
Song Title Prediction with Bidirectional Recurrent
Sequence Tagging

Ryan L. Holmdahl
Stanford University
Stanford, CA 94305

ryanlh@stanford.edu

Abstract

We present the task of predicting a song’s title given its lyrics and describe its
unique difficulties amongst natural language problems. Finding that most song
titles are contained in the song’s lyrics, we use a bidirectional GRU network to tag
those lyric tokens which are present in the title. Our method improves upon an
n-gram extraction baseline by 11.8%. Finally, we discuss opportunities for further
work.

1 Introduction

Unlike the documents used by most information extraction tasks (article summarization, question
answering), song lyrics are not necessarily expositive in nature and have varied and often unclear
objectives. Structurally, songs are distinct in their typical use of repetition, their brevity, their vague-
ness, and their lack of complete sentences and other typical grammar patterns.

Given these differences, songs-as-documents present an interesting and difficult domain of natural
language processing. One task within this domain is title extraction: the prediction of a song’s title
given the content of its lyrics. Effective models for solving this problem can provide insight into
the structure of music and can augment generative song models to provide realistic titles given the
generated lyrics.

We approach this problem by first noting that many songs – 79.9% in our dataset – contain their
title in their lyrics. Thus, we can treat it as a tagging problem, which is significantly easier than
construing it as a sequence-to-sequence problem. Disregarding the ordering of the tokens in a song’s
title (which can be fairly easily solved after tagging and is not the focus of this paper), we attempt
to classify each token in a song’s lyrics as a title token or a non-title token.

2 Related Work

Graves and Schmidhuber present the bidirectional LSTM architecture [1]. This architecture uses
bidirectional recurrent neural networks (BRNNs), which consist of two separate RNNs fed the same
input data in reversed orders [2]. The output of these networks are connected via concatenation or
some other means and then surfaced, allowing the final hidden state to carry information from both
the past and the future with respect to a particular timestep. The authors augment this structure using
the Long Short Term Memory unit, which addresses the inability of RNNs to access information
from distant timesteps [3].

Our construction of the problem as one of sequence tagging allows us to leverage the topic’s existing
literature. Huang et al. present a sequence tagging model which employs a bidirectional LSTM [4].
The hidden states of the LSTM at each timestep, in addition to the input embedding at that timestep

1

and the outputs of adjacent timesteps, are fed as input to a conditional random field classifier for that
token.

3 Approach

We modify the bidirectional LSTM architecture to use the simpler Gated Recurrent Unit (GRU) [5].
Similar to the work of Huang et al., we use this network to generate features for each lyric token,
which can then be used to classify it as a title or non-title token.

Figure 1: The bi-GRU architecture. Each token is transformed into an embedding vector, which
is passed into two GRU networks processing the text in opposite directions. At each time step,
the hidden states of each GRU for that and adjacent steps are concatenated and, along with the
embedding, passed as input to a hidden layer. The hidden layer outputs to a softmax layer, which
predicts the token’s label.

3.1 Inputs

We create a matrix X whose i-th entry, xi, is the tokenized lyrics sequence of the i-th song in
our dataset of size N . Using a vocabulary V , each entry in the sequence is transformed into a
corresponding integer. Each xi is of a constant length T , with those having fewer tokens being
padded with a special token and those with extra having the remainder removed. We refer to the t-th
token of xi as x(t)

i .

We build a tensor Y whose i-th entry, yi, is a vector of label vectors corresponding to the tokens of
xi. If x(t)

i is in the title of song i, then y
(t)
i = [0, 1]; otherwise y(t)i = [1, 0]. Note that the labeling is

irrespective of the number of times that token appears in the title, as long as it appears at least once.
That is, if a token j appears at least once in the song title, then every instance of token j in xi will
have a corresponding [0, 1] entry in yi.

3.2 Embeddings

The integer sequence is used to look up a continuous vector embedding of each token. The embed-
ding matrix is trainable, and is thus updated in each iteration.

Specifically, let L be our |V | ×D embedding matrix, where D is the embedding dimension and |V |
is the number of tokens in our vocabulary. We define oit as the one-hot row vector of dimension |V |
where the hot index is the value of x(t)

i . The embedding of x(t)
i , e(t)i , is defined as:

2

e
(t)
i = oitL

3.3 Bidirectional GRU

The token embeddings e are passed as inputs to a bidirectional recurrent network, with each network
consisting of T GRU units. The hidden states of the forward and backwards networks at each
timestep are concatenated into a vector h(t)

i and surfaced as input to the classifier.

3.4 Feedforward Classifier

To classify the token at a given timestep t on a given sample i, the hidden state of the bi-GRU h
(t)
i

is concatenated with the hidden states of the previous and subsequent steps h
(t−1)
i and h

(t+1)
i and

with the embedding vector e(t)i . This vector is then input to a feedforward neural network classifier,
defined as follows:

v
(t)
i = [h

(t−1)
i , h

(t)
i , h

(t+1)
i , e

(t)
i]

h̃
(t)
i = ReLU(v

(t)
i W1 + b1)

ŷ
(t)
i = softmax(h̃

(t)
i W2 + b2)

where W1 and W2 are trainable weight matrices and b1 and b2 are trainable bias vectors. The final
output vector, ŷ, is of dimension 2 corresponding to the two possible token tags. Special vectors
h(0) and h(T+1) are created to act as adjacent vectors for the first and last tokens. These vectors are
trainable.

3.5 Loss

To train the network with respect to a given sample i, we minimize the sum of the weighted softmax
cross-entropy losses of each term in the sequence, as follows:

T∑
t=1

w
(t)
i CE(y

(t)
i , ŷ

(t)
i)

where CE is the cross-entropy function, y(t)i is the correct label for the t-th token of the i-th sample,
and w

(t)
i is a weight scalar set as a hyperparameter according to the value of y(t)i .

3.6 Other Models

Other models were implemented in the pursuit of this research. Sequence-to-sequence attention
models attempted to translate the song lyrics into the title sequence. These models suffered from
severe overfitting problems, barely decreasing the development loss while sharply decreasing the
training loss. Although these attempts were unable to identify a general pattern for the sequence
decoding, future work could apply such models to a larger dataset.

Also implemented was a bag-of-words-to-sequence model. This model converted a song’s lyric
sequence into a term frequency vector of dimension |V |. This term frequency vector was then fed
into a hidden layer whose output became the initial state for a decoder RNN. This also suffered from
overfitting. In general, the tendency of X-to-sequence models to overfit encouraged us to pursue the
tagging approach.

3

4 Experiments

4.1 Dataset

We combine two datasets consisting of lyric-title pairs. The first pulls information from LyricsFreak
and the second from MetroLyrics. After removing songs that do not contain their title in their first
T lyric tokens and removing overlap between the datasets, we developed a training set of 100514
songs, a development set of 12578 songs, and a test set of 12658 songs. The songs and titles were
tokenized using the Python NLTK word tokenizer.

4.1.1 Vocabulary

We create a vocabulary V of the 50000 most frequent words in the lyrics of our training set. Those
tokens present in lyrics or titles that are not present in the vocabulary are replaced with a special
token.

4.2 Evaluation

Though we train with respect to the softmax cross-entropy loss, we evaluate our models using the
token overlap of the actual title and the predicted title, which we will refer to as the Token Overlap
Score.

In particular, let ui be the token presence vector of dimension |V | corresponding to song i. uij is
1 if token j appears in the title of song i and is 0 otherwise. Let ûi be the token presence vector of
dimension |V | corresponding to the model output of xi. ûij is 1 if a token with value j was labeled
positive in xi and is 0 otherwise. The Token Overlap Score S is as follows:

S(ui, ûi) =
ui · ûi

max(
∑|V |

j=1 uij ,
∑|V |

j=1 ûij)

This score has several desirable properties. It is on a 0 to 1 scale, with 0 indicating no overlap
and 1 indicating full overlap with no excess predictions. The score rewards predictions that have
more correct predictions and fewer incorrect predictions such that score is maximized only when
the prediction and the ground truth are exactly equal. Using the max of the two vector sums rather
than the average does not punish a prediction for including incorrect tokens if those tokens brought
the total number of tagged tokens closer to the actual title length.

4.3 Baseline

We used the most frequent n-gram in each song’s lyrics as a baseline prediction of its title. Essen-
tially, we find the range of n-gram lengths that scores optimally on the development set and then find
its score on the test set. Our specific algorithm is given in Algorithm 1.

4.4 Hyperparameters

We use the first 200 tokens of each song’s lyrics; that is, T = 200. For a given song i and timestep
t, w(t)

i = 1 if y(t)i = [0, 1]; otherwise, w(t)
i = 0.5. This helps compensate for the label imbalance

between title tokens and the more frequent non-title tokens. Our bi-GRU has two layers, and its
hidden states in each direction have dimension 256. The hidden classifier layer h̃ is also of dimension
of 256. Data is processed in batches of 64 randomly selected samples and our initial learning rate is
0.1.

4.4.1 Embeddings

To initialize our embedding matrix L, we use dimension 100 GloVe vectors [6]. These vectors
were trained on six billion tokens from Wikipedia and Gigaword using the global word-word co-
occurrence matrix and capture many interesting properties of words, including relevant nearest
neighbors (frog being close to toad) and linear substructures (woman - man being similar to queen

4

Algorithm 1 Baseline algorithm
1: procedure BASELINE(devSongs, testSongs)
2: nF loor ← 0
3: nCeil← 0
4: bestScore← 0
5: for i = 1; i <= 6; i++ do
6: for j = i; j <= 6; j ++ do
7: score←OVERLAPSCOREFORRANGE(i,j,devSongs)
8: if score > bestScore then
9: bestScore← score

10: nF loor ← i
11: nCeil← j

12: return OVERLAPSCOREFORRANGE(nF loor, nCeil, testSongs)
13: function OVERLAPSCOREFORRANGE(floor, ceil, songs)
14: score← 0
15: for song in songs do
16: maxNgram← top ngram with length in range [i,j] in song
17: score← score+ token overlap score of maxNgram and song title
18: return score/|songs|

- king). Those tokens that do not have a corresponding GloVe entry are initialized uniformly at
random between -0.1 and 0.1.

4.4.2 Model Selection

We train our model using clipped gradient descent. We select as our “best” model that which has
the maximal Token Overlap Score on the development set, which is calculated every 200 iterations.
We also evaluate the training and development losses and, if the development loss is not decreasing
over a few iterations, we decay the learning rate by a factor of 0.95.

4.5 Results

Figure 2 shows the model loss as iterations progressed. The model ceased to improve after about
30000 iterations, even on the training set. Since the development loss never worsened, increasing
the number of parameters via larger hidden dimensions and additional timesteps could be warranted
to fit the model better.

The stalling of improvement is corroborated by Figure 3, which describes a slowing of the develop-
ment Token Overlap Score around 30000 iterations.

We compare the performance of the best model on the development set with the performance of our
baseline in Figure 4, where we show an improvement of 11.8% over the baseline.

We can see an example of the model significantly outperforming the baseline in the example in
Figure 5. In this case, the song in question lacked many repeated n-grams, so the baseline struggled
to select one as the title. Meanwhile, the bi-GRU is still able to identify the key words in the song
and present them as the title.

5 Conclusion

We find that the bi-GRU shows significant promise in song title extraction. It outperforms the base-
line by a substantial margin, particularly on songs lacking heavy repetition. In future applications,
the baseline and the bi-GRU could be applied in tandem, the former to reptitive songs and the latter
to more complex songs.

The given implementation of the model does not severely overfit to the training set, indicating that
an increase in the number of parameters (tokens read per sample, size of hidden layers, amount of
context used by softmax classifier) could be warranted.

5

Figure 2: Model losses over time. The loss ceases to decrease on both datasets around 30000
iterations.

Figure 3: Development score over time. The score also ceases to improve on the development set
around 30000 iterations.

Model Test Set TOS
N-Gram Baseline 0.276

Bi-GRU 0.313

Figure 4: Model scores. The bi-GRU improves upon the baseline by 11.8%.

This research provides a useful foundation for future work. Subsequent efforts could experiment
with replacing some of the model components, such as the feedforward classifier layer. Some work
could also be done to sort the tagged tokens into a convincing title order. Those implementing
generative lyrical models could then begin applying the bi-GRU model to the generation of a title
from their lyrics.

6

Model Prediction TOS
N-Gram Baseline [’do’, ’you’, ’wan’, ’na’] 0.0

Bi-GRU [’the’, ’day’, ’school’] 0.667

Figure 5: Example result comparison. On the test song “Day Off School,” which lacks many
repeated n-grams, the bi-GRU is able to pick out key terms while the baseline picks one of the more
frequent n-grams and is entirely incorrect.

Another means of expanding on this work is to implement a sequence-to-bag-of-words model,
wherein the lyrics sequence is used to predict a single bag-of-words vector of dimension |V | rather
than to tag each token. Each x, y pair would consist of a lyric token sequence and a vector of dimen-
sion |V | whose j-th entry is equal to the number of times j appears in the title. The model would
then try to output this vector. This would bypass the current limitation of only being able to process
songs that contain their title, as this model could project onto the entire vocabulary, and would also
make predicting the quantity of tokens more feasible.

Acknowledgements

Thanks to Gyanendra Mishra for the “380,000+ lyrics from MetroLyrics” dataset, available at Kag-
gle, and Sergey Kuznetsov for the “55000+ Song Lyrics” dataset, also available at Kaggle. Special
thanks also to Kevin Clark, my mentor, and the CS224N teaching staff.

References

[1] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional {LSTM}
and other neural network architectures,” Neural Networks, vol. 18, no. 56, pp. 602 – 610, 2005.
{IJCNN} 2005.

[2] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploiting the past and the future in
protein secondary structure prediction,” Bioinformatics, vol. 15, no. 11, pp. 937–946, 1999.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[4] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,” arXiv
preprint arXiv:1508.01991, 2015.

[5] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural
networks on sequence modeling,” CoRR, vol. abs/1412.3555, 2014.

[6] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation.,”
in EMNLP, vol. 14, pp. 1532–1543, 2014.

7

https://www.kaggle.com/gyani95/380000-lyrics-from-metrolyrics
https://www.kaggle.com/gyani95/380000-lyrics-from-metrolyrics
https://www.kaggle.com/mousehead/songlyrics

	Introduction
	Related Work
	Approach
	Inputs
	Embeddings
	Bidirectional GRU
	Feedforward Classifier
	Loss
	Other Models

	Experiments
	Dataset
	Vocabulary

	Evaluation
	Baseline
	Hyperparameters
	Embeddings
	Model Selection

	Results

	Conclusion

