntactically close to other false answers, the
model fails. For instance, if the context states that ”A played against B, and B won against
A”, the close proximity and the identical grammatical statuses of A and B confuse the
model, and probability distribution reveal that it can’t di↵erentiate. This hints at the lack
of real, deep understanding of the model, which merely matches question and context and
predicts the closest entity with the correct grammatical type (person for who, date for when,
etc).

5.3 Hyperparameters

The model has various hyperparameters (learning rate, dropout, etc.) and adjustable
techniques (activation functions, similarity metric, etc.). Among the reasonable option, the
ability to pinpoint the ideal set of parameters is mainly dependent on available time and
performance, because those can only be determined through experimenting. Hence, we
have not been able to explore all the parameter space, and we had to rely on our intuition
to make those choices as we lacked the time required to run more experiments.

We apply dropout over the char LSTM cells, the representation layer BiLSTM cells, the
aggregation layer final BiLSTM cells, and all the hidden layer of the feed-forward network
in the prediction layer.
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6 Conclusion

We’d like to thank the CS224N team for providing us with this unique opportunity to work
on a real-world research task. It was extremely positive in terms of improving our NLP
and Tensorflow skills. Unfortunately, we estimate that we spent more than 50% of the time
working on issues that were not directly related to the model: bugs, preprocessing, perfor-
mance issues, etc. Even though those setbacks prevented us from improving our model as
much as we wanted it, we learnt a lot from our mistakes and will be more e�cient for our
next NLP project.
By the end of the project, we have started exploring promising improvements and new ap-
proaches to the initial model: CNNs as a representation layer, improved prediction layer,
etc. We also noticed that carefully adding variables at some points of the model could
yield improved expressivity (for instance, doubling the BiLSTM or adding a tanh layer).
Future improvements should include continuing exploration of those areas, as well as collect-
ing low-hanging fruits via: systematic hyperparameters optimization, ensembling, improved
prediction function (use a fallback window-based approach instead of predicting empty an-
swers).
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